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Abstract

Structural syntax knowledge has been proven
effective for semantic role labeling (SRL),
while existing works mostly use only one sin-
gleton syntax, such as either syntactic depen-
dency or constituency tree. In this paper, we
explore the integration of heterogeneous syn-
tactic representations for SRL. We first con-
sider a TreeLSTM-based integration, collabo-
ratively learning the phrasal boundaries from
the constituency and the semantic relations
from dependency. We further introduce a label-
aware GCN solution for simultaneously mod-
eling the syntactic edges and labels. Experi-
mental results demonstrate that by effectively
combining the heterogeneous syntactic repre-
sentations, our methods yield task improve-
ments on both span-based and dependency-
based SRL. Also our system achieves new
state-of-the-art SRL performances, meanwhile
bringing explainable task improvements.

1 Introduction

Semantic role labeling (SRL) aims to disclose the
predicate-argument structure of a given sentence.
Such shallow semantic structures have been shown
highly useful for a wide range of downstream tasks
in natural language processing (NLP), such as in-
formation extraction (Fader et al., 2011; Bastianelli
et al., 2013), machine translation (Xiong et al.,
2012; Shi et al., 2016) and question answering
(Maqsud et al., 2014; Xu et al., 2020). Based on
whether to recognize the constituent phrasal span
or the syntactic dependency head token of an argu-
ment, prior works categorize SRL into two types:
the span-based SRL popularized in CoNLL05/12
shared tasks (Carreras and Màrquez, 2005; Prad-
han et al., 2013), and the dependency-based SRL
introduced in CoNLL08/09 shared tasks (Surdeanu
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Figure 1: The mutual benefit to integrate both the (1)
syntactic constituency and (4) dependency structures
for (2) SRL, based on (3) an example sentence.

et al., 2008; Hajič et al., 2009). By adopting var-
ious neural network methods, two types of SRL
have achieved significant performances in recent
years (FitzGerald et al., 2015; He et al., 2017; Fei
et al., 2021a)

Syntactic features have been extensively verified
to be highly effective for SRL (Pradhan et al., 2005;
Punyakanok et al., 2008; Marcheggiani and Titov,
2017; Strubell et al., 2018; Zhang et al., 2019).
In particular, syntactic dependency features have
gained a majority of attention, especially for the
dependency-based SRL, considering their close rel-
evance with the dependency structure (Roth and
Lapata, 2016; He et al., 2018; Xia et al., 2019;
Fei et al., 2021b). Most existing works focus on
designing various methods for modeling the depen-
dency representations into the SRL learning, such
as TreeLSTM (Li et al., 2018; Xia et al., 2019) and
graph convolutional networks (GCN) (Marcheg-
giani and Titov, 2017; Li et al., 2018). On the other
hand, some efforts try to encode the constituency
representations for facilitating the span-based SRL
(Wang et al., 2019; Marcheggiani and Titov, 2020).

Yet almost all the syntax-based SRL methods
use one standalone syntactic tree, i.e., either de-
pendency or constituency tree. Constituent and
dependency syntax actually depict the syntactic
structure from different perspectives, and integrat-
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ing these two heterogeneous representations can in-
tuitively bring complementary advantages (Farkas
et al., 2011; Yoshikawa et al., 2017; Zhou and Zhao,
2019). As exemplified in Figure 1, the dependency
edges represent the inter-relations between argu-
ments and predicates, while the constituency struc-
ture1 locates more about phrase boundaries of argu-
ment spans, and then directs the paths to the predi-
cate globally. Interacting these two structures can
better guide the system to focus on the most proper
granularity of phrasal spans (as circled by the dot-
ted box), while also ensuring the route consistency
between predicate-argument pairs. Unfortunately,
we find that there are very limited explorations of
the heterogeneous syntax integration in SRL. For
instance, Li et al. (2010) manually craft two types
of discrete syntax features for statistical model,
and recently Fei et al. (2020a) implicitly distill two
heterogeneous syntactic representations into one
unified neural model.

