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Abstract

The high subjectivity and costs inherent in
peer reviewing have recently motivated the
preliminary design of machine learning-based
acceptance decision methods. However, such
approaches are limited in that they: a) do not
explore the usage of both the reviewer and area
chair recommendations, b) do not explicitly
model subjectivity on a per submission basis,
and c) are not applicable in realistic settings,
by assuming that review texts are available at
test time, when these are exactly the inputs that
should be considered to be missing in this ap-
plication. We propose to utilise methods that
model the aleatory uncertainty of the submis-
sions, while also exploring different loss im-
portance interpolations between area chair and
reviewers’ recommendations. We also propose
a modality hallucination approach to impute
review representations at test time, providing
the first realistic evaluation framework for this
challenging task.

1 Introduction

An analysis (Langford and Guzdial, 2015) of the
NeurIPS 2014 experiment shows that 60% of the
selected accepted papers were rejected by a second,
independent review committee. Such significant
reviewer disagreement makes the task of the area
chair harder, and may even invite questioning of
their decision. Software tools have been piloted in
an effort to aid the human reviewers with a compu-
tational recommendation on aspects like absence
of bias and proper statistical reporting in scientific
submissions (Sizo et al., 2019).

Natural Language Understanding (NLU) could
also offer decision support to the area chair, as ar-
gued in (Ghosal et al., 2019; Stappen et al., 2020).
Such systems jointly model the entire or part of the
article and one (Kang et al., 2018; Wang and Wan,
2018; Ghosal et al., 2019), or a variable number
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of potentially contradicting reviews (Stappen et al.,
2020). We adopt the latter, review-aggregating ap-
proach, that resembles the editorial process more.

1.1 Contributions

In this short paper, we offer solutions to three par-
ticularities of this task that the above approaches
do not address: a) Often, the recommendations
given by the area chair and the reviewers are in
disagreement. Whereas previous studies have used
either the former (Kang et al., 2018; Wang and Wan,
2018; Ghosal et al., 2019) or a soft label average of
the latter (Stappen et al., 2020) for supervision, we
show that both signals comprise complementary
information. b) Whereas soft labels de-emphasise
subjective articles with disagreeing reviews during
training (Stappen et al., 2020), we manage to out-
perform the latter study by explicitly modelling
aleatory uncertainty as an auxiliary prediction task.
c) A model that aims to support the editorial deci-
sion process should only assume the availability of
human review text during training, and be able to
make recommendations in their absence. Inspired
by missing modality hallucination methods (Hoff-
man et al., 2016; Tang et al.; Pérez et al., 2020)),
we propose a realistic system that uses all available
data for training, but imputes review representa-
tions at test time based on the abstract text.

1.2 Purpose & Ethical Statement

We sincerely believe that human peer reviews
should continue to be the main component of the
paper acceptance selection process, and this work
in no way attempts to replace the human reviewers;
instead, we believe an NLU model can serve as an
additional reviewer, aiding an area chair’s decision-
making process by slot-filling a missing reviewer,
or providing a data-driven, tie-breaking perspective
to the editor in cases of borderline reviews. The
motivation behind this proposal is that NLU mod-
els trained on large-scale data, can learn to robustly
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cancel out individual human biases – in a similar
way neural networks are robust to non-systematic
label noise (Rolnick et al., 2017). Admittedly, such
a model can still learn and reflect systematic biases,
but we leave an approach to this problem by means
of methods that learn with biased data (Kim et al.,
2019) for future work.

2 Related work

Kang et al. (2018) compiled the PeerRead dataset
of submissions, and proposed NLU baselines for bi-
nary acceptance decision and score prediction such
as novelty and technical correctness. Wang and
Wan (2018) explored the acceptance task by mod-
elling the abstract via a memory mechanism (We-
ston et al., 2015), along with one review. Ghosal
et al. (2019) improved performance on the Peer-
Read dataset by utilising sentiment information us-
ing the VADER tool (Hutto and Gilbert, 2014) and
universal sentence embeddings (Cer et al., 2018).
Unfortunately, PeerRead is imbalanced in that the
NeurIPS rejected submissions are not included, de-
spite the fact that 90% of the accepted submissions
with reviews in PeerRead are from NeurIPS. Fur-
thermore, around 80% of the submissions are from
arxiv, thus having no reviews attached to them.

