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Abstract

Large pre-trained neural models have recently
shown remarkable progress in text generation.
In this paper, we propose to generate text con-
ditioned on the structured data (table) and a
prefix (the written text) by leveraging the pre-
trained models. We present a new data-to-text
dataset, Table with Written Text (TWT), by
repurposing two existing datasets: ToTTo and
TabFact. TWT contains both factual and logi-
cal statements that are faithful to the structured
data, aiming to serve as a useful benchmark for
controlled text generation. Compared with ex-
isting data-to-text task settings, TWT is more
intuitive, the prefix (usually provided by the
user) controls the topic of the generated text.
Existing methods usually output hallucinated
text that is not faithful on TWT. Therefore,
we design a novel approach with table-aware
attention visibility and copy mechanism over
the table. Experimental results show that our
approach outperforms state-of-the-art methods
under both automatic and human evaluation
metrics.

1 Introduction

Data-to-text refers to the task of generating a target
textual description conditioned on the structured
source data such as tables, graphs, and meaning
representations. Reiter and Dale (1997) suggest
that a natural language generation (NLG) system
consists of content planning (what to say) and
surface realization (how to say it). Recent deep
neural network-based approaches do not explicitly
model these stages and are trained in an end-to-end
fashion using the popular encoder-decoder archi-
tecture (Sutskever et al., 2014) with the attention
mechanism (Dzmitry et al., 2015; Lebret et al.,
2016). They achieved promising results on existing
data-to-text datasets, such as WebNLG (Gardent
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et al., 2017), E2ENLG (Novikova et al., 2017),
WikiBio (Lebret et al., 2016), ROTOWIRE (Wise-
man et al., 2017), ToTTo (Parikh et al., 2020), and
LogicNLG (Chen et al., 2020a).

It should be noted that content planning is the
key factor for data-to-text generation (Puduppully
et al., 2019). Different users might interpret dif-
ferent parts of the structured data. This issue may
not be severe for datasets (e.g. WebNLG (Gar-
dent et al., 2017)) that require the generated text
to cover all records. However, when the golden
sentence only covers part of the records (e.g. Wik-
iBio (Lebret et al., 2016)), end-to-end methods that
do not explicitly address content planning may out-
put open-ended targets, which leads to unreliable
generated results, and places challenges in evalua-
tion.

In NLG, one way to provide signals on what to
generate is to add constraints to the model output,
which falls in the task of controlled text genera-
tion (CTG). Most CTG tasks are conditioned on
several key-value pairs of control factors such as
tone, tense, length, and sentiment (Hu et al., 2017;
Dong et al., 2017; Ficler and Goldberg, 2017). In
data-to-text, Parikh et al. (2020) propose the dataset
ToTTo to address content planning by highlighting
some cells in the table, the highlighted cells pro-
vide strong guidance on what to generate. However,
ToTTo lacks practical use, it would be difficult to
have tables with highlighted cells or ask the users
to highlight the cells in the real application.

One important application of NLG is to provide
writing assistance such as next word prediction or
text auto-completion. In this scenario, a natural
content planning signal will be the written text pro-
vided by the user, which could be a word, a phrase,
or an incomplete sentence. For the example shown
in Figure 1, given the table, users might interpret
different parts of the data with different prefixes.
Text generation under this scenario requires infer-
ring the user’s intention on content planning based
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# Governor Took Office
74 Robert 1868
75 Franklin 1872
76 Daniel 1874

Daniel was the 76th 

List of Governors of South Carolina

South Carolina Governor
Franklin took office in 1872

Robert was the Governor for 4 years

Written Text Generated Text

Daniel is the second Governor in the 1870s

#1
#2
#3
#4

Figure 1: Data-to-text generation conditioned on the
written text.

on the structured data and the written prefix.
To encourage the research in controlled data-to-

text generation, we present a new dataset, Table
with Written Text (TWT), by repurposing two ex-
isting datasets: ToTTo (Parikh et al., 2020) and Tab-
Fact (Chen et al., 2019). See Section 3 for details
about the dataset construction. TWT contains both
factual and logical statements that are faithful to
the structured data. Compared with other datasets,
TWT is of practical use. The prefix controls the
topic of the generated text, and the output model
could assist in writing with structured data. Note
that TWT differs from those datasets that provide
only one golden sentence with no content planning
signals.

