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Abstract
We tackle multi-choice question answering.
Acquiring related commonsense knowledge to
the question and options facilitates the recog-
nition of the correct answer. However, the cur-
rent reasoning models suffer from the noises in
the retrieved knowledge. In this paper, we pro-
pose a novel encoding method which is able
to conduct interception and soft filtering. This
contributes to the harvesting and absorption
of representative information with less inter-
ference from noises. We experiment on Com-
monsenseQA. Experimental results illustrate
that our method yields substantial and con-
sistent improvements compared to the strong
Bert, RoBERTa and Albert-based baselines. 1

1 Introduction

Multi-choice question answering (MQA for short)
is required to select an answer from a set of candi-
date options when given a question (Rajani et al.,
2019). The task is slightly different from multi-
choice reading comprehension which provides the
passage containing background knowledge for rea-
soning (Richardson et al., 2013). Frankly, due
to the lack of commonsense knowledge, MQA is
more challenging. For example, it appears to be
difficult for MQA to determine the true answer in
the following case, where the commonsense knowl-
edge regarding “island country” deterministically
contributes to reasoning, though such knowledge
is not offered in any form by default:

(1) Question: What island country is ferret
popular?
Options: [own home] [hutch] [outdoors]
[north Carolina] [Great Britain]
Answer: [Great Britain]

Therefore, actively acquiring the closely related
commonsense knowledge from external sources is
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Figure 1: MQA performance changes when the number
of search results is increased (during development).

crucial for MQA. Previous studies either retrieve
the commonsense knowledge from Wikipedia (Lv
et al., 2020) and ConceptNet (Lin et al., 2019;
Wang et al., 2020; Bian et al., 2021), or hunt sup-
portive evidence in the unstructured Internet data
(Emami et al., 2018). Bringing the retrieved knowl-
edge into the encoding process of questions and
options has been proven effective in strengthening
MQA.

We follow the previous work to perform MQA
using external knowledge bases. Information re-
trieval is utilized for knowledge acquisition as
usual. The difference is that we intend to enhance
the joint encoding of question, option and knowl-
edge by soft filtering and interception.

The filter is used to shield the encoder from the
negative influence of the mistakenly-retrieved irrel-
evant or unrepresentative knowledge (called noise
hereafter). It is motivated by our findings that pur-
posefully retrieving a larger number of knowledge
items actually results in performance degradation.
As illustrated in Figure 1, the performance curve
of the retrieval-based MQA model (green curve)
shows a trend of fluctuating downward when the
number of the adopted highly-ranked search results
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is increased. It is most likely caused by the noises
that sneak into the list of retrieval knowledge items.

Instead of thoroughly filtering noises out from
the retrieval knowledge, we perform soft filtering
which retains noises but merely assigns negligi-
ble attention weights to them. On the basis, we
develop an interceptor to “eavesdrop” on the en-
coding channel of knowledge items, and salvage
the recyclable latent information hidden in them.
It is motivated by the fact that part of the content
of a certain less-relevant knowledge item is prob-
ably informative. See the knowledge item in (2),
in which the constituent “a large island” is infor-
mative and recyclable (as it even bridges the key
words “Great Britain” in the relevant knowledge
and “island country” in the question). To recycle
available evidence in retrieval knowledge, the in-
terceptor conducts information fusion among them,
conditioned on the assignment of interactive atten-
tion to them.

(2) Question: What island country is ferret
popular?
Relevant knowledge: You are likely to
find a ferret in Great Britain.
Knowledge item: Great Britain is a large
island.

We implement the interceptor and soft filter by
self-attention network and attention pooling layer,
which are collectively referred to as “Headhunter”.
We couple a certain pre-trained model with Head-
hunter for encoding, and deploy them along with
ElasticSearch in the commonly-used two-stage
MQA architecture. We experiment over the Com-
monsenseQA dataset (Talmor et al., 2019). Experi-
mental results show that Headhunter yields signif-
icant performance gains all along when coupled
with different pre-trained models, including BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019)
and Albert (Lan et al., 2020). Besides, the case of
combining Albert and Headhunter achieves better
performance than most state-of-the-art models, and
it is ranked second on the CommonsenseQA leader-
board for track 1. The developed results show that
the performance advantages can be safely attributed
to the constraint on the use of less-relevant knowl-
edge in Headhunter. To some extent, it successfully
avoids the severe performance degradation when
a larger set of qualified and less-qualified com-
monsense knowledge is taken (see the red curve in
Figure 1).

