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Abstract
Which type of information affects the existing
neural relation extraction (RE) models to make
correct decisions is an important question. In
this paper, we observe that entity type and trig-
ger are the most indicative information for RE
in each instance. Moreover, these indicative
clues are always constrained to co-occur with
specific relations at the corpus level. Moti-
vated by this, we propose a novel RAtionale
Graph (RAG) to organize such co-occurrence
constraints among entity types, triggers and re-
lations in a holistic graph view. By introducing
two subtasks of entity type prediction and trig-
ger labeling, we build the connection between
each instance and RAG, and then leverage rele-
vant global co-occurrence knowledge stored in
the graph to improve the performance of neu-
ral RE models. Extensive experimental results
indicate that our method outperforms strong
baselines significantly and achieves state-of-
the-art performance on the document-level and
sentence-level RE benchmarks.

1 Introduction

Relation extraction (RE), which aims to identify
the semantic relation between two entities in plain
text, is one of the fundamental tasks in informa-
tion extraction (IE). In the deep learning era, many
approaches are proposed including models based
on attention mechanism (Lin et al., 2016; Zhang
et al., 2017), graph neural networks (Zhang et al.,
2018; Guo et al., 2019), and pre-trained language
models (Joshi et al., 2020; Yu et al., 2020).

While these neural RE models have achieved
the latest state-of-the-art results, little is known
about which type of information affects the models
to make decisions. Recently, an empirical study
shows that the understanding of two main informa-
tion sources, entity type, and textual context, is nec-
essary and effective for training a RE model (Peng
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Figure 1: Illustration of the decision-making process in
RE, where patterns are the most indicative information.

et al., 2020). Entity type, is always an important
side information for RE (Liu et al., 2014; Vashishth
et al., 2018). In the textual context, some words
play an indicative role in relation expression. Yu
et al. (2020) initially annotated the minimal con-
tiguous indicative word span and named them trig-
ger. For example, in Figure 1, when we notice that
both the subject and object entities are person, as
well as the trigger children appears in the con-
text, our immediate reaction is that they probably
hold a parent-child relation, then we make a further
judgment by reading the complete text.

What is the support behind such rapid and accu-
rate decision-making of human beings? In RE, if
we look at the entire corpus from a global view, we
can find a common phenomenon that one certain
entity type or trigger is constrained to co-occur with
specific relations. Taking entity type as an example,
two entities of type person can only participate
in person-related relations (e.g., per:parents,
per:siblings). Such global co-occurrence in-
duced by multiple seen instances serves as the cru-
cial prior knowledge in the process of human cogni-
tion (Chater et al., 2006), and can naturally form a
bipartite graph, in which the nodes on two sides are
entity types and relations respectively. Similarly,
the same logic can also go for triggers.

Inspired by the above observation, in this paper,
we propose a RAtionale Graph (RAG) to organize
the global co-occurrence statistics aggregated from
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the corpus. Specifically, nodes in the graph are con-
structed based on the relations and patterns1. There
are totally four types of directed edges that exist
between different types of nodes. For example, the
edge between a trigger node and a relation node
depicts the co-occurrence probability of a text ex-
pressing the relation when the trigger appears in the
text. This probabilistic knowledge, together with
the involved nodes, is collectively referred to as
rationale. In the end, RAG is excepted to present a
holistic view of all patterns and relations, and then
facilitate the relation prediction.

Now we incorporate RAG with neural networks
to improve the RE performance. Given an instance
with a text and two entities, we first predict the en-
tity type and label the trigger, then establish the link
between the input instance with the known patterns
in RAG, and finally enhance the instance represen-
tation with the attended relation node features in the
graph. Meanwhile, we introduce the gate mecha-
nism and graph neural networks (GNNs) to perform
the information propagation from the input instance
to relation nodes. Hence, this workflow makes full
use of all aforementioned rationale knowledge to
guide the processing of new instances by linking
them to each seen pattern stored in the graph, like
humans recognizing new things by intuitively asso-
ciating with the knowledge they have memorized.
In the training phase, the model learns simultane-
ously (1) the relation along with (2) the entity type
and trigger for each instance. This means that we
care about not only the final relation label (what),
but also the intermediate results, i.e., whether the
entity type and trigger are correctly predicted (why).
By doing so, we can retrieve the relevant global pat-
tern knowledge from the graph with the predicted
trigger and entity types, during testing.