In this paper, we present two innovative neural
methods for explicitly integrating two kinds of syn-
tactic features for SRL. As shown in Figure 2, in
our framework, the syntactic constituent and de-
pendency encoders are built jointly as a unified
block (i.e., Heterogeneous Syntax Fuser, namely
HeSyFu), and work closely with each other. In the
first architecture of HeSyFu (cf. Figure 3), we take
two separate TreeLSTMs as the structure encoders
for two syntactic trees. Based on our framework,
we try to answer the following questions:

I Q1. Whether the combination of constituent
and dependency syntax can really improve SRL?
I Q2. If yes, how much will such improvements

be for the dependency- and span-based SRL?
We further propose Const GCN and Dep GCN

encoders to enhance the syntax encoding in
HeSyFu, where the syntactic labels (i.e., depen-
dent arc types and constituency node types) are
modeled in a unified manner within the label-aware
GCN, as illustrated in Figure 4. With this, we can
dig deeper:
I Q3. How different will the results be by em-

ploying the TreeLSTM or GCN encoder?
I Q4. Can SRL be further improved by leverag-

ing syntactic labels?
I Q5. What kind of associations can be discov-

ered between SRL structures and these heteroge-
neous syntactic structures?

1Following Marcheggiani and Titov (2020), we strip off
the nodes of POS tags from the constituency tree for brevity.

To find the answers, we conduct extensive exper-
iments on both span- and dependency-based SRL
benchmarks (i.e., CoNLL05/12 and CoNLL09).
The results and analyses show that,

IA1. combining two types of syntax information
is more helpful than just using either one of them;

IA2. the improvement for span-based SRL is
more obvious than dependency-based one;
IA3. GCN performs better than TreeLSTM;
IA4. syntactic labels are quite helpful for SRL;
IA5. SRL and both kinds of syntactic structures

have strong associations and should be exploited
for mutual benefits.

In our experiments, our SRL framework with
two proposed HeSyFu encoders achieves better
results than current best-performing systems, and
yield more explainable task improvements.

2 Related Work

The SRL task, uncovering the shallow semantic
structure (i.e. ‘who did what to whom where and
when’) is pioneered by Gildea and Jurafsky (2000),
and popularized from PropBank (Palmer et al.,
2005) and FrameNet (Baker et al., 1998). SRL
is typically divided into the span-based one and
dependency-based one on the basis of the granu-
larity of arguments (e.g., phrasal spans or depen-
dency heads). Earlier efforts focus on designing
hand-crafted features with machine learning meth-
ods (Pradhan et al., 2005; Punyakanok et al., 2008;
Zhao et al., 2009b,a). Later, SRL works mostly
employ neural networks with distributed features
for the task improvements (FitzGerald et al., 2015;
Roth and Lapata, 2016; Marcheggiani and Titov,
2017; Strubell et al., 2018). Most high-performing
systems model the task as a sequence labeling prob-
lem with BIO tagging scheme for both two types of
SRL (He et al., 2017; Ouchi et al., 2018; Fei et al.,
2020c,b).

On the other hand, syntactic features are a
highly effective SRL performance enhancer, ac-
cording to numbers of empirical verification in
prior works (Marcheggiani et al., 2017; He et al.,
2018; Swayamdipta et al., 2018; Zhang et al.,
2019), as intuitively SRL shares much underly-
ing structure with syntax. Basically, the syntactic
dependent feature is more preferred to be injected
into the dependency-based SRL (Roth and Lap-
ata, 2016; Marcheggiani and Titov, 2017; He et al.,
2018; Kasai et al., 2019), while other consider the
constituent syntax for the span-based SRL (Wang
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et al., 2019; Marcheggiani and Titov, 2020).
Actually, the constituent and dependency syn-

tax depict the structural features from different
angles, while they can share close linguistic rele-
vance. Related works have revealed the mutual ben-
efits on integrating these two heterogeneous syntac-
tic representations for various NLP tasks (Collins,
1997; Charniak, 2000; Charniak and Johnson, 2005;
Farkas et al., 2011; Yoshikawa et al., 2017; Zhou
and Zhao, 2019; Strzyz et al., 2019; Kato and Mat-
subara, 2019). Unfortunately, there are very limited
explorations for SRL. For example, Li et al. (2010)
construct discrete heterogeneous syntactic features
for SRL. More recent work in Fei et al. (2020a)
leverage knowledge distillation method to inject
the heterogeneous syntax representations from var-
ious tree encoders into one model for enhancing
the span-based SRL. In this work, we consider an
explicit integration of these two syntactic structures
via two neural solutions. To our knowledge, we
are the first attempt performing thorough investiga-
tions on the impacts of the heterogeneous syntax
combination to the SRL task.