Question What island country is ferret popular?
Answer Great Britain

Attention Knowledge
α̌1 = 0.949 You are likely to find a ferret in Great Britain
α̌2 = 0.017 Great Britain is a country
α̌3 = 0.017 Great Britain is a large island
α̌4 = 0.017 A ferret is an animal.

Table 1: An example that attention pooling helps to
highlight the representative commonsense knowledge.

2 Approach

2.1 Headhunter’s Interceptor

We utilize the self-attention model (Vaswani et al.,
2017) as the interceptor. Assume H is an n ×m
matrix, in which each row corresponds to a hidden
state vector hi. Thus we compute the attention
weights A at the matrix level for all the hidden
states (∀hi) in H: A=softmax(QK>), where Q
and K serve as the matrices transformed from H ,
and they are computed with nonlinear activation
functions using different parameters.

In terms of this computation algorithm, the i-th
row inA forms the attention vector αi of the hidden
state hi, recording the attention weights of hi upon
all the other hidden states and itself. Thus if the
attention weights can be imagined as the measures
of relevance degrees, we are able to intercept the
relevant information from other hidden states and
bring that into hi. We do so by accumulating the
attentively-weighted hidden states, as that has been
accomplished in the self-attention model: ȟi=αiV ,
where V is transformed from H by nonlinear acti-
vation function. This operation is carried out for all
hidden states in H by the calculation of Ȟ=AV .

From here on, we specify that each hi in H has
been encoded as the hidden state vector that con-
tains the latent information of a piece of common-
sense knowledge (see Section 2.3). Thus, by the
attention modeling mentioned above, each hidden
state ȟi in Ȟ intercepts and absorbs the relevant
information from other commonsense knowledge,
regardless of whether the knowledge is relevant or
less-relevant.

2.2 Headhunter’s Soft Filter

Attention pooling layer is used as the filter. It only
comes into play when positioned behind the self-
attention network. Given the attention matrix A,
we pool the attention for each column of A. Soft-
max normalization is used among all columns. Spe-
cially, the pooled attention for the j-th column is
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calculated as: α̌j=softmax(
∑n

i=1 αi,j), where n
denotes the number of rows in A (which is equiva-
lent to the number of hidden states in H).

Theoretically speaking, the resultant α̌j pools
the attention of all hidden states inH upon a certain
hidden state hj . Therefore, it is able to reflect the
global representativeness of hj . Table 1 shows an
example regarding the attention pooling, where the
most representative commonsense knowledge is
assigned with a significantly higher value of α̌j .
Using the attention pooling layer, we can perform
soft filtering on H , highlighting the representative
hidden states (with higher α̌j) and eclipsing the
unrepresentative (with lower α̌j). Soft filtering can
be carried out by multiplying H by α̌.

In Headhunter, interception and soft filtering are
performed successively: interception first, then fil-
tering. Thus, the objects need to be dealt with
during soft filtering are the mutually-intercepted
hidden states Ȟ instead of the originalH . Thus, the
final output of Headhunter is computed as: Ȟ=α̌Ȟ .

2.3 Two-stage MQA Using Headhunter

We build a two-stage MQA system which com-
prises knowledge acquisition and reasoning mod-
ules. Headhunter is used in the reasoning stage.

For knowledge acquisition, we extract 705,647
sentence-level knowledge items from the Open
Mind Common Sense corpus (Singh et al., 2002).
On the basis, we index all the knowledge items by
Elastic Search engine. Given an MQA example
(i.e., one question plus five options), we formulate
a query by concatenating the question and one of
the options. As a result, we obtain 5 queries in
total for each MQA example. For every query, we
apply Elastic Search engine to retrieve knowledge,
and rank the search results in descending order of
relevance. Top-n highly-ranked search results are
retained, and they will be considered as the avail-
able commonsense knowledge for reasoning (i.e., n
knowledge items per pair of question and option).