To generate text faithful to the data, we design
a novel approach that leverages large pre-trained
models (Rothe et al., 2020) with table-aware atten-
tion visibility (based on the written text) and copy
mechanism (Oriol et al., 2015; Gu et al., 2016) over
the table. Experimental results show that our ap-
proach outperforms state-of-the-art methods under
both automatic and human evaluation metrics, par-
ticularly in terms of faithfulness to the structured
data. These results suggest that TWT could be
a useful controllable data-to-text benchmark, and
may help innovate models to provide intelligent
assistance for writing with structured data.

2 Related Work

Data-to-Text aims to generate natural language
from structured data, which has been widely stud-
ied recently. Most prior works focus on surface-
level text generation in a specific domain or
schema, such as ROBOCUP (Chen and Mooney,
2008), WEATHERGOV (Liang et al., 2009),
E2ENLG (Novikova et al., 2017), and WebNLG
(Gardent et al., 2017). These datasets expect the

generated text to describe all the records from the
data. WikiBio (Lebret et al., 2016) requires the
target text to cover salient records with no explicit
guidance on the generated topic. ToTTo (Parikh
et al., 2020) guide the topic of the generated tar-
get with a set of highlighted table cells. Logic-
NLG (Chen et al., 2020a) and Logic2Text (Chen
et al., 2020b) address logical inference/generation
in data-to-text. ROTOWIRE (Wiseman et al., 2017)
and ToTTo (Parikh et al., 2020) also contain data
that requires reasoning.

Many existing works tend to train neural models
in an end-to-end fashion (Liu et al., 2018; Wise-
man et al., 2017, 2018; Chen et al., 2020c). Re-
cently, large pre-trained models (Rothe et al., 2020;
Raffel et al., 2020; Lewis et al., 2020) have also
achieved new state-of-the-art results on data-to-text
tasks. Reiter and Dale (1997) suggest that an NLG
system consists of content planning and surface
realization. Parikh et al. (2020) propose ToTTo to
control the topics of generated text with highlighted
cells. Gong et al. (2020) brings the sense of numeri-
cal value comparison into content planning. Li and
Wan (2018) propose to generate templates and then
fill the slots, while (Iso et al., 2019) incorporate
writers’ information to generate text step-by-step.
Gong et al. (2019) utilize hierarchical encoders
with dual attention to consider both the table struc-
ture and history information. In NLG, controlled
text generation is also a hot research topic. It con-
siders controlling attributes, such as identity of the
speaker (Li et al., 2016), sentiment (Dou et al.,
2018), tense (Hu et al., 2017), politeness (Sennrich
et al., 2016) and text length (Kikuchi et al., 2016).
Our work could be considered as a middle-ground
between data-to-text and controlled text generation
and has more practical usage.

3 Task Definition and Dataset
Construction

3.1 Task Definition

The task input is a tuple of table T, metadata M,
and a written prefix X . The metadata M may in-
clude the table caption, the title of the section that
contains the table, or other context around the ta-
ble. The output target is denoted by Y , such that
concatenating the prefix X and the output target
Y results in a fluent sentence that is faithful to the
table T. The goal is to learn a data-to-text model
conditioned on the written prefix, P (Y |T,M, X).
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Figure 2: ToTTo dataset example (Parikh et al., 2020).

Figure 3: TabFact dataset example (Chen et al., 2019).