Various neural models have been proposed for
encoding the syntactic structures, such as atten-
tion mechanism (Strubell et al., 2018; Zhang et al.,
2019), TreeLSTM (Li et al., 2018; Xia et al., 2019),
GCN (Marcheggiani and Titov, 2017; Li et al.,
2018; Marcheggiani and Titov, 2020), etc. In this
work, we take the advantages of the TreeLSTM
and GCN models for encoding the constituent and
dependency trees, as two solutions of our HeSyFu
encoders. It is worth noticing that prior works us-
ing GCN to encode dependency (Marcheggiani and
Titov, 2017) and constituent (Marcheggiani and
Titov, 2020), where however the syntactic labels
are not managed in a unified manner. We thus con-
sider enhancing the syntax GCN by simultaneously
modeling the syntactic labels within the structure.

3 SRL Model

3.1 Task Modeling

Following prior works (Tan et al., 2018; Marcheg-
giani and Titov, 2020), our system aims to iden-
tify and classify the arguments of a predicate
into semantic roles, such as A0, A1, AM-LOC,
etc. We denote the complete role set as R. We
adopt the BIO tagging scheme. And given a
sentence s={w1,· · · ,wn} and a predicate wp, the
model assigns each word wi a label ŷ ∈ Y ,

She met her sister in the pub0 1 0 0 0 0 0
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Figure 2: Overview of our SRL framework.

where Y=({B, I}×R) ∪ {O}.2 Note that each
semantic argument corresponds to a word span of
{wj ,· · · ,wk} (1≤j≤k≤n).3

3.2 Framework
As illustrated in Figure 2, our SRL framework con-
sists of four components, including input represen-
tations, Transformer encoder, heterogeneous syn-
tax fuser layer and CRFs decoding layer.

Given an input sentence s and a predicate word
wp (p is the position), the input representations xi

are the concatenation (⊕) of word embeddings xwi

and predicate binary embeddings x(i==p) indicat-
ing the presence or absence of wp:

xi = xwi ⊕ x(i==p). (1)

Afterwards, we adopt Transformer (Vaswani
et al., 2017) as our base encoder for yielding contex-
tualized word representations. Transformer (Trm)
works with multi-head self-attention mechanism:

Softmax(
Q ·KT

√
dk

) · V , (2)

where Q, K and V are the linear projections from
the input representation xi. We simplify the flow:

{r1, · · · , rn} = Trm({x1, · · · ,xn}) . (3)

Next, based on the hidden representation ri, our
heterogeneous syntax fuser (HeSyFu) layer, which
will be elaborated in Section §4, integrates the con-
stituency and dependency syntax, and yields the
syntax-aware hidden representation:

{s1, · · · , sn} = HeSyFu({r1, · · · , rn}) . (4)
2This work focuses on the pipeline-style SRL which is

under the assumption that predicates are pre-identified.
3When j = k, the span-based SRL model shifts into the

dependency-based one.
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Based on the syntax-aware hidden representa-
tion si, we use CRFs (Lafferty et al., 2001) to
compute the probability of each candidate output
y = {y1, · · · , yn}:

p(y|s) =
exp{

∑
i(Wsn + Tyi−1,yi)}

Z
, (5)

where W and T are the parameters and Z is a
normalization factor. The Viterbi algorithm is used
to search for the highest-scoring tag sequence ŷ.

4 Integration of Syntactic Constituency
and Dependency Structure

We present two neural heterogeneous syntax fusers
(a.k.a., HeSyFu), including a TreeLSTM-based
HeSyFu (cf. Figure 3), and a label-aware GCN-
based HeSyFu (cf. Figure 4). HeSyFu is stacked
with total L layers for a full syntax interaction.
We design the architecture with the constituency
(denoted as const.) encoding in front of the de-
pendency (denoted as dep.) encoding, based on
the intuition that the boundary recognition helped
by const. syntax should go before the semantic
relation determination aided by dep. syntax.