During reasoning, we use the pre-trained model
(e.g., Albert) and Headhunter for encoding. Be-
sides, a fully-connected layer with softmax normal-
ization is used for predicting the answer.

Given a group of question q, option o and knowl-
edge k, we feed them into the pre-trained language
model in terms of the following structure:

[CLS] q [SEP] o [SEP] k [SEP]
The transformers deployed in the pre-trained

model (Vaswani et al., 2017) facilitates the inter-

action and fusion of the input q, o and k, and inte-
grates their information all into the real-valued m-
dimensional vector [CLS]. We employ the vector
[CLS] as the knowledge-aware representation of
q and o. In this way, we obtain n [CLS]s for each
pair of question and option, conditioned on the top-
n retrieved knowledge items. Using these [CLS]s,
we form the n×m input matrix H of Headhunter,
where each [CLS] acts as a row in H . On the ba-
sis, we transform H into the mutually-intercepted
representation Ȟ by Headhunter’s interceptor, and
further transform Ȟ into the final representation Ȟ
by Headhunter’s filter (Section 2.2).

We feed Ȟ into the fully-connected layer, so as to
estimate the probability that the corresponding op-
tion may be the answer: y=wȞ+b, where w ∈ Rm

and b ∈ R stand for trainable parameters. Note that
given a question, we perform retrieval, encoding
and headhunting for the five options respectively.
This causes five unique prediction processes, yield-
ing five prediction results. Thus, we use softmax
normalization over the predictions, so as to select
the most probable option as the answer.

3 Experimentation

3.1 Dataset, Hyperparameter and Evaluation

We experiment on CommonsenseQA (Talmor et al.,
2019), a dataset containing 12,102 MQA examples.
We use 9,741 examples in it for training, 1,221 for
development and 1,140 for test. The knowledge
base we use is taken from Open Mind Common
Sense (Singh et al., 2002) which comprises a large
number of sentence-level commonsense knowledge
items obtained by crowdsourcing.

Our best model employ Albert-xxlarge as the ba-
sic encoder. During training, the maximum length
of the input sequence is set to 80. The batch size
is set to 1 and the gradient accumulation step is
set to 20. The learning rate is set to 1e-5. The
dropout rate is set to 0.1. All the considered mod-
els are trained for 5 epochs. The number n of
knowledge-oriented search results is an additional
hyperparameter. We set n to 8 during training and
7 during development in our best model. Accuracy
(Acc.) is used as the evaluation metric. The loss
function during training is Cross-Entropy.

3.2 Baselines and Comparisons

We consider three baselines, including BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
Albert (Lan et al., 2020). They are connected with
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Baselines Acc. +Headhunter Acc.
BERT-base 55.4 BERT-base+Headhunter 60.0
BERT-large 60.2 BERT-large+Headhunter 61.4
RoBERTa-base 58.6 RoBERTa-base+Headhunter 67.3
RoBERTa-large 74.0 RoBERTa-large+Headhunter 77.6
Albert-xxlarge 79.4 Albert-xxlarge+Headhunter 83.3

Table 2: Comparison to baseline models.

fully-connected layer though without headhunting.
All of them are retrained and fine-tuned.

In addition, we compare with two groups of state-
of-the-art MQA models.

Group 1 includes RoBERTa and Albert which
operate without using commonsense knowledge. In
addition, we take the enlarged version of RoBERTa,
as well as the optimized Albert by ensemble learn-
ing. Moreover, Zhu et al. (2020)’s FreeLB is con-
sidered which enhances RoBERTa-large by adver-
sarial training. None of the MQA models in this
group had used commonsense knowledge.

Group 2 comprises KE, KEDGN and DREAM,
all of which use RoBERTa for encoding. In partic-
ular, KE conducts transfer learning on Open Mind
Common Sense and fine-tunes RoBERTa on Com-
monsenseQA. It additionally retrieves supportive
evidence from Wikipedia for reasoning. KEDGN
embeds RoBERTa into the Dual Graph Network.
DREAM is similar to KE but uses ElasticSearch
for knowledge acquisition.