3.2 Dataset Construction

Constructing a data-to-text dataset with clean tar-
gets is a significant challenge (Parikh et al., 2020),
we therefore build TWT by repurposing two exist-
ing datasets: 1) ToTTo (Parikh et al., 2020), a large-
scale controlled table-to-text generation dataset
with highlighted cells and 2) TabFact (Chen et al.,
2019), a table-based fact-checking dataset with rich
logical annotated statements. As shown in Figure
2, in ToTTo, given the table, table metadata (such
as the table title), and a set of highlighted cells, the
goal is to produce the text that describes the high-
lighted cells. In TabFact, the input is a table with
the caption and some statements (Figure 3), the
task is to distinguish which statements are entailed
or refuted. We use all annotated sentences from
ToTTo and the entailed statements from TabFact as
the clean targets. Chen et al. (2020a) address that
data-to-text models should be able to generate text
with logical inference over the data. Note that both
ToTTo and TabFact contain text with logical infer-
ence. In total, we collected 128, 268 and 49, 417
table-sentence pairs from ToTTo and TabFact, re-
spectively. After that, we resplit the table-sentence
pairs to train/validation/test set as the TWT dataset.
The size of the train/validation/test set for ToTTo
source is 113, 063/7, 690/7, 515 and for TabFact is
39, 678/5, 009/4, 730.

Now, we could build the prefix and the golden
target to generate by simulating the user writing
process. An easy way to build prefix-target pairs is
to break the sentence into two parts randomly, the
first part will be the written prefix, and the second
part is the target text to generate. However, the dif-
ficulty of generating correct target text on different

Property ToTTo TabFact
Number of prefix-target pairs 27,042 13,955
Average prefix length (tokens) 10.9 9.3
Average target length (tokens) 15.8 14.2
Rows per table (average/median) 32.8/16.0 10.9/10.0
Columns per table (average/median) 6.8/6.0 6.1/6.0

Table 1: TWT evaluation benchmark statistics.

breakpoints is not equal. Therefore, we build TWT
evaluation benchmark with selected breakpoints
in the sentence on the test set. These breakpoints
are carefully selected such that the target contains
either fact or logic derived from the table.

We employ a rule-based approach to choose the
challenging breakpoints. We consider words or
phrases that co-exist in the sentence and the ta-
ble (or table metadata) as aligned facts. Follow-
ing Chen et al. (2019), we identify the aligned
facts based on the proportion of common words
and word frequency of the longest common words
between the text and each table cell or table meta-
data. For some text, we find that it contains num-
bers that do not exist in the table or table metadata
(#3 and #4 in Figure 1). These numbers are usu-
ally logically inferred from the data. We consider
these numbers as inferred numbers. The position
to break the sentence will be the first starting to-
ken (excluded) of aligned facts and non-ordinal in-
ferred numbers. For ordinal inferred numbers such
as “first”, “second” (#4 in Figure 1), the position
will be the last token of the ordinal number (ex-
cluded). Once the positions to break the sentence
are determined, we break the sentence at each posi-
tion with the requirement that the prefix contains at
least one aligned fact. Note that for sentences with
multiple aligned facts or numbers, we will have
multiple prefix-target pairs for one table-sentence
pair. Table 1 shows the statistics of the obtained
TWT evaluation benchmark.

4 Evaluation Metrics

For evaluation on TWT, we adopt the commonly
used metrics in text generation, including BLEU
score (Papineni et al., 2002), BLEURT (Sellam
et al., 2020), and BERTScore (Zhang et al., 2020).
Additionally, we introduce faithfulness metrics to
measure the faithfulness of the generated text. Note
that models trained on TWT might provide intel-
ligent writing assistance, we also design several
metrics specifically targeting this scenario.
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4.1 Faithfulness Metrics

We propose two evaluation metrics to measure the
faithfulness: fact coverage and the modified PAR-
ENT (Dhingra et al., 2019).
Fact Coverage is similar to the entity-centric met-
ric (Liu et al., 2021), and the overall slot filling
metric (Wang et al., 2018). Let Fg be the set of
aligned facts of the golden target and the table data,
and Fp be that for the generated target. Fact cov-
erage is calculated as |Fp ∩ Fg|/|Fg|. Note that
fact coverage of open-ended generated targets will
be quite low. We use the same alignment method
described in Section 3.2 to acquire Fg and Fp.
PARENT (Dhingra et al., 2019) is a metric specifi-
cally designed for data-to-text evaluation that takes
the input table into account. It computes smoothed
n-gram precision and recall over both the gener-
ated target and the input table. Parikh et al. (2020)
modifies this metric by computing the recall on the
highlighted cells on ToTTo. Similarly, we calculate
the recall on the set of aligned facts between the
golden target and the data.