To evaluate our approach, we first conduct ex-
periments on the document-level RE task Dialo-
gRE (Yu et al., 2020). Experimental results show
the benefits of the proposed method, leading to
state-of-the-art performance. An exciting discovery
is that our method is very effective in small-scale
annotation scenes, using only half (with 2,584 posi-
tive instances) of the pattern-annotated instances re-
sults in a comparable performance as using all con-
ventional annotated instances. To further validate
this advantage, we manually annotate 20% (with
2,585 positive instances) patterns of the sentence-

1For the sake of generality, we refer to the entity type and
trigger as pattern in the remaining of this paper.

level RE benchmark TACRED (Zhang et al., 2017),
and empirically demonstrate similar experimental
conclusions with DialogRE.

2 Related Work

Extracting relational facts between entities from
text is an essential and classical problem in natural
language processing. The popular research meth-
ods have gone through the iteration from pattern-
based methods (Mooney, 1999; Chang and Lui,
2001) to feature-based methods (Kambhatla, 2004;
Zhou et al., 2005), and then to neural-based meth-
ods (Zeng et al., 2014; Zhang et al., 2017). Nowa-
days, most state-of-the-art work develops powerful
neural models based on pre-trained language mod-
els or graph neural networks (Soares et al., 2019;
Zhang et al., 2019; Guo et al., 2019). All the time,
there are two main consensuses in the community:
when extracting a relation, entity types are impor-
tant side indicators, which are often used to en-
hance the input or output layer (Vashishth et al.,
2018; Kuang et al., 2020). On the other hand, not
all the words in the text are beneficial to RE. Thus
there are also efforts focusing on the heuristic or
implicit selection of the key clues related to rela-
tion expression (Zhang et al., 2018; Yu et al., 2019),
and Yu et al. (2020) is the first work to annotate
such clue words in texts and name them trigger.

However, most previous studies are only based
on local features, in other words, models are trained
on individual instance, limiting the ability to cap-
ture the connection between textual indicative infor-
mation and relations globally. Conversely, Su et al.
(2018) emphasized the importance of the global
view, and embed the textual relations with global
statistics to combat the wrong labeling problem of
distant supervision. Wang et al. (2020) proposed an
interpretable network embedding model based on
a corpus-level entity graph to rationalize medical
relation prediction. Unfortunately, their methods
are not suitable for the supervised RE task in the
general domain. The most related work, (Zhang
et al., 2020), collected a global type-relation map-
ping as prior knowledge to guide the optimization
with knowledge distillation. One major difference
is that we systematically consider both entity type
and textual trigger to collect all indicative knowl-
edge in a holistic view. Another unique aspect of
this work is that we perform the prediction of entity
type and trigger as two subtasks, while previous
studies only focus on the final relation labels.
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3 Rationale Graph (RAG)

Different from existing work only using raw text for
RE, we assume the global co-occurrence statistics
among relations, triggers, and entity types is given,
which are pre-construed based on the whole corpus,
and denoted as a graph G = (V, E), where each
vertex v ∈ V refers the relation, trigger, or entity
type pair extracted from the corpus and each edge
e ∈ E is associated with the global co-occurrence
count for the connected nodes. Inspired by Zhang
et al. (2020), we organize the global co-occurrence
count between two kinds of nodes as bipartite ra-
tionale mapping and pack all bipartite mappings
together to obtain a rationale graph (RAG). Figure
2 shows the schematic diagram for clarity.

3.1 Bipartite Rationale Mapping

Here we take type (short for entity type pair) and
relation as an example to describe the construction
process of bipartite rationale mapping. Specifically,
for instance with a text x and two entities (s, o),
we combine two entity types to achieve a pattern p.
From this step, we obtain the pattern set T = {ti}
and formulate a support set S(ti) for each ti, in
which the support set S(ti) contains all instances
with pattern ti. Besides, we also collect a set of
relations R = {rj}, and the support set S(rj) de-
noting the set of instances holding relation rj . The
co-occurrence number of pattern ti and relation rj
is defined as wij = |S(ti) ∩ S(rj)|. In other word,
every instance (x, s, o) with pattern ti and relation
rj is counted as a co-occurrence of ti and rj .