4.1 TreeLSTM Heterogeneous Syntax Fuser

Our TreeLSTM-based HeSyFu (Tr-HeSyFu) is
comprised of the N-ary TreeLSTM for const. trees
and the Child-Sum TreeLSTM for dep. trees moti-
vated by Tai et al. (2015).

Constituency tree encoding The flow in TreeL-
STM is bidirectional, i.e., bottom-up and top-down,
for a full information interaction. For each node u
in the tree, we denote the hidden state and mem-
ory cell of its v-th (v ∈ [1,M ]) branching child
as h↑uv and cuv. The bottom-up one computes the

representation h↑u from its children hierarchically:

iu = σ(W (i)ru +
∑M

v=1U
(i)
v h↑uv + b(i)),

fuk = σ(W (f)ru +
∑M

v=1U
(f)
kv h↑uv + b(f)),

ou = σ(W (o)ru +
∑M

v=1U
(o)
v h↑uv + b(o)),

uu = Tanh(W (u)ru +
∑M

v=1U
(u)
v h↑uv + b(u)),

cu = iu � uu +
∑M

k=1fuk � cuk,

h↑u = ou � tanh(cu),
(6)

where W , U and b are parameters. ru, iu, ou

and fuv are the input token representation, input
gate, output gate and forget gate. Analogously, the
top-down N-ary TreeLSTM calculates the represen-
tation h↓u the same way. We concatenate the rep-
resentations of two directions: hconst

u = h↑u ⊕ h↓u.
Note that the constituent tree nodes include termi-
nal word nodes and non-terminal constituent nodes,
and we only take the representations (i.e., hconst

i )
corresponding to the word node wi for any usage.

Dependency tree encoding Slightly different
from N-ary TreeLSTM for const. tree, the non-
terminal nodes in dep. tree encoded by Child-Sum
TreeLSTM are all the word nodes. We also con-
sider the bidirectional calculation here. The bottom-
up TreeLSTM obtains h↑i of the word wi via:

h
↑
i =

∑
j∈C(i)h

↑
j ,

ii = σ(W (i)r
′
i + U (i)h

↑
i + b(i)),

fij = σ(W (f)r
′
i + U (f)h

↑
j + b(f)),

oi = σ(W (o)r
′
i + U (o)h

↑
i + b(o)),

ui = Tanh(W (u)r
′
i + U (u)h

↑
i + b(u)),

ci = ii � ui +
∑

j∈C(i)fij � cj ,

h↑i = oi � tanh(ci),

(7)

where C(i) is the set of child nodes of wi. r
′
i is the

input token representation consulting the foregoing
constituent output representation: r

′
i = ri +hconst

i .
The top-down one yields h↓i , which is concatenated
with the bottom-up one: hdep

i = h↑i ⊕ h↓i .

Integration To fully make use of the heteroge-
neous syntactic knowledge, we fuse these two re-
sulting syntactic representations. We apply a fusion
gate to flexibly coordinate their contributions:

gi = σ(W (g1)hconst
i + W (g2)hdep

i + b(g)) ,

si = gi � hconst
i + (1− gi)� hdep

i .
(8)
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Figure 4: Label-aware GCN-based HeSyFu layer.

4.2 Label-aware GCN-based Heterogeneous
Syntax Fuser

Compared with TreeLSTM, GCN is more com-
putationally efficient on performing the structural
propagation among nodes, i.e., with O(1) complex-
ity. On the other hand, it is also crucial to leverage
the syntactic labels (i.e., dependent arc types, and
constituent phrasal types) into the SRL learning.
For example, within the dependency tree, the infor-
mation from the neighboring nodes under distinct
types of arcs can contribute in different degrees.
However we note that current popular syntax GCNs
(Marcheggiani and Titov, 2017, 2020) do not en-
code the dependent or constituent labels with the
nodes in a unified manner, which could be inaccu-
rate to describe the syntactic connecting attributes
between the neighbor nodes. Based on their syntax
GCNs, we newly propose label-aware constituency
and dependency GCNs which are able to explic-
itly formalize the structure edges with syntactic
labels simultaneously, and normalize them unit-
edly.4 As illustrated in Figure 4, our label-aware
GCN-based HeSyFu (denoted as LG-HeSyFu)
has a similar assembling architecture to TreeLSTM-
based HeSyFu, and will finally be navigated via
the gate mechanism as in Eq. (8).