4.2 Text Prediction Metrics

In the scenario of providing writing assistance,
whether the generated target can be accepted by
the user depends on 1) whether the generated text
matches the user’s intention, and 2) how much writ-
ing effort can be saved. We design the following
metrics targeting this scenario.
EM@N, the ratio of generated text whose words
exactly match the first N words in the golden text.
Characters Saved, the number of matched charac-
ters between the generated and golden text. This
metric measures how useful the model can help to
save the writing efforts.

5 Methodology

With transformer-based structures, finetuning task-
specific models with pre-trained parameters has
achieved state-of-the-art results in text genera-
tion, achieving an astonishing level of fluency and
coherence. Pre-trained models with a encoder-
decoder structure such as BART (Lewis et al.,
2020), BERT2BERT (Rothe et al., 2020), and
T5 (Raffel et al., 2020) can be easily applied to
data-to-text tasks. For example, on ToTTo, feeding
the highlighted cells with row and column header
as input and finetuned with BERT2BERT or T5
achieves relatively high performance (Parikh et al.,
2020).

Figure 4 presents an overview of our model. We
use a transformer-based encoder with additional po-
sitional (row/column) embeddings to encode table
structure. We introduce structured encoder-decoder
attention visibility based on the prefix to attend to
the prefix-relevant sub-structure of the original ta-
ble. For the decoder, we employ bi-directional
attention for the prefix and uni-directional atten-
tion for the generated target as the decoder self-
attention visibility. We also introduce the copy
mechanism over the table data to assure the faith-
fulness of the generated target. Note that our model
is based on the transformer encoder-decoder archi-
tecture (Rothe et al., 2020), both the encoder and
the decoder are initialized with pre-trained parame-
ters.

5.1 Table-aware Additional Embeddings
A common way to encode structured data with
transformer is to create a linearized sequence of the
data and treat the linearized sequence as text. For
table linearization, similar to Yin et al. (2020), we
use the template hc |hr | v to represent each table
cell, where hc and hr are column and row names
of the cell v. Following Herzig et al. (2020) to rep-
resent the table structure, we add row embedding
r and column embedding c. We also use a type
embedding t to represent the input type, where the
type could be the table cell or different metadata
types.

Given the input data, we first linearize the ta-
ble row by row into a sequence of words and
concatenate words of the metadata before the ta-
ble words. The words are further tokenized with
the WordPiece (Johnson et al., 2017) or Sentence-
Piece (Kudo and Richardson, 2018) tokenizer. Let
p be the positional embedding, w be the word em-
bedding, and e denote the input representation, we
have e = w + r+ c+ t+ p.

5.2 Encoder-Decoder Attention Visibility
The prefix provides the content planning signals on
the structured data. For example, in Figure 4, the
prefix "Daniel was the" indicates that the following
text is related to the row or column that "Daniel"
belongs to with high probability. Therefore, we
build a visibility matrix V based on the prefix as
the encoder-decoder attention mask to explicitly
model the visible row and column structure during
decoding. Vi,j = 1 means that the tokeni (the en-
coder part) is visible to tokenj (the decoder part).
We first extract the aligned facts for the prefix with
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Figure 4: Model overview.

the table records, and Vi,j = 1 if tokeni (the en-
coder part) belongs to the table metadata M or is
from the same row/column of the aligned facts.

5.3 Decoder Self-attention Visibility
Typically, the encoder-decoder based models gen-
erate text starting from the beginning, and the de-
coder adopts a causal mask to force the state of
each decoder time step sti only attend to the state
from the previous time steps, st|t≤ti , to avoid see-
ing tokens "from the future". We consider this type
of attention as unidirectional. In our task, we have
the input prefix as the written text. Tokens in the
prefix should be visible to each other. Therefore,
we adopt the causal with prefix mask: bidirectional
attention mask is applied to the prefix, unidirec-
tional attention is for decoding new tokens.