However, it is inappropriate to take the raw co-
occurrence count as mapping weight directly. The
relation distribution in reality typically has a power-
law tail (Zhang et al., 2017), meaning that the
count spans several orders of magnitude in dif-
ferent relations. To meet this challenge, for each
pattern, we normalize its co-occurrence count to
form a valid probability distribution over relations.
In the end, the bipartite mapping Mtp2re is con-
structed, with one node set being the types, the
other being the relations, and the weighted edges
w̄ij = p(rj |ti) = wij/

∑
j′ wij′ representing the

normalized global co-occurrence probability.

3.2 Graph Construction

Considering that trigger and type are two kinds of
information sources for RE (Peng et al., 2020), we
first introduce the bipartite rationale mapping from
type to relationMtp2re and the mapping from trig-
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Figure 2: Schematic diagram of RAG, in which edges
are weighted by normalized co-occurrence statistics.

ger to relation Mtg2re in RAG. In this way, we
assume that the graph reflects the prior probabil-
ity of relation when some indicative information
appears in the text. Furthermore, triggers are actu-
ally relations in the form of natural language (Hu
et al., 2020) and entity types are tightly bound to
certain trigger words within the context (Lin et al.,
2020). In other words, type and trigger are mutu-
ally related and restricted. Therefore, we introduce
a set of bidirectional mapping, that is, from type
to triggerMtp2tg and from trigger to typeMtg2tp.
Finally, we place four kinds of edges in the graph:
E ← {Mtp2re,Mtg2re,Mtp2tg,Mtg2tp}2.

4 Relation Extraction with RAG

In this section, we exemplify how to incorporate ex-
isting RE models with RAG. Given a text, a subject
entity, and an object entity, the model aims to iden-
tify the semantic relationship between these two
entities with the aid of RAG. Moreover, we also
require the model to predict entity type pair and
label trigger (if possible) as two auxiliary subtasks.
For the example in Figure 3, we build a unified
model that not only accurately predicts the relation
per:parents, but also provides meaningful ra-
tionales on how the prediction is made: the subject
and object entities are both person, and the key
clue children appears in the context.

4.1 Encoding Module
We utilize BERT (Devlin et al., 2019) as the feature
encoder to extract token representations due to its
effectiveness in representation learning. Theoreti-
cally, the encoding module can be easily replaced
by other advanced models. The encoder receives a
BERT-style packed sequence and outputs a context
representation matrix H ∈ Rn×d with an overall
vector hcls ∈ Rd (the representation of the [CLS]
token in BERT), where d is the vector dimension

2In view of the diversity of natural language, we use spaCy
(https://spacy.io/) to perform lemmatization on trig-
gers, before putting them into RAG as vertexes.

https://spacy.io/
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Figure 3: The overall architecture of the proposed model. Rationale enhancing module is the core component in
our approach, which enhances the instance representation by retrieving pertinent rationales stored in RAG.

of the last layer of BERT. Typically, existing BERT-
based RE solutions first concatenate target entities
with the text or mark them in the input sequence
with special tokens, and then directly take hcls as
the input of final classification module (Joshi et al.,
2020; Yu et al., 2020).

4.2 Rationale Enhancing Module
The rationale enhancing module consists of two
enhancing branches and one rationale integration
unit. In each branch, we first predict pattern (type
or trigger) for the input instance and then calculate
the pattern probability that the instance belongs to
each pattern in RAG. The integration unit aims to
collect rationale enhancing features for final rela-
tion extraction based on the pattern probability and
the rationale in the graph.

4.2.1 Type Enhancing Branch
In this branch, we predict the types of subject and
object entities at the same time. Similar to RE, type
prediction is regarded as a closed-world classifica-
tion problem, and the class space is all seen entity
type pairs, that is, all type nodes in RAG. Follow-
ing the classification paradigm of BERT (Devlin
et al., 2019), we project the overall vector hcls into
a new space for type prediction:

htp
cls = tanh(MLP{d,d}(hcls)),

ptp = SoftMax
(
MLP{d,ntp}(h

tp
cls)
)
.