Constituency tree encoding The constituent
tree is modeled as a graph G(c)=(U(c),E(c)), where
U(c) is the node set and E(c) is the edge set. We
denote e(c)uv =1 if there is an edge between node u
and node v, and euv=0 vice versa. We enable the
edges to be bidirectional. µu represents the con-

4We note that the constituent labels are attached onto
nodes, while dependent labels are attached onto edges.

stituent label of node u, such as S, NP and VP, etc.
We take the vectorial embedding v

(c)
u for the node

label µu. Our constituent GCN (denoted as Const
GCN) yields the node representations h(c)

u :

h(c)
u = ReLU{

∑M
v=1

αuv(W
(c1)·rb

v+W (c2)·v(c)
v +b(c))} ,

(9)

where rbv is the initial node representation of the
node v via span-boundary bridging operation,
i.e., adding the start and end token representation
of the phrasal span, rbv = rstart + rend. And αuv

is the constituent connecting distribution:

αuv =
e
(c)
uv · exp {(z(c)

u )T · z(c)
v }∑M

v′=1
e
(c)

uv′
· exp {(z(c)

u )T · z(c)

v′
}
, (10)

where z
(c)
u = vu + v

(c)
u . This distribution αuv

encodes both the syntactic edge and label infor-
mation, and thus comprehensively reflects the con-
necting strengths between neighbors. We then per-
form span-boundary inverse-bridging to restore
the token node representation hconst

i for each word
wi, i.e., hconst

i = h
(c)

u′
+ h

(c)

v′
.

Dependency tree encoding Likewise, the depen-
dent tree is modeled as a graph G(d)=(U(d),E(d)).
e
(d)
ij =1/0 denotes the dependency arc existence. π↔ij

represents the edge label betweenwi andwj , which
is also bidirectional. Besides of the pre-defined de-
pendency labels, we additionally add a ‘self ’ label
as the self-loop edge π↔ii , and a ‘none’ label rep-
resenting no edge between wi and wj . We use the
embedding form v

(d)
ij for π↔ij . The update in de-

pendent GCN (denoted as Dep GCN) is written as:

h
(d)
i = ReLU(

∑n
j=1βij(W

(d1) ·r
′
j+W (d2) ·v(d)

ij +b(d))) ,
(11)

where r
′
j = rj + hconst

i . βij is the neighbor
connecting-strength distribution:

βij =
e
(d)
ij · exp {(z(d)

i )T · z(d)
j }∑n

j′=1
e
(d)

ij′
· exp {(z(d)

i )T · z(d)

j′
}
, (12)

where z
(d)
i = r

′
i + v

(d)
ij . Here h

(d)
i also can be

denoted as hdep
i , which navigates the dependent

arc and label information in a more unified way.

5 Experiments

5.1 Setups
We conduct experiments on the span-based
SRL datasets (CoNLL05 & CoNLL12), and
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CoNLL05 WSJ CoNLL05 Brown CoNLL12 OntoNotes