5.4 Copy Mechanism
To improve the faithfulness of the generated text,
copying mechanism (Oriol et al., 2015; Gu et al.,
2016) that copying from the data records is con-
sidered to be a promising solution (Li and Wan,
2018). Following (Chen et al., 2020c), on each de-
coding step t, we maintain a soft copy switch pcopy
to choose between generating from the distribution
over vocabulary, or copying from the input data
with attention weights as the probability distribu-
tion:

pcopy = σ(wT
x xt + wT

s st + wT
h∗h
∗
t + b)

where wx, ws, wh∗ , and b are learnable parameters,
xt is the decoder input, st is the output of the last
decoder layer, σ is the sigmoid function, and h∗t is
the context vector, h∗t =

∑
i a

t
ihi, a

t
i is the encoder-

decoder attention weight that masked with visibility
introduced in Section 5.2.

Note that for the multi-head attention, we obtain
pcopy by averaging that of all heads. Let Pvocab(w)
be the probability of generating token w, which
is calculated through two linear layers with the
concatenation of st and h∗t as input (see See et al.
(2017) for details), the final probability distribution
over the extended vocabulary from the input data
will be:

P (w) = (1− pcopy)Pvocab(w) + pcopy
∑

i:wi=w

ati

Copy mechanism is mainly proposed to handle
out-of-vocabulary words (OOV) (Oriol et al., 2015;
Gu et al., 2016). However, in our task, many of
the table values are not OOV. The reason we em-
ploy the copy mechanism is to explicitly "teach"
the model when and which fact to copy from the
input data to improve faithfulness. We consider
tokens of the aligned facts in the golden target as
copied tokens, denoted by Va. Following Chen
et al. (2020c), we maximize the copy probability
pcopy with an extra loss term at the copied tokens:

L = Lc + λ
∑

wj∈Va

(1− pjcopy) (1)
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Source Model BLEU BLEURT BERTScore
Writing Suggestion Generation Faithfulness

EM@1 (%) EM@2 (%) Char Saved Fact Coverage (%) PARENT

ToTTo

T5 30.51 -0.46 0.34 36.79 26.37 11.70 33.48 8.04
BERT2BERT 29.41 -0.40 0.36 32.68 22.49 13.13 30.66 8.19
Ours (init from T5) 37.38 -0.27 0.45 50.24 37.62 14.65 46.68 11.58
Ours (init from BERT) 33.47 -0.27 0.41 39.01 28.88 14.48 38.02 10.22

TabFact

T5 17.88 -0.70 -0.04 24.68 14.34 4.82 22.29 2.87
BERT2BERT 15.33 -0.72 0.08 20.41 11.06 5.26 20.28 2.45
Ours (init from T5) 24.18 -0.54 0.22 37.31 22.77 7.86 36.13 6.90
Ours (init from BERT) 18.69 -0.66 0.18 23.80 13.77 5.56 23.49 2.98

Table 2: Experimental results on the TWT evaluation benchmark. Our models adopt the “Causal with Prefix”
decoder mask pattern, which uses bidirectional attention mask for prefix, and unidirectional attention mask for
decoding new tokens (see Section 5.3 for details).

Model Source Averaged Score
T5

ToTTo

1.48
BERT2BERT 1.49
Ours (init from T5) 1.91
Ours (init from BERT) 1.77
T5

TabFact

1.36
BERT2BERT 1.25
Ours (init from T5) 1.87
Ours (init from BERT) 1.32

Table 3: Human evaluation scores. Our model uses the
causal with prefix mask for the decoder self-attention.

where Lc is the original loss between the model’s
output and the golden target, wj is the target token
at position j. λ is a hyper-parameter representing
the weight for the copy.

6 Experiments 1

Following Parikh et al. (2020) on selecting the base-
lines on ToTTo, we exam the following state-of-
the-art text generation approaches on TWT.