Stappen et al. (2020) worked on the largest such
dataset – the Interspeech 2019 submission corpus –
and fused the variable number of text reviews per
submission. On incorporating reviewer disagree-
ment information, they showed the simple label
average to be better than the adapted version pro-
posed in (Ando et al., 2018), and also approached
the score prediction tasks via deep quantile regres-
sion (Rodrigues and Pereira, 2020). Direct mod-
elling of a label disagreement value, instead of
using soft labels, has been utilised in areas such as
affective computing (Han et al., 2017) and medi-
cal image modelling (Raghu et al., 2019). Alterna-
tively, Kendall and Gal (2017) devised a method for
aleatory uncertainty modelling that is learnt from
the data, instead of requiring ground truth disagree-
ment “labels”. Both Han et al. (2017); Kendall and
Gal (2017) have shown regularisation benefits of
learnt uncertainty prediction.

3 Submission-level modelling

Following Wang and Wan (2018); Stappen et al.
(2020), we focus on abstract xabsi and review texts
xrevi,r (numbering Ri) for the i-th submission, the
acceptance classification labels given by the area

chair yaci , as well as by the reviewers yrevi,r . We use
a modelM that: a) learns abstract habsi and review
hrevi representations using corresponding modules,
b) fuses the aforementioned into a submission rep-
resentation hsubi , and generates the class probability
distribution ŷi via a prediction module and softmax.
We then calculate the cross entropy (CE) loss with
the true probability distribution ytruei :

Lpred = CE(ŷi, y
true
i ). (1)

The most straightforward way to do this is by using
a hard label, i. e., assuming ytruei ≡ yaci , with all
the probability concentrated at the final recommen-
dation given by the area chair. This way, however,
we withhold information about the reviewer uncer-
tainty for the particular submission. Stappen et al.
(2020) have successfully used the simple soft label:

ytruei ≡ 1

Ri

Ri∑
r=1

yrevi,r . (2)

The value of soft labels becomes clear when one
considers that, in their absence, true acceptance
probabilities of .51 and .89 would receive the same
treatment. Occasionaly, the area chair may disagree
with the reviewers’ aggregate decision, which mo-
tivates the interpolation of the two factors:

Lpred = λsoftLsoftpred + λhardLhardpred , (3)

where L∗pred, λ∗ refers to prediction loss and regu-
larisation parameter for either hard or soft labels.

3.1 Modelling recommendation subjectivity
We add a second “head” in our prediction mod-
ule that outputs a predictive uncertainty estimate
σ̂i. We now require a supervision signal to train
it, either by: a) treating label disagreement as
ground truth uncertainty (GTU), or b) learning a
heteroscedastic loss attenuation score (HLA). In-
spired by (Han et al., 2017; Raghu et al., 2019), we
define our approach to GTU as a multi-task loss:

LGTU
pred = γpredLpred + γuncMSE(σ̂i, σi), (4)

where σi is the standard deviation among reviewer
recommendations; MSE is mean squared error.

For HLA we use the method proposed in
(Kendall and Gal, 2017), where σ̂i is the standard
deviation of a normal distribution centred at the
mean denoted by the main head logits. By sam-
pling T logits, and calculating a corresponding
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Figure 1: The peer review machine support system, in-
cluding the hallucination mechanism. In a first training
stage, only the Classification Loss on Review is used,
to learn review representations. In the second training
stage, the MSE Hallucination Loss and the Classifica-
tion Loss with Hallucination are used.

class distribution ŷti , the loss function becomes:

LHLA
pred =

1

T

T∑
t=1

CE(ŷti , y
true
i ). (5)

A larger σ̂i relaxes the loss value for a sample that
is difficult to predict correctly.

3.2 Imputing reviews at test time

Figure 1 depicts an overview of our architecture.
Inspired by modality hallucination studies (Hoff-
man et al., 2016; Pérez et al., 2020), we use the
abstract module to predict both the abstract habsi

and a review hallucination hhalli representation; we
do not generate review text. In the first training
stage, we train a model to predict based only on the
review texts to learn meaningful hrevi representa-
tions. In the second stage, we use the true hrevi only
as an auxiliary supervision target for training the
hhalli representations by minimising MSE. Thus,
we avoid teacher forcing (Bengio et al., 2015) by
training the model to predict based only on the
hallucinated representations, also available at test-
time. The total loss, then, is:

Lhall = ζhallMSE(hrevi , hhalli ) + ζpredLpred.
(6)