The models in Groups 1&2 have made their mark
on the official CommonsenseQA leaderboard2, set-
tling in track 1 where ConceptNet (Speer et al.,
2017) is unavailable by default. We list the reported
performance for comparison. Although performing
better, the highly-ranked MQA models(Lv et al.,
2020; Xu et al., 2020) in the other track are not con-
sidered for comparison. It is because ConceptNet
is available there and, more importantly, the 5-way
MQA instances in CommonsenseQA (experimen-
tal dataset) are created using 4-node subgraphs in
ConceptNet and a manually generated distractor an-
swer for each. This potentially reduces the problem
to the 4-way MQA.

3.3 Results and Analysis

We evaluate the performance of baselines and when
Headhunter is connected with them. Table 2 shows
the performance on the development set when con-
vergence is persistent. It can be observed that Head-

2https://www.tau-nlp.org/
csqa-leaderboard

Group Model Dev Test

Group 1

RoBERTa-large (single) 78.5 72.1
RoBERTa+FreeLB (single) 78.8 72.2
RoBERTa+FreeLB (ensemble) - 73.1
Albert (single) 81.2 73.5
Albert (ensemble) 83.7 76.5

Group 2
RoBERTa+DREAM (single) 81.6 73.3
RoBERTa+KE (single) 78.7 73.3
RoBERTa+KEDGN (single) 80.4 74.4

Ours Albert+Headhunter (single) 83.3 78.4

Table 3: Comparison to the state-of-the-art models.

hunter yields substantial improvements all the time.
Compared to the previous work, we achieve

competitive performance on both development and
test sets, as shown in Table 3. More importantly,
our method obtains relatively robust performance,
yielding less performance degradation when the de-
velopment process is switched to the test. Frankly,
our best performance (78.4%) is slightly lower
than that (79.1%) of Khashabi et al. (2020)’s UNI-
FIEDQA, the top-ranked model on the leaderboard
of track 1, which is sophisticated (11B parameters)
and trained on eight QA datasets. Nevertheless, our
model is vest-pocket (283M parameters) due to the
ease of reproduction and training with less data.

Ablation Study We study the contribution of
Headhunter’s interceptor and soft filter in Figure 1.
Bert-Retr (green curve) refers to the traditional
retrieval-based approach, which concatenates all re-
trieved results after the question and options. Bert-
Mean (blue curve) applies Headhunter’s intercep-
tor but connected with a mean pooling layer. As
shown in Figure 1, continuous improvement has
been achieved by Headhunter as the number of re-
trieved results increases, demonstrating that Head-
hunter can effectively shield the noises from re-
trieved results. We can also observe that the soft
filter plays a crucial role in recycling information
from all retrieved results, which achieves much
better performance than mean pooling.

Another finding is that, during training, the
setting of the number n of the retrieved knowl-
edge items significantly affects the performance
when other hyperparameters remain unchanged.
In Appendix A., we exhibit a variety of perfor-
mance curves corresponding to different numbers
of knowledge items. Figure 1 is a diagram taken
from the appendix.

Cost-effectiveness Analysis The utilization of a
large number of external knowledge items (i.e., the

https://www.tau-nlp.org/csqa-leaderboard
https://www.tau-nlp.org/csqa-leaderboard
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ones retrieved by ElasticSearch) for encoding un-
avoidably results in a time-consuming training pro-
cess. For example, we spent about 26min3 on train-
ing the BERT-based baseline using 5 knowledge
items for each MQA case but, by contrast, 1h41min
when 20 knowledge items (per MQA case) are used.
Similarly, we necessarily spend much more time on
development. It may be acceptable if MQA perfor-
mance appears to be better. However, the opposite
is true.

Error Analysis We investigate the errors occur-
ring during development. Our best model (Albert
plus Headhunter) is considered in the investigation.
We randomly select 100 errors from those occur-
ring in the development process. In terms of the
distinctive properties, we divide the errors into 5
categories:

• Indistinguishable error refers to the MQA
case in which some candidate options are less
distinguishable from each other. It is observed
that the common errors are caused by the dif-
ficulty of making a distinction between indis-
tinguishable options, such as “happiness” and
“satisfaction”.