P R F1 P R F1 P R F1

Without Syntax
He et al. (2017) 85.00 84.30 84.60 74.90 72.40 73.60 83.50 83.30 83.40
Tan et al. (2018) 84.50 85.20 84.80 73.50 74.60 74.10 81.90 83.60 82.70
Li et al. (2020a)+RoBERTa 88.05 88.00 88.03 80.04 79.56 79.80 86.40 86.83 86.61
Trm+RoBERTa† 87.41 87.72 87.60 79.78 79.86 79.82 86.28 86.67 86.40
With Dependency Syntax
Strubell et al. (2018) 84.70 84.24 84.47 73.89 72.39 73.13 83.30 81.38 82.33
Xia et al. (2020) 85.12 85.00 85.06 76.30 75.42 75.86 - - -
Child-Sum TreeLSTM† 84.94 85.80 85.40 74.60 74.10 74.36 83.42 83.56 83.47
Dep GCN† 86.03 86.52 86.22 75.38 75.89 75.62 84.32 84.88 84.61
Dep GCN+RoBERTa† 88.21 87.82 88.07 80.73 79.82 80.13 86.58 86.99 86.82
With Constituency Syntax
Wang et al. (2019)∗ 85.40 85.02 85.23 75.48 75.23 75.36 84.35 84.11 84.21
Marcheggiani and Titov (2020) 85.80 85.10 85.40 76.20 74.70 75.50 84.50 84.30 84.40
Marcheggiani and Titov (2020)+RoBERTa 87.70 88.10 87.90 80.50 80.70 80.60 86.50 87.10 86.80
N-ary TreeLSTM† 85.91 85.27 85.58 75.22 75.06 75.12 84.12 83.85 84.02
Const GCN† 86.68 86.38 86.52 76.54 76.21 76.36 85.51 84.96 85.25
Const GCN+RoBERTa† 88.71 88.94 88.81 81.52 81.05 81.27 87.33 87.42 87.35
With Dependency & Constituency Syntax
Fei et al. (2020a)∗ 86.82 86.50 86.72 76.67 76.35 76.48 85.86 85.30 85.50
Tr-HeSyFu† 86.27 86.52 86.64 76.95 76.50 76.87 85.91 85.48 85.66
LG-HeSyFu† 87.16 87.63 87.32 78.72 77.35 78.12 86.51 85.92 86.20
LG-HeSyFu w/o Syn.Label† 86.93 87.21 86.98 77.61 76.85 77.48 85.93 85.68 85.79
LG-HeSyFu+RoBERTa† 88.86 89.28 89.04 83.52 83.75 83.67 88.09 88.83 88.59

Table 1: Results on span-based SRL datasets. Values with ∗ are from our re-implementations, while others are
retrieved from the raw papers. Scores with † are presented after significant test (p≤0.05).

dependency-based SRL dataset (CoNLL09). Each
dataset has its own training, development, and
test sets. We convert the constituency syntax an-
notations in CoNLL05&12 into dependency an-
notations by following the standard of Stanford
Typed Dependency (v3.3.0).5 We obtain the con-
stituency annotations for CoNLL09 from the PTB
data. We adopt the CoNLL05 evaluation scripts6

to evaluate the performances, with precision (P),
recall (R) and F1 score as the metrics. We con-
duct significance tests via Dan Bikel’s evaluation
comparer.7 The Transformer hidden size is 768.
The hidden sizes in TreeLSTM and GCN encoders
are in [250,300,350]. We adopt the Adam opti-
mizer with an initial learning rate of 2e-5. We train
the model8 by mini-batch size in [16,24,32] with
early-stop strategy. We also load the pre-trained

5https://nlp.stanford.edu/software/
lex-parser.html

6http://www.cs.upc.edu/˜srlconll/st05/
st05.html

7http://www.cis.upenn.edu/˜dbikel/
software.html#comparator

8Codes: https://github.com/scofield7419/
HeSyFu

1 2 3
80

85

90

1 2 3
80

85

90

Tr-HeSyFu

F1
(%

)

LG-HeSyFu

/L

CoNLL05 CoNLL12 CoNLL09

Figure 5: HeSyFu with different layers.

parameters9 from the RoBERTa language model
(Liu et al., 2019) to our Transformer encoder for
boosting the performance. The environment is with
Intel i9 CPU and NVIDIA RTX 3090Ti GPU.

5.2 Development Experiments

We first perform preliminary experiments based on
the development sets.

Layer of syntax encoder From Figure 5 we see
that either too larger or fewer layers of HeSyFu
does no benefits to the overall performances. When
L=2 for Tr-/LG-HeSyFu, the performances be-

9https://github.com/pytorch/fairseq/
tree/master/examples/RoBERTa

https://nlp.stanford.edu/software/lex-parser.html
https://nlp.stanford.edu/software/lex-parser.html
http://www.cs.upc.edu/~srlconll/st05/st05.html
http://www.cs.upc.edu/~srlconll/st05/st05.html
http://www.cis.upenn.edu/~dbikel/software.html#comparator
http://www.cis.upenn.edu/~dbikel/software.html#comparator
https://github.com/scofield7419/HeSyFu
https://github.com/scofield7419/HeSyFu
https://github.com/pytorch/fairseq/tree/master/examples/RoBERTa
https://github.com/pytorch/fairseq/tree/master/examples/RoBERTa
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CoNLL05 CoNLL12 CoNLL09

F1 ∆ F1 ∆ F1 ∆

Tr-HeSyFu
Dep.→Const. 84.5

-1.2
83.3

-1.0
91.2

-0.3
Const.→Dep. 85.7 84.3 91.5
LG-HeSyFu
Dep.→Const. 85.3

-1.4
84.3

-0.8
92.1

-0.4
Const.→Dep. 86.7 85.1 92.5

Table 2: Influences of the syntax encoding order.

come universally the best.