4 Experiments

Small available dataset size is a limitation known
to the community working on this domain (Kang
et al., 2018; Ghosal et al., 2019) – we use the largest
database of its kind (Stappen et al., 2020), i. e., the
2 179 preprocessed academic submissions, 5 842
reviews, with corresponding acceptance decisions
and reviewer scores from the submission system
of Interspeech 2019, shared with us by the tech-
nical chairs of the conference. After data clean-
ing and removal of corrupt entries, the accepted
and rejected classes are well-balanced: 50.2 % ac-
ceptances, and 49.8 % rejections. The dataset is
shuffled and split into 80-10-10 train-validation-
test set percentages. We monitor the validation
performance in terms of Macro-averaged F1 score,
and also report the Macro-averaged Area Under
Receiver Operator Characteristic (AU-ROC), aver-
aged across 20 trials. We use the Adam optimiser
(Kingma and Ba, 2014) with learning rate of 1e-3,
and represent words using FastText (Bojanowski
et al., 2017). Our abstract and review modules
comprise a stacked 1D convolutional network with
kernel sizes 4-4, interleaved by max pooling with
rates 2-2, followed by a recurrent layer with gated
recurrent unit cell and 100 hidden units, and atten-
tional sequence pooling. The prediction module
consists of two dense layers of 50-2 units, with a
ReLu activation between them.

4.1 To model the reviewer or the area chair?

The interpolation weights λsoft, λhard for the pre-
diction error (cf. Eq. 3) are dataset-based and
should be set based on validation performance. We
experiment with a grid, ranging from [1.0, 0.0] to
[0.0, 1.0] using a step of 0.2. λsoft ≡ 0.0 denotes
the simple hard label case. The results using the
GTU loss are summarised in Table 1.

We find that the area chair and the reviewers’ rec-
ommendations carry complementary information,
and the best results of this study are at λsoft ≡ 0.8.
Interestingly, the agreement/accuracy between the
editorial labels and the reviewer soft averages
(rounded to 0 or 1) is 78.901%. The disagreements
occur on close-to-borderline papers, in which cases
the additional supervision is the most informative.

4.2 Are soft labels enough?

A comparison among the different loss functions,
without hallucination, is summarised in Table 2.
We report the best soft loss interpolation per case.
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λsoft Metric No Review With Review
Mean ± Mean ±

0.
0 AU-ROC .589 .026 .683 .065

F1 .559 .019 .625 .061
0.

2 AU-ROC .590 .021 .724 .031
F1 .558 .023 .651 .030

0.
4 AU-ROC .608 .027 .750 .029

F1 .565 .033 .673 .030

0.
6 AU-ROC .605 .026 .745 .050

F1 .553 .027 .668 .040

0.
8 AU-ROC .601 .034 .776 .044

F1 .512 .066 .694 .043

1.
0 AU-ROC .564 .047 .730 .084

F1 .396 .102 .629 .108

Table 1: Results with GTU, for classification with and
without reviews, for different relative weightings or
(soft) reviewer ratings / (hard) editorial decisions.

Loss Metric No Review With Review
Mean ± Mean ±

B
L AU-ROC - - .550 .130

F1 - - .652 .100

So
ft AU-ROC .597 .022 .772 .029

F1 .558 .024 .683 .024

G
T

U AU-ROC .608 .027 .776 .044
F1 .565 .033 .694 .043

H
L

A AU-ROC .578 .044 .776 .020
F1 .407 .082 .688 .020

Table 2: Results on using the abstract with or without
the reviews, using different kinds of losses. BL denotes
the baseline by Stappen et al. (2020).

In the case of GTU we found that the choice of
γunc ≡ γpred ≡ 0.5 works best. The additional
complexity of explicit uncertainty modelling is
shown to be beneficial when compared to the sim-
ple soft labels, and GTU is better than the self-
learnt uncertainty method HLA. Our model imple-
mentation with soft-hard loss mixing is also shown
to greatly outperform a baseline (BL), i. e., the best
result found in (Stappen et al., 2020).

We also performed statistical significance test-
ing, using Welch’s unequal variances t-test. No
significance was found in improvement brought
by uncertainty-aware methods compared to hard
labels in the abstract-only experiments. However,
GTU with hallucinated review representations is
significantly better than abstract-only with p < 0.1
for AU-ROC and p < 0.05 for F1, and HLA with
p < 0.05 for both measures. In the experiments us-
ing both abstract and reviews, the simple soft labels
as well as HLA are both significantly better than
hard labels in terms of AU-ROC with p < 0.05.
GTU was significantly better than hard labels with
p < 0.1 for F1 and p < 0.05 for AU-ROC.

Loss Metric Abstract Hallucination
Mean ± Mean ±

H
ar

d AU-ROC .589 .026 .592 .022
F1 .559 .019 .562 .024

So
ft AU-ROC .611 .035 .612 .029

F1 .535 .030 .544 .028

G
T

U AU-ROC .601 .025 .608 .030
F1 .512 .054 .532 .076

H
L

A AU-ROC .557 .034 .636 .033
F1 .358 .042 .575 .091

Table 3: We report the review hallucination results; for
the uncertainty-aware methods, we used λsoft ≡ 0.8.