• Out-of-vocabulary emerges when a candi-
date option is not included in the common-
sense knowledge base or there is lack of in-
trinsically relevant knowledge to the question.

• Unreasonable error occurs when the encoder
fails to predict the correct answer, even though
the top-priority knowledge does serve as the
most reasonable evidence for reasoning.

• Less grounded problem happens when the
reliable knowledge items fail to be included in
the top-n search results, even if they do exist
in the commonsense knowledge base.

• Within the sampled data, we find 5 cases
which were obviously mislabeled.

Appendix B. will show the details of examples
which correspond to five types of errors.

4 Conclusion

We develop a vest-pocket model to squeeze reli-
able information out of commonsense knowledge
as completely as possible. It is proven beneficial to

3We run the models on an NVIDIA Tesla V100 SXM2
16GB GPU (Volta microarchitecture).

MQA performance when cooperating with BERT,
RoBERTa and Albert-based encoders. Error analy-
sis demonstrates that a critical bottleneck lies in the
disambiguation towards indistinguishable options.
In the future, we will study the dictionary-based dis-
ambiguation approach, detecting and representing
the most distinct aspects of words in terms of defini-
tions. Moreover, a multi-task learning architecture
will be developed, where knowledge acquisition,
word sense disambiguation and MQA share the
encoding channels of both general and distinctive
word senses (named entities are not included).
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Problem #Examples
Indistinguishable 54
Out-of-vocabulary 24
Unreasonable 12
Less grounded 5
Mislabeled 5

Table 4: Statistics for five categories of MQA errors.

Appendix.

A Knowledge Amount Analysis

The number n of knowledge-oriented search results
is an additional hyperparameter. If an enormous
amount of knowledge items are retrieved, there
will be more noises brought into the encoding and
reasoning processes. This definitely imposes un-
bearable pressure upon Headhunter, resulting in a
time-consuming training process or even system
breakdown. On the contrary, if a few cases are
considered, some potentially valuable knowledge
may be missed. We set n to 8 during training and
7 during development. Undoubtedly, the perfor-
mance changes when n is set to different values. In
appendix B., we exhibit the changing trends.

The proposed auxiliary model, Headhunter, is
able to shield the encoder from the misleading of
noises, and it facilitates the salvage of "recyclable"
knowledge in noises. As a result, Headhunter helps
to improve the performance of knowledge-based
MQA. Besides, it obtains a relatively rapid conver-
gence rate with the change of hyperparameter n
(i.e, number of the retrieved knowledge items).

Figure 2 shows the changing trend of perfor-
mance (Acc.) when different n are used during
development. Each diagram in Figure 2 is obtained
when a fixed number of knowledge items are used
in the 5-epoch training process. It can be observed
that, in most cases, Headhunter causes substantial
performance improvement when it cooperates with
the BERT-based baseline. Meanwhile, by Head-
hunter, the changing trend of performance comes
to be plain at an earlier time.

B Error Analysis

We analyze the errors made by our best joint model
(i.e., Albert coupling with Headhunter), so as to
reveal the challenges we will meet in the future.
We randomly select 100 errors from those occur-
ring in the development process. In terms of the
distinctive properties, we divide the errors into 5
categories, including 1) indistinguishable, 2) out-

Question: She was always helping at the senior center,
it brought her what?
Ground truth: happiness (Knowledge: Sometimes
helping someone causes happiness.)
Prediction: satisfaction (Knowledge: Sometimes help-
ing someone causes satisfaction.)
Question: Crabs live in what sort of environment?
Ground truth: saltwater (Knowledge: You are likely
to find a crab in saltwater.)
Prediction: bodies of water (Knowledge: You are likely
to find a crab in bodies of water.)

Table 5: Examples of indistinguishable MQA errors.