• BERT2BERT (Rothe et al., 2020): A Trans-
former encoder-decoder model where the en-
coder and decoder are both initialized with
BERT (Devlin et al., 2019).

• T5 (Raffel et al., 2020): A pre-trained text-
to-text using the transformer framework. T5
achieved state-of-the-art results on many text
generation benchmarks, including ToTTo.

Note that for baseline models, the input is the meta-
data concatenated with the table flattened row by
row, with no additional table-aware embeddings
introduced in Section 5.1.

1Our code, data, and model are publicly available at
https://aka.ms/emnlp_twt.

6.1 Setup

We build the prefix-target pairs for training and val-
idation by randomly selecting two prefixes of each
table-sentence pair from the TWT train/validation
set. The number of prefix-target pairs built for
training/validation is 226, 126/15, 380 from the
ToTTo source and 79, 356/10, 018 from the Tab-
Fact source. The trained model is then tested on
the TWT evaluation benchmark.

For our approach, we initialize the parameters of
encoder and decoder with two variants: BERT (De-
vlin et al., 2019) following BERT2BERT (Rothe
et al., 2020) and T5 (Raffel et al., 2020), with the
remaining parameters initialized randomly. When
initialized with BERT, encoder and decoder do not
share parameters. The learning rate is 5e−5. We use
the linear learning rate scheduler with Adam opti-
mizer (Kingma and Ba, 2015), and use beam search
with the beam size of 4 during decoding. When
initialized with T5, following (Raffel et al., 2020),
we employ a constant learning rate of 1e−3 with
AdaFactor optimizer (Shazeer and Stern, 2018).
Decoding is conducted via greedy search. For other
settings (including the baselines), the batch size is
56, and the maximum number of input and out-
put tokens are 512 and 128, respectively. Tokens
that exceed the maximum length will be truncated.
We tune the hyper-parameter λ of the copy weight
(Equation 1) and set it to 0.4, which achieves the
best overall performance. We train both baselines
and our approach with 8 NVIDIA Tesla V100 32G
GPUs. The best checkpoint is chosen based on the
fact coverage metric on the validation set.

6.2 Experimental Results

Table 2 shows the comparison between our ap-
proach and the baselines. We observe that: 1) our
approach outperforms the baseline methods on all
metrics, and 2) on both data sources, our approach

https://aka.ms/emnlp_twt
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Source Model BLEU BLEURT BERTScore
Writing Suggestion Generation Faithfulness

EM@1 (%) EM@2 (%) Char Saved Fact Coverage (%) PARENT

ToTTo

Ours (init from T5) 37.38 -0.27 0.45 50.24 37.62 14.65 46.68 11.58
- w/o causal with prefix 36.41 -0.28 0.44 50.94 38.10 14.54 45.97 11.22
Ours (init from BERT) 33.47 -0.27 0.41 39.01 28.88 14.48 38.02 10.22
- w/o col/row embeddings 33.31 -0.27 0.41 39.09 28.78 14.55 38.23 10.34
- w/o enc-dec attn visibility 30.82 -0.38 0.38 34.25 24.48 12.72 31.46 8.30
- w/o copy mechanism 33.04 -0.28 0.41 38.37 28.19 14.47 37.60 10.15
- w/o causal with prefix 31.52 -0.35 0.38 37.33 26.71 13.25 34.55 9.05

TabFact

Ours (init from T5) 24.18 -0.54 0.22 37.31 22.77 7.86 36.13 6.90
- w/o causal with prefix 24.13 -0.55 0.20 35.34 22.09 7.46 33.56 5.45
Ours (init from BERT) 18.69 -0.66 0.18 23.80 13.77 5.56 23.49 2.98
- w/o causal with prefix 16.45 -0.70 0.09 22.92 12.88 5.59 22.05 2.52

Table 4: Ablation studies, "w/o causal with prefix" means we replace it with the causal mask (unidirectional).

initialized with T5 achieves the best performance.
The improvements on the faithfulness metrics

are more significant. The results of the writing sug-
gestion metrics also demonstrate that our approach
could help reduce writing efforts with structured
data in real applications.