(1)

Here MLPd,ntp(·) denotes a multi-layer perceptron
module with input dimension d and output dimen-
sion ntp, ptp ∈ Rntp is the type probability that the
given instance belongs to each type pair, where ntp
is the number of all known type pairs.

4.2.2 Trigger Enhancing Branch
Different from the prediction of entity type, triggers
are flexible and can be any word or phrase in the

text. We formulate the trigger recognition task as a
labeling problem with two label sequences.

Given the representation matrix H output from
BERT, the model predicts two probabilities of each
token being the start index and end index of a trig-
ger, respectively. To handle the instances with-
out clear trigger (about half of them), we concate-
nate H with hcls to form H̄ = [H;hcls], and set
the boundary index pointing to the [CLS] token.
These two probability distributions over the entire
sequence psta,pend ∈ R(n+1) can be obtained by

psta = SoftMax
(
MLP{d,1}(H̄)

)
,

pend = SoftMax
(
MLP{d,1}(H̄)

)
.

(2)

To align the labeling result with the triggers in
RAG, we first weight each token in H̄ based on
the two index probabilities and get the representa-
tion of predicted trigger htg

pre ∈ Rd, then calculate
and normalize the similarity between htg

pre and all
known triggers Vtg ∈ Rntg×d:

htg
pre =

1

2
(psta + pend) H̄,

ptg = SoftMax
(
sim(htg

pre,Vtg)
)
,

(3)

where ptg ∈ Rntg is the probability of the given
instance corresponding to each known trigger, ntg
is the number of all triggers, and sim(·) is a simi-
larity function as follows:

sim(htg
pre,v

i
tg) =MLP{4d,1}([h

tg
pre;v

i
tg;

htg
pre − vi

tg;htg
pre ◦ vi

tg]),
(4)

where vi
tg ∈ Rd is the i-th trigger in Vtg and ◦ de-

notes element-wise product. In that case, even if we
run into a new trigger that we have never seen be-
fore, we can also estimate the correlation between
the new trigger and the known triggers via semantic
similarity, and then absorb more global statistics
from similar triggers. It provides the possibility for
the rationale enhancing on trigger branch.
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4.2.3 Rationale Integration
For each type node in RAG, we update its embed-
ding with the instance type feature htp

cls. It is intu-
itive that the higher the probability of an instance
to a type, the more its contribution to the updating
process of that type. Specifically, we first compute
the update representation for each type node based
on the pattern probability ptp, and then aggregate
information on the text side Vh

tp ∈ Rntp×d and
graph side Vtp ∈ Rntp×d via a gate mechanism:

Vh
tp = p>tph

tp
cls,

δtp = Sigmoid
(
MLP{2d,1}([Vtp;V

h
tp])
)
,

Ṽtp = (1− δtp) ◦Vtp + δtp ◦Vh
tp.

(5)
Similarly, we perform the same computation on

the trigger branch to reconstruct the trigger node
embeddings in RAG and result in V̄tg ∈ Rntg×d.

Next, we execute GNNs-based algorithm on the
RAG to update the representation of relation nodes.
R-GCN (Schlichtkrull et al., 2018) is chosen as the
message propagation strategy here because RAG is
naturally a heterogeneous graph:

V̄tp, V̄tg, V̄re = R-GCN
(
Ṽtp, Ṽtg,Vre

)
. (6)

After that, for the type enhancing branch, we
first calculate the mapping probability of an in-
stance to each relation based on the type probability
ptp and corresponding bipartite rationale mapping
Mtp2re ∈ Rntp×nre (i.e., the edge weightMtp2re),
and then weight the updated relation embeddings
based on the mapping probability to obtain type
enhancing vector htp ∈ Rd. Meanwhile, similar
operations are performed in the trigger branch:

htp = ptpMtp2reV̄re,

htg = ptgMtg2reV̄re.
(7)

4.3 Classification Module
The output module combines the overall vector and
two enhancing features to get final representation,
which is fed into a multi-layer perceptron followed
by a softmax function for relation classification:

hre = [hcls;htp;htg],

pre = SoftMax
(
MLP{3d,nre}(hre)

)
.