4.3 Can we impute reviews?

Table 3 summarises the improvement brought by
hallucinated reviews over the abstract-only case.
Even though we only report a specific hard-soft
interpolation weight λ ≡ 0.8, we observe this im-
provement universally. The HLA method with hal-
lucination achieves both the best performance in
this experiment, and the largest relative improve-
ment (t-test, p < .05) upon the abstract-only case,
as shown in Table 4. Lacking the true reviews, we
have high label variance for the same abstract in-
put, i. e., high aleatory uncertainty. HLA (Kendall
and Gal, 2017) is designed for such cases, and
guides the learning of hallucinated review represen-
tations through regularisation, allowing for a sig-
nificant fraction of the performance gap to be cov-
ered. Hard-labels with hallucination is the method
that performs relatively closest to its ceiling per-
formance, but this can be explained by the ceiling
being comparatively low in the hard-labels case.

The additional label uncertainty information,
whether explicit or learnt, informs not just the
classification capacity of the model, but also its
ability to generate review representations. These
hallucinated representations should be placed in
embedding space such that they inform the model
regarding the label, however not in an overcon-
fident manner, given that the actual reviews are
missing – this is exactly where knowledge of un-
certainty contributes. In terms of a final method
recommendation: we recommend the learnt atten-
uation based HLA, due to its better performance
along with modality hallucination and the fact that
it does not require the presence of multiple reviewer
recommendations even at training-time.

4.4 Can we learn model disagreement?

The Pearson Correlation Coefficient (PCC) be-
tween the predicted uncertainty and the standard
deviation of reviewer recommendations is .25 and
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Loss Metric + Relative - Relative

H
ar

d AU-ROC +0.5 -13.3
F1 +0.5 -10.1

So
ft AU-ROC +0.2 -19.7

F1 +1.7 -19.8
G

T
U AU-ROC +1.2 -21.5

F1 +3.8 -23.3

H
L

A AU-ROC +12.4 -17.9
F1 +37.8 -16.4

Table 4: Relative improvements (in %) brought by hal-
lucinated reviews compared to using only the abstract,
and relative reductions compared to the performance
ceiling in the case the reviews are available at test time.
In cases where the true reviews cannot be assumed to be
present in test/deployment, our hallucination approach
allows for improvement of results compared to exclud-
ing reviews altogether.

.08 for GTU and HLA respectively in the abstract
plus review case. The former indeed learns on ac-
tual disagreement labels, although high uncertainty
prediction fidelity may not be necessary for high
predictive performance, shown by the competitive
HLA. When using only abstracts, PCC drops to
.08 and .04 respectively, whereas by using halluci-
nation we observe .08 and .05, indicating that the
true review representations are required for good
uncertainty prediction.

5 Conclusion

We have proposed a machine learning framework
for automatic peer review support that makes better
use of the available information, and is also realis-
tic with respect to the limitations set by the task1.
We have found that the the area chair and reviewer
recommendations comprise independent supervi-
sion signals that should be used in conjunction to
train the system. Furthermore, in order to relax the
penalty for mispredicting subjective submissions,
it is not enough to use a simple soft label average of
the reviewer recommendations; one has to directly
model an aleatory uncertainty score as an auxiliary
task, either using ground truth “uncertainty labels”,
or through learnt attenuation of the loss. Finally,
we utilise review representation hallucinations at
test-time to best utilise available review texts in a
realistic manner, and find that this approach works
well with and benefits from the regularisation intro-
duced by direct uncertainty modelling.

Even with the application of our review represen-
tation hallucination, the performance gap from the

1https://github.com/glam-imperial/
Uncertainty-Aware-Machine-Paper-Reviewing

ceiling set by using the true review representations
is still high. We intend to approach the task via self-
supervision methods (He et al., 2020) that focus on
multimodal data (Nagrani et al., 2020). Request-
ing additional reviewers based on inference-time
uncertainty, similar to (Raghu et al., 2019), is an-
other promising future work step, as is an analysis
of the uncertainties predicted by our model using
the different losses. Finally, we have shown in our
study that only a representation of the abstract is
required as the input both for acceptance and hallu-
cination modelling. Since previous work (Ghosal
et al., 2019) has shown that modelling an article
based on the entire paper can be beneficial, we also
intend to explore the impact of using such a highly
expressive article representation for hallucinating
review representations.
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