6.3 Ablation Study2

We conduct ablation studies to investigate the
model designs of our approach: 1) the table
structure-aware additional embeddings, 2) the
structured encoder-decoder attention visibility, 3)
the copy mechanism, and 4) the “causal with pre-
fix” decoding mask pattern. The results of different
variants are listed in Table 4.

The overall performance drops when we em-
ploy unidirectional decoding mask on both sources
when initialized with BERT or T5, suggesting that
it’s effective to employ the bidirectional attention
mask to the prefix. On the ToTTo source data, it can
be seen that, when the parameters are initialized
with BERT, the overall performance of all metrics
drops without the encoder-decoder attention visibil-
ity (enc-dec attn visibility) or the copy mechanism.
The results also suggest that introducing the ta-
ble structure-aware column and row embeddings
doesn’t show improvements (the results are compa-
rable). We leave this as our future work to further
study how to represent tables in transformer-based
model structures. The overall results demonstrate
that these designs are effective to achieve improved
performance.

6.4 Human Evaluation

In our task, some correct and faithful generated text
might be different from the golden targets, which

2Due to limited computation resources, we do ablation
studies mainly for our approach initialized with BERT on the
ToTTo source.

results in low performance using the above auto-
matic evaluation metrics. The predictions of our
models in Figure 5 Case #2 could be an example
of this type. To further evaluate the faithfulness
of the generated target, we randomly select 200
samples from the test set and ask the annotators to
judge the predictions in terms of factual and logi-
cal correctness. We score 3/2/1 to each generated
text indicating the facts or logic are all/partially/not
correct.

Table 3 shows the averaged scores of human
evaluation. Compared with baselines, our approach
generates more faithful text on data from the ToTTo
source, and when initialized with T5, our approach
achieves the best overall scores on data from both
sources. We also find that the performance is rather
poor when the golden target contains logical in-
ference over the data. We leave this as our future
work.

6.5 Case Study
Figure 5 shows the generated text of several cases
for baselines and our approach.

Case #1 shows how the copy mechanism affects
the generated text. Increasing the value of λ makes
the model “reluctant” to generate new text beyond
the table content, and we find that the larger the
value of λ is, the shorter the output text will be. λ
balances between quality (faithfulness) and diver-
sity. Note that "to 1876" in Case #1 is faithful to
the table, which is not included in the target.

In Case #2, all baseline models generate unfaith-
ful results while our models generate faithful ones,
the output of our approach shall be considered as
correct even though it’s different from the golden
target. This case demonstrates that, with encoder-
decoder attention visibility, our model could focus
on a specific sub-structure of the table to generate
more faithful results.

In Case #3, the prefix is not sufficient to guide
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stadium location capacity (seats) duration
hagemeister park green bay, wi 3,500 1919–1922

city stadium green bay, wi 25,000 1925–1956
marquette stadium milwaukee, wi 24,000 1952

lambeau field green bay, wi 81,435 1957–present

list of green bay packers stadiums

[Prefix: green bay packers lambeau field stadium had a 
seating capacity of 81,435 in] [Target: green bay , wisconsin]

BERT2BERT:

T5:

Ours (init from T5):
green bay packers lambeau field stadium had a seating 
capacity of 81,435 in 1957–present stadium

green bay packers lambeau field stadium had a seating 
capacity of 81,435 in the season

green bay packers lambeau field stadium had a seating 
capacity of 81,435 in 565,337 in 734 in 66,337 in 734 in 8

Ours (init from BERT2BERT):
green bay packers lambeau field stadium had a seating 
capacity of 81,435 in 1957

Case #2
# governor took Office left Office

74 robert kingston scott july 6, 1868 december 7, 1872
75 franklin j. moses, jr. december 7, 1872 december 1, 1874
76 daniel Henry chamberlain december 1, 1874 december 14, 1876
77 wade hampton III december 14, 1876 february 26, 1879