(8)

4.4 Training Objectives
Recall that there are totally three tasks in our model,
including relation extraction, type prediction, and

trigger (start and end indexes) labeling, which are
all reduced to the classification problem. In opti-
mization, we train the model end-to-end in a multi-
task manner here, and adopt cross-entropy as the
loss function for each task:

Ltask = CrossEntropy(ytask,ptask), (9)

where ytask denotes the ground truth, represented
by one-hot vector, ptask∈{re,tp,sta,end} is the esti-
mated probability for each class.

Towards learning to perceive the strong signal
that a known trigger exactly in the text, we utilize
contrastive loss (Hadsell et al., 2006). The intu-
ition is that the trigger in text htgpre and the matched
trigger in RAG vmat

tg should have similar represen-
tations (i.e., have a small distance in vector space,
d). For the mismatched trigger, we expect a margin
m between their embeddings. The contrastive loss
of trigger matching is as follows, where 1mat is 1
if a trigger is originally in the text and 0 if it is not:

d = ||htg
pre − vmat

tg ||2,
Lmat = (1− 1mat)(max{0,m− d})2

+ (1mat)(d)2 .

(10)

The joint loss of trigger labeling is thus

Ltg = Lsta + Lend + Lmat. (11)

Finally, the losses from the main RE task and
two subtasks are aggregated to form the training
objective, with two weight factors λtp and λtg:

L = Lre + λtpLtp + λtgLtg. (12)

Extension. Here, we introduce a simple extension
to simultaneously make full use of all data with
relation label and any number of data with pattern
annotation. Specifically, when there are intact pat-
tern annotations for an instance, we set 1ext to 1
and calculate the losses of type prediction and trig-
ger labeling. Otherwise, we do not calculate them
and set 1ext to 0. In this way, the training objective
(Equation 12) is modified as follow,

L′ = Lre + 1ext(λtpLtp + λtgLtg). (13)

5 Experiments

We name our proposed model RARE3, which can
be adopted to both document-level and sentence-
level RE tasks. Due to the differences in data for-
mats, applicable baseline models, and the custom

3abbreviation of RAtionale enhanced Relation Extraction
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Model Dev Test
F1 ± σ F1c ± σ F1 ± σ F1c ± σ

Majority (Yu et al., 2020) 38.9 ± 0.0 38.7 ± 0.0 35.8 ± 0.0 35.8 ± 0.0
CNN (Yu et al., 2020) 46.1 ± 0.7 43.7 ± 0.5 48.0 ± 1.5 45.0 ± 1.4
LSTM (Yu et al., 2020) 46.7 ± 1.1 44.2 ± 0.8 47.4 ± 0.6 44.9 ± 0.7
BiLSTM (Yu et al., 2020) 48.1 ± 1.0 44.3 ± 1.3 48.6 ± 1.0 45.0 ± 1.3

BERT (Devlin et al., 2019) 60.6 ± 1.2 55.4 ± 0.9 58.5 ± 2.0 53.2 ± 1.6
TypeKDBERT (Zhang et al., 2020)† 62.4 ± 1.1 57.7 ± 1.0 60.8 ± 1.5 55.6 ± 1.4
RAREBERT (ours) 64.6 ± 0.7 60.1 ± 0.8 64.2 ± 1.2 58.7 ± 1.1

BERTs (Yu et al., 2020) 63.0 ± 1.5 57.3 ± 1.2 61.2 ± 0.9 55.4 ± 0.9
TypeKDBERTs (Zhang et al., 2020)† 65.1 ± 1.2 59.4 ± 0.9 63.5 ± 1.3 57.8 ± 1.2
RAREBERTs (ours) 67.5 ± 0.8 62.6 ± 1.0 66.4 ± 0.8 61.0 ± 1.0

Table 1: Main results on the document-level RE (DialogRE) task, σ denotes the standard deviation computed from
five independent runs of each model. † marks the results we reproduce based on the official released code.