Order of the heterogeneous syntax encoding
We design the architecture with constituency en-
coding before dependency encoding, as described
earlier. If we exchange this encoding order, we see
from Table 2 that the drops come out. Also the
drops are more severe on the span-based SRL data.
This verifies the correctness of our model design.

5.3 Main Results

Our aim is to answer the research questions as
listed in Section §1, based on the main experi-
mental results in Table 1 and Table 3. [F An-
swer to Q1] Our first observation is that leverag-
ing syntax knowledge, e.g. either the dependency
or constituency, benefits both the span-based and
dependency-based SRL, while the integration of
two heterogeneous syntax contributes the most,
more than any one of the standalone syntax.

However we see that the improvements from
this syntax integration is slightly different be-
tween span-based and dependency-based SRL.
[F Answer to Q2] In particular, the improve-
ments for span-based SRL are more notable than
dependency-based SRL, which can be learned by
the comparisons between ‘Trm+RoBERTa’ and
‘LG-HeSyFu+RoBERTa’ on two tables. Our
conjecture is that the the constituent structure
knowledge will additionally help the span bound-
ary detection of span-based SRL, compared with
dependency-based SRL. Also we find that using
only constituency syntax contributes more span-
based SRL, while the dependency-based SRL ben-
efits more from dependency syntax.

Looking into the specific results, within the
scope of heterogeneous syntax integration methods,
our systems (both Tr-HeSyFu and LG-HeSyFu)
outperform Fei et al. (2020a), demonstrating the
advances of our heterogeneous syntax integrating
methods. Overall, our LG-HeSyFu model wins

P R F1

Without Syntax
He et al. (2018) 89.50 87.90 88.70
Li et al. (2020b) - - 90.26
Trm+RoBERTa† 91.34 91.12 91.25
With Dependency Syntax
Li et al. (2018) 90.30 89.30 89.80
He et al. (2019) 89.96 89.96 89.96
Child-Sum TreeLSTM† 90.67 90.60 90.63
Dep GCN† 90.98 90.85 90.91
Dep GCN+RoBERTa† 92.45 92.05 92.23
With Constituency Syntax
N-ary TreeLSTM† 89.56 89.21 89.42
Const GCN† 90.48 90.19 90.35
Const GCN+RoBERTa† 91.33 91.87 91.65
With Dependency & Constituency Syntax
Fei et al. (2020a)∗ 90.78 90.92 90.88
Tr-HeSyFu† 91.02 91.22 91.10
LG-HeSyFu† 92.24 92.53 92.45
LG-HeSyFu w/o Syn. Label† 91.85 92.15 92.05
LG-HeSyFu+RoBERTa† 92.89 92.80 92.83

Table 3: Results on dependency-based SRL CoNLL09
dataset.

the new state-of-the-art performances on the used
datasets, and with the help of the RoBERTa lan-
guage model, the superiority is still maintained.

[F Answer to Q3] Also we show that our LG-
HeSyFu based system consistently outperforms
Tr-HeSyFu based one. Even LG-HeSyFu with-
out using the syntax label features can still keep
better. It is also clear that the GCN based encoders
show consistently higher scores than the TreeL-
STM based ones, verifying the effectiveness of
leveraging GCN encoding syntax (Marcheggiani
and Titov, 2017; Li et al., 2018). [F Answer to
Q4] Meanwhile, the ablation of syntax label infor-
mation reveals the importance of its leverage for
the SRL learning.