Question: What is someone who isn’t clever, bright, or
competent called?
Ground truth: stupid
Retrieved results include “Situation: I am clever.”|
“Clever people are unpredictable.”| “horses are clever
animals.”
Question: Where can you put a picture frame when it’s
not hung vertically?
Ground truth: table
Retrieved results include “picture description: Dining
table.”| “picture description: Table tennis paddle.”| “pic-
ture description: A table tennis paddle.”

Table 6: MQA errors emerge when out-of-vocabulary
knowledge is encountered.

Question: Stabbing to death of a person is what sort of
way to die?
Ground truth: gruesome (Knowledge: The effect of
stabbing to death is gruesome.)
Prediction: killing (Knowledge: stabbing to death is
for killing.)
Question: Where could you find hundreds of thousands
of home?
Ground truth: city or town (Knowledge: You are likely
to find a home in a city or town.)
Prediction: apartment building (Knowledge: You are
likely to find a home in an apartment building.)
Question: Where would you find a basement that can
be accessed with an elevator?
Ground truth: office building (Knowledge: You are
likely to find a basement in an office building.)
Prediction: own house (Knowledge: You are likely to
find a basement in your own house.)

Table 7: Examples of unreasonable errors.

Question: A beaver is known for building prowess,
their supplies come from where?
Ground truth: wooded area
Relevant knowledge : You are likely to find a beaver
in a wooded area.
Selected knowledge: Trees create a wooded area.

Table 8: Examples of less-grounded errors.

of-vocabulary, 3) unreasonable, 4) less grounded
and 5) mislabeled. Table 4 shows the statistics of
the sampled errors for each category.

Indistinguishable error refers to the MQA case
in which some candidate options are less distin-
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Figure 2: The changing trends of performance when different numbers of highly-ranked search results (knowledge
items) are used to support encoding and reasoning. The performance curves are obtained during development.

Question: Though the thin film seemed fragile, for it’s
intended purpose it was actually nearly what?
Options: indestructible (prediction), durable, unde-
stroyable, indestructible (ground truth), unbreakable.
Question: What is a person called who doesn’t have
immortality?
Options: mortal (prediction), dying, death, dead, mortal
(ground truth).

Table 9: Mislabeled MQA examples.

guishable from each other. The model fails to
make a distinction between them when the retrieved

knowledge items are similar. Table 5 shows two
examples. There are 54 cases occurring in the sam-
pled data, constituting 0.54% of the total errors.

Out-of-vocabulary problem causes 24 errors.
The problem emerges when a candidate option is
not included in the commonsense knowledge base
or there is lack of intrinsically relevant knowledge
to the question. Table 6 shows two examples re-
garding the out-of-vocabulary problem. Under this
situation, if the search engine toughly operates,
the retrieved knowledge is definitely incorrect and
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unavoidably drives the reasoning process in a com-
pletely wrong direction.

Unreasonable error occurs when the encoder
fails to predict the correct answer, even though the
top-priority knowledge (i.e., highest-ranked knowl-
edge in the search result list) does serve as the most
reasonable evidence for reasoning. There are 12
unreasonable errors found from the sampled data.
Table 7 shows a couple of examples. Such errors
may be caused by the simple reasoning process,
which is merely based on a fully-connected layer.

Less grounded problem happens when the re-
liable knowledge items fail to be included in the
top-n search results, even if they do exist in the
commonsense knowledge base. There are 5 less-
grounded cases found. Table 8 shows an exam-
ple. It is difficult to overcome this problem when
semantic-level matching has been left out of con-
sideration in a high-speed search engine.

Within the sampled data, we find 5 cases which
were obviously mislabeled. Table 9 shows two ex-
amples. Let us consider the second one, where the
first candidate option is the same with the last, and
one of them is labeled as the true answer while the
other incorrect. Thus, even if the model success-
fully detects the duplication of the true answer, the
case will still be regarded as a negative example
during evaluation. Avoiding such kind of “friendly
fire”, an MQA system may obtain a considerable
performance improvement. The preconditions in-
clude 1) endorsing the duplications and 2) double-
checking all the test data. Actually, if “friendly
fire” occurs frequently during training, the existing
MQA models have encountered distractors at the
very beginning. For a fair comparison, in our ex-
periments, we use the mislabeled MQA examples
as the canonical examples.