in handling entities, we conduct two sets of ex-
periments, comparing RARE to their respective
state-of-the-art models on the two tasks. In the ex-
periment, we take bert-base-uncased as backbone
encoder to verify the effectiveness of RARE and
perform further analysis. Besides, we reproduce
TypeKD (Zhang et al., 2020) as an extra baseline,
which is a recent work using global statistics be-
tween entity types and relations in RE.
Implementation Details. We follow the same in-
put format and hyper-parameter settings as in base-
lines for fair composition. Besides, the layer num-
ber of RAG is set to 2 (chosen from {1, 2, 3}), the
match margin in Lmat is set to 0.1 (chosen from
{1, 0.1, 0.01}) for the two sets of experiments. We
tune the loss weights λtp and λtg with grid search
(chosen from [0.01, 0.05] in steps of 0.01) and set
λtp to 0.01 and λtg to 0.03. For the nodes in RAG,
we regard entity types, triggers, and relations as
plain text, then employ the encoding module to
achieve their initial embeddings. All the hyper-
parameters are tuned based on dev set.
Evaluation Metrics. Following popular choices
and previous work, we use F1/F1c scores as eval-
uation metrics in the document-level RE task (i.e.,
DialogRE), where F1c is computed by only tak-
ing in the early part of a dialogue as input, instead
of the entire dialogue. In the sentence-level RE
task (i.e., TACRED/V), we report micro-averaged
Precision, Recall, and F1 scores.

5.1 Document-Level Relation Extraction

DialogRE (Yu et al., 2020) is a human-annotated
document-level RE dataset constructed from the
transcripts of an American television situation com-
edy Friends. It is also the first RE dataset with both
entity type and trigger annotation.

P R F1

Type Prediction 79.3 77.4 78.3
Trigger Labeling 51.5 54.2 52.7

Table 2: Performance of two subtasks on DialogRE.

5.1.1 Experimental Setup
We employ BERT and BERTs (Yu et al., 2020) as
the encoding module of RARE in this task. BERTs
is a speaker-aware version of BERT, achieving the
best performance on the dataset. For the complete-
ness of experiments, we include all official base-
lines: Majority strategy and CNN/LSTM/BiLSTM-
based models (Yu et al., 2020).

5.1.2 Results and Analysis
Main Results. Comparing the performance of dif-
ferent models in Table 1, the first conclusion we
draw is that RAREBERTs outperforms all baseline
models in all evaluation matrices, which demon-
strates the effectiveness of our rationale enhanced
approach, as well as the motivation of using global
pattern co-occurrence statistics to boost the per-
formance of RE models. Secondly, RAREBERTs

improves by a relative margin against RAREBERT.
It is strong evidence that RARE is flexible enough
to adapt to various encoders. Thus, we have reason
to believe that a more powerful encoding module
could bring further performance gain for RARE.
Lastly, TypeKD-based models have a similar trend,
but their performance is relatively worse than mod-
els based on RARE, which shows that trigger and
type are two non-overlapping information sources,
and only considering one of them is not enough to
capture complete indicative knowledge.

We report the performance of RAREBERTs on the
two subtasks in Table 2. From the results, we find
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Dev F1

RAREBERT 64.6
w/o Rationale graph 62.3
w/o Type enhancing branch 62.8
w/o Trigger enhancing branch 63.3
w/o Trigger matching loss 64.0
w/o Probabilistic edge weights 63.7
w/o Gate mechanism & GNNs 63.5

Table 3: Ablation study on DialogRE dev set.

that type prediction is relatively simpler than trigger
labeling. We explain that the entity type is a kind of
shallow linguistic feature, while the labeling trigger
requires a full understanding of context semantics.
We also notice that trigger labeling performance is
even worse than that of RE, since about half of the
positive instances have no explicit trigger (Yu et al.,
2020), meaning that the recognition of trigger faces
a more serious data imbalance problem than RE.
Overall, there is still a long way to improve the
performance of these two subtasks, which can be
left as a possible future direction.