5.4 Analysis and Discussion

Correlations between SRL and syntax struc-
tures We explore the correlations between the
SRL structure and the two syntax structures. We
reach this by analyzing the SRL prediction with
the neighbor connecting weights, i.e., αuv of Const
GCN and βij of Dep GCN. We visualize the results
(on CoNLL05) in Figure 6. [F Answer to Q5]
We learn that our framework indeed has captured
the underlying inter-dependency between the SRL
structures and the syntactic structure from the di-
versified visualizations. By accurately modeling
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Figure 6: Discovered correlations of (1) SRL vs. de-
pendent structure, (2) SRL vs. constituent structure.

such correlations, our LG-HeSyFu system natu-
rally yields prominent meanwhile explainable SRL
performances. Also some interesting patterns can
be observed. Actually, not all the syntactic ele-
ments contribute the SRL learning. For example,
the semantic roles A0, A1 and A2 relates more to
the dependent edge nsubj and csubj, and more to
the constituent phrase NP. We believe this can lay a
crucial foundation for the direction of unsupervised
semantic role labeling that relies on the syntactic
structures.

Span boundary detection We now investigate
the influences of the heterogeneous syntax integra-
tion to the span boundary match10 on span-based
SRL, i.e., on CoNLL05/12 data. From Figure 7
we learn that the heterogeneous syntax integra-
tion can improve the boundary detection over any
standalone syntax leverage, while actually the con-
stituency syntax contributes more significantly than
dependency feature. And our LG-HeSyFu shows
the best helpfulness than Tr-HeSyFu.

Label prediction We next evaluate the role la-
bel prediction. We only measure the correctly
extracted arguments on whether its label further
matches the gold annotation. We show the F1 score
in Figure 8. Similar to the span boundary identifica-
tion, the heterogeneous syntax integration can con-

10A correct match means both the start and end boundary
of an argument span is correct, regardless of its label.
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Figure 7: F1 scores for span boundary detection.

93

95

97

F1
(%

) CoNLL05

Tr-HeSyFu LG-HeSyFu Child-Sum TreeLSTM

Dep GCN N-ary TreeLSTM Const GCN

93

95

97
CoNLL12

93

95

97
CoNLL09

Figure 8: Results on the argument role label prediction.

tribute the most than that with any single syntax us-
age. Interestingly, the standalone dependency syn-
tax shows more improvements on the dependency-
based SRL, while the phrasal constituency features
benefit more the span-based SRL.

Error breakdown To analyze which error types
different syntax-aided SRL models tend to make,
we follow prior works (He et al., 2017; Strubell
et al., 2018), manually fixing the errors by apply-
ing oracle transformations incrementally based on
CoNLL05.11 The analysis is shown in Figure 9.
Specifically, constituency syntax methods perform
better than dependency-aided methods, w.r.t. the
span boundary errors (‘Merge Spans’, ‘Split Spans’
and ‘Fix Span Boundary’). Most importantly, it
is quite clear that our heterogeneous syntax in-
tegrated systems (Tr-HeSyFu and LG-HeSyFu)
makes fewer errors than baseline standalone syntax-
aware methods, demonstrating the necessity to
combine both two types of syntax.

Syntax distribution By observing the gate val-
ues gi (in Eq. 8) we can analyze the distribu-
tions of dependency and constituency features re-
quired by span-based and dependency-based SRL.
From Figure 10 we see that span-SRL relies more
on constituency feature, while dependency-SRL
needs more dependency-aware feature. Such find-
ing quite coincides with the foregoing quantitative
analysis, as well as our intuition.

11The bigger the correction error improves, the more the
model makes on it.
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Figure 10: Heterogeneous syntax distribution. Level
≥0.5 means more reliance upon constituent syntax, oth-
erwise for dependency

6 Conclusion and Future Work

We investigated the integration of constituency and
dependency syntax for the SRL task. We first in-
troduced TreeLSTM-based heterogeneous syntax
fusing encoders, and further proposed innovative
label-aware syntax GCN encoders for the integra-
tion. Experimental results showed that combin-
ing the heterogeneous syntax brought better results
on both span-based and dependency-based SRL,
than any one standalone syntax knowledge. As fu-
ture work, we investigate other kinds of structural
knowledge integration besides syntax, such as Se-
mantic Dependency Structure, Abstract Meaning
Representation (AMR), and explore the possibil-
ity of extending our model to incorporating such
structured information. Besides, integrating the
heterogeneous syntax knowledge into pre-training
language models will be a promising direction.
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