@inproceedings{alrowili-shanker-2021-arabictransformer-efficient,
title = "{A}rabic{T}ransformer: Efficient Large {A}rabic Language Model with Funnel Transformer and {ELECTRA} Objective",
author = "Alrowili, Sultan and
Shanker, Vijay",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2021.findings-emnlp.108/",
doi = "10.18653/v1/2021.findings-emnlp.108",
pages = "1255--1261",
abstract = "Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pre-training cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models."
}
Markdown (Informal)
[ArabicTransformer: Efficient Large Arabic Language Model with Funnel Transformer and ELECTRA Objective](https://preview.aclanthology.org/jlcl-multiple-ingestion/2021.findings-emnlp.108/) (Alrowili & Shanker, Findings 2021)
ACL