Ablation Study. To investigate the effectiveness
of each module in RARE, we conduct an ablation
study on the DialogRE dev set. From the ablations
in Table 3, we observe that: (1) Rationale graph is
a necessary component that contributes 2.3% F1.
The performance superiority of this ablation over
BERT also shows that the two auxiliary subtasks of
type prediction and trigger labeling are beneficial
to RE. (2) Without the type or trigger enhancing
branch, the performance degradation suggests that
both type and trigger are necessary for our RARE.
(3) The ablation of removing the trigger matching
loss hurts the final result by 0.6% F1, which justi-
fies the design philosophy of entrusting the model
with the ability to perceive whether the trigger is
exactly in text. (4) We also try to remove the proba-
bilistic edge weights in RAG to make it degenerate
into a standard heterogeneous graph. In that case,
the performance drops by 0.9% F1. We think that
such probabilistic weights are capable of carrying
more global information than one-hot constraints.
(5) The information propagation (i.e., gate mecha-
nism and GNNs) brings the improvement of 1.1%
F1, which provides a channel to integrate the fea-
tures of input instance in the output layer.

Labor-Efficiency Study. Considering that most
RE datasets have no trigger annotation, we seek to
study the cost-effectiveness of adding patterns as
additional annotation in this experiment. Accord-
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Figure 4: Performance of models on DialogRE dev set
with partial training data. The positive instance number
with pattern annotation is shown in brackets.

ingly, we explore the performance of RAREBERT

and BERT for various fractions of training data.
From Figure 4, we can see that RAREBERT with
pattern annotations delivers competitive or even
better performance as BERT with twice the tradi-
tional training data. The drastic performance gain
justifies the slightly additional cost incurred in an-
notating patterns. Furthermore, we also introduce
RARE-Ext, the extension of RARE, to fully use
the partial data with pattern annotations and the
remaining data with only relation labels in training,
which provides a plug-and-play manner to utilize
pattern annotations. The results show that with the
increase of annotations, the performance improve-
ment becomes less significant. When using 50%
(with 2,584 positive instances) pattern annotations,
the performance of the model is comparable to that
of 100% annotations.

5.2 Sentence-Level Relation Extraction

In this section, we evaluate RARE on the sentence-
level RE task with two datasets TACRED (Zhang
et al., 2017) and TACREV (Alt et al., 2020). TA-
CRED is the most widely used sentence-level RE
dataset that constructed from New York Times. The
recent TACREV (a.k.a TACRED-Revised) dataset
has the same training set as TACRED, which cor-
rects the wrong labels in the dev and test sets.

5.2.1 Experimental Setup
To our knowledge, SpanBERT (Joshi et al., 2020)
is the best performance model without external
knowledge in TACRED. We employ it as another
encoder (besides BERT) for RARE. For complete-
ness, we also include two official baselines, LSTM
and PA-LSTM (Zhang et al., 2017), as well as two
recent graph-based models, AG-GCN (Guo et al.,
2019) and LST-AGCN (Sun et al., 2020), here.

Different from DialogRE, TACRED/V annotates
only entity types. Inspired by the results of the
label-efficiency study on DialogRE, we annotate
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Model TACRED TACREV
P R F1 P R F1

LSTM (Zhang et al., 2017) 65.7 59.9 62.7 71.5 69.7 70.6
PA-LSTM (Zhang et al., 2017) 65.7 64.5 65.1 74.5 74.1 74.3
AG-GCN (Guo et al., 2019) 73.1 60.9 68.2 77.7 73.4 75.5
LST-AGCN (Sun et al., 2020) - - 68.8 - - -

BERT (Devlin et al., 2019)‡ 67.2 69.3 68.2 76.0 75.6 75.1
TypeKDBERT (Zhang et al., 2020)† 70.6 68.7 69.6 77.9 76.1 77.0
RAREBERT-Ext (ours)? 71.4 68.1 69.8 78.6 76.2 77.4

SpanBERT (Joshi et al., 2020) 70.8 70.9 70.8 75.7 80.7 78.0
TypeKDSpanBERT (Zhang et al., 2020)† 71.7 70.4 71.0 79.8 78.3 78.8
RARESpanBERT-Ext (ours)? 72.5 69.3 70.8 80.1 78.0 79.0

Table 4: Main results on the sentence-level RE (TACRED/V) task. ‡ marks the results we reproduce based on the
repository released by (Joshi et al., 2020). We implement RARE-Ext with 20% extra annotations (?).
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Figure 5: Performance of models on TACREV dev set
with partial training data.

triggers for 2,585 positive instances, which ac-
counts for about 20% of all positive instances in
the training set of TACRED/V, to verify whether
RARE could maintain such excellent lab efficient
performance on sentence-level RE task. We repeat
our experiments for five random seed initializations,
and the results are statistically significant with a
p-value of less than 0.05.