Metadata
list of governors of south sarolina

Target

[Prefix: daniel henry chamberlain was the 76th ] [Target: 
governor of south carolina from 1874]

Model Predictions

BERT2BERT:
Daniel Henry Chamberlain was the 76th governor of 
south carolina from december 7, 1868, to december 7, 
1874

governors under the constitution of 1868

Ours (init from BERT2BERT, copy weight 𝝀 = 𝟏. 𝟎):

Daniel Henry Chamberlain was the 76th governor of 
south carolina

Ours (init from BERT2BERT, copy weight 𝝀 = 𝟎. 𝟒):
Daniel Henry Chamberlain was the 76th governor of 
south carolina from 1874 to 1876

Case #1

rank nation gold silver bronze total

1 france 4 1 3 8

2 great britain 2 0 1 3

3 germany 1 1 2 4

4 belgium 1 1 1 3

BERT2BERT:

T5:

Ours (init from T5):
france had the highest rank of 1 with 4 gold medals

france had the most silver in the 1982 world judo 
championship, with 3 more gold medals than the 1982 
world jud

france had 2 gold, 1 silver, and 3 bronze medals

Ours (init from BERT):
france had one more bronze medal than germany, who 
had the highest rank

[Prefix: france had] [Target: 4 golds and 1 silver in the 
1982 world judo championships with a total of 8]

1982 world judo championships

home team home team score away team away team score

hawthorn 14.12 (96) north melbourne 3.6 (24)
geelong 7.10 (52) footscray 3.5 (23)

essendon 12.9 (81) collingwood 8.9 (57)

south melbourne 10.12 (72) carlton 11.11 (77)

Metadata

Target

Model Predictions

Metadata

Target

Model Predictions

BERT2BERT:

T5:

Ours (init from T5):
footscray had an away team score 5.4 points lower than 
what geelong had

footscray had an away team score 5.4 points lower than 
what melbourne had

footscray had an away team score 5.4 points lower than 
what hawthorn had

Ours (init from BERT2BERT):
footscray had an away team score 5.4 points lower than 
what melbourne had

[Prefix: footscray had an away team score 5.4 points lower
than what] [Target: collingwood had]

1931 vfl season

Metadata

Target

Model Predictions

Case #4Case #3

Figure 5: Case studies. Text segments colored in green means the content is faithful to the data, and those colored
in red are unfaithful content.

the model to generate factual or logical content.
Our model still outperforms the baseline models,
the model attempts to generate text which involves

logical inference. Our model does not explicitly
model logic, the reason might be that the logic here
is relatively simple, which does not require algebra
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calculation over the numbers.
Case #4 shows that when the logic involved is

complex, all models including ours fail to generate
the correct result. We leave generating text with
logical inference over the data as our future work.

7 Task Challenges

Logical Inference. Text generation with logical in-
ference over the data is challenging in our task. For
example, the golden target of Case #4 in Figure 5
requires calculation over the numerical values in
the table.
Choosing between Fact and Logic. In TWT, the
golden target contains both factual and logical text.
The model shall be capable of choosing what type
of content to generate. For example, in Case #3 of
Figure 5, the target sentence is factual while the
model attempts to generate logical text, which leads
to low evaluation results, though the predicted text
is correct.
Evaluation metrics. A good text generation
model shall be capable of generating diverse and
faithful content, which is not limited to generating
results close to the provided target. Case #2 is an
example of this type. The results of Ours (init from
BERT2BERT) shall be considered correct. Even
for the evaluation metrics, we find that these met-
rics usually are not consistent. For example, a high
BLEU score does not necessarily mean that the fact
coverage or PARENT metric is high.

8 Conclusion

In this paper, we propose Table with Written Text
(TWT), a new controlled data-to-text generation
dataset. For this task, we design a novel approach
with table-aware attention visibility and copy mech-
anism over the table. Experimental results show
that our approach could generate faithful text over
state-of-the-art pre-trained models under both auto-
matic and human evaluation. For future work, we
will focus on generating text with logical inference
on TWT.
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