5.2.2 Results and Analysis

Main Results. With 20% pattern annotations, we
compare RARE-Ext against several representative
baselines and summarize the results in Table 4.
Similar observations hold that RARE is capable
of achieving superior performances with advanced
encoding modules. Moreover, RARE-Ext achieves
or even surpasses the performance of TypeKD that
using 100% type annotations. Although sometimes
RARE does not make significant improvements on
TACRED, it outperforms the baselines in TACREV
and leads to state-of-the-art performances, which is
a more accurate evaluation set. Overall, the perfor-
mance gain of RARE on this task is not as amaz-
ing as the document-level task. We analyze that
because the sentence is much shorter than the doc-
ument, and involves fewer relations, BERT-based
models are sufficient in capturing the key seman-

tic clue for decision-making, thus the benefits of
global knowledge are slightly limited.
Labor-Efficiency Study. Following the approxi-
mate number of positive instances in DialogRE, we
split the pattern-annotated data to perform the labor-
efficiency study on TACREV (see Figure 5). The
results indicate that when both using partial data,
RAREBERT consistently outperforms BERT. It en-
lightens us to fully exploit the potential knowledge
of the dataset, including local annotation and global
statistics, to improve the performance of RE, espe-
cially under a low-resource scenario. The consider-
able progress of RAREBERT-Ext demonstrates that
RARE is able to improve RE by annotating patterns
on any part of an existing dataset. Considering
the differences between DialogRE and TACREV
(e.g., relation number, domain and style, the ratio
of positive and negative instances), it is under in-
vestigation whether further improvements could be
made by increasing annotations on TACREV, and
we leave it as future work.

5.3 Case Study

In Figure 6, we select two representative cases to
demonstrate the working principle of RARE. The
first case is a short snippet from a DialogRE docu-
ment, in which two entities are scattered in different
sentences, and the context semantics is complex
and changeable, BERT fails to capture the relation
between them. Conversely, RARE predicts the trig-
ger engaged and aligns it with the known trigger
engagement, and then highlights the strong sig-
nal to identify the relation correctly. In the second
case, which is from TACREV, BERT mistakenly re-
gards Jackson Hewitt as a person, leading to a
wrong answer of person-related relation. With the
help of type prediction and the global type-relation
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Speaker 2[SUBJ]: Phoebe, I’m engaged!
Speaker 1: I’m just saying, get his number just in case. But no
Chandler[OBJ] is in an accident ……

BERT: unanswerable (0.63)

RARE: per:girl/boyfriend （0.77)

Pattern: person … engaged … person
Rationale:

per-per

per:girl/boyfriend

engagement

0.14

1.0
01.000.08

(0.68)

(0.99)

Jackson Hewitt[SUBJ], based in Parsippany[OBJ], NJ, is the nation’s
second-largest tax preparation chain after H&R Block.

BERT: per:cities_of_residence (0.90)

RARE: org:city_of_headquarters (0.64)

Pattern: organization … based in city
Rationale:

org-city

org:city_of_headquarters

base

1.00

0.2
50.220.47

(0.84)

(0.72)

TACREV

DialogRE

Figure 6: Internal principles of RARE. The number in
bracket refers the probabilities predicted by model.

constraints in RAG, RARE could avoid this error
and make the right decision.

6 Conclusion

In this paper, we propose a novel rationale graph to
organize the global co-occurrence statistics among
entity types, triggers, and relations. By introducing
the two subtasks of entity type prediction and trig-
ger labeling, we build the connection between input
instance and the known patterns in rationale graph,
which provides the model with the possibility to
benefit from the global co-occurrence knowledge
stored in the graph, so as to improve the perfor-
mance of RE. Experimental results on two public
datasets prove the effectiveness of our method. We
also highlight two directions for future work: the
first is to improve the performance of two subtasks,
especially trigger labeling, the other is to adopt the
proposed approach in more RE scenarios.
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