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Abstract

Cross-domain slot filling focuses on using la-
beled data from source domains to train a slot
filling model for target domains. It is of great
significance for transferring a dialogue system
into new domains. Most of the existing work
focused on building a cross-domain transfer
model. From the perspective of slots them-
selves, this paper proposes a model-agnostic
Slot Transferability Measure (STM) for evalu-
ating the transferability from a source slot to a
target slot, specifically, the degree that labeled
data of the source slot is helpful to train the
slot filling model for the target slot. We also
give a STM-based method for a model to select
helpful source slots and their labeled data for a
given target slot. Experimental results on mul-
tiple existing models and datasets show that
our method significantly outperforms state-of-
the-art baselines in cross-domain slot filling.
The code is available at https://github.

com/luhengtong/STM-for-cdsf.git.

1 Introduction

As an important task in task-oriented dialog sys-
tems, slot filling aims to identify task-related slot
information in user utterances. When a task (or
domain) has a large amount of labeled data, most
existing slot filling models can achieve desired per-
formance. However, there is usually little or even
no labeled data for a new task. How to train the slot
filling model in the new task (target task) with the
labeled data of one or more existing tasks (source
tasks) is of great significance for the rapid expan-
sion of the application of task-oriented dialog sys-
tems.

Existing work can be mainly classified into two
categories. The first is to establish implicit seman-
tic alignment between slot representations of the
source task and the target task, the model trained
with the source task data is directly used for the

target task (Bapna et al., 2017; Lee and Jha, 2019;
Shah et al., 2019). The second is to use a two-
stage strategy (Liu et al., 2020), which treats all
slot values as entities. First, it trains a generic entity
recognition model using source task labeled data
to identify all candidate slot values in the target
task. Then, the candidate slot value is classified
into the target task slot by comparing the similarity
between its representation and the target task slot
information.

Most of the existing work has focused on build-
ing cross-task transferable models that leverage
the association information between source tasks
and target tasks, and the model is always trained
using the labeled data of all the source tasks with-
out distinction. However, not all the source task
data will have transferable value to the target task,
and the value of different source tasks data to a
particular target task may be different. For exam-
ple, flight-ticket-reservation task and train-ticket-
reservation task have high similarity so that the
labeled data of the former will be helpful to the
latter. While the flight-ticket-reservation task and
the weather-inquiry task have great difference so
that the labeled data of the former has no or only
little value to the latter, and even has a negative ef-
fect on the target model. Furthermore, even though
the source task is similar to the target task, not ev-
ery source slot will be useful for all the slots of
the target task. For example, the labeled data for
leaving-time slot in flight-ticket-reservation task
may be helpful for the slot filling of leaving-time in
train-ticket-reservation task, but not useful for the
train-type slot. Therefore, finding valuable source
slots that can provide transferable information for
slot filling in target slot and then training a model
based on the labeled data of these slots can make
better use of the data in source tasks. This is the
starting point of this paper which is different from
the existing work.

https://github.com/luhengtong/STM-for-cdsf.git
https://github.com/luhengtong/STM-for-cdsf.git
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In achieving this goal, we firstly propose slot
transferability measure (STM) and give a method
to calculate the STM. By comparing the STM be-
tween the target slot and each source slot, we can
select different set of source slots for different tar-
get slot. Only the labeled data of these source slots
are used to train the slot filling model for the target
slot. To be more specific, we fuses distribution
similarity of the slot value representations and of
the slot value context representations between tar-
get slot and source slot as STM between two slots.
All source slots are sorted according to their STMs
with the target slot. Labeled data of the source slot
with the highest STM are used to train the model,
and then the labeled data of the source slot with the
second highest STM is added to train the model.
The process continues until the model gains no im-
provement on validation set of target slots. Those
source slots and their labeled data are used to build
the final slot filling model for the target slots.

Our main contributions are three-fold as follows.

1. We propose a metric called STM to measure
the transferability between two slots. To our
best knowledge, it is the first study on the
transferability between two slots. The STM is
model-agnostic.

2. We also propose a STM-based method to se-
lect source slots and their labeled data for
training slot filling model for target slots.

3. Experimental results on several existing mod-
els and datasets show that this method
brings consistent performance improvement
for cross-domain slot filling.

2 Related work

As a key component of dialog system, the slot
filling task has been studied extensively. Tradi-
tional supervised learning methods have made great
achievements with a large amount of labeled data
(Liu and Lane; Mesnil et al., 2015; Hakkani-Tür
et al., 2016; Kurata et al., 2016; Liu and Lane, 2016;
Goo et al., 2018; E et al., 2019). However, there
is little or even no labeled data for a new task, the
cross-domain slot filling task which uses labeled
data in source tasks to training model for target
task is gaining increasing attention (Yazdani and
Henderson, 2015; Bapna et al., 2017; Zhu and Yu,
2018; Lee and Jha, 2019; Shah et al., 2019; Liu
et al., 2020; Zhu et al., 2020). There are mainly
two streams of methods in previous work.

The first is to establish implicit semantic align-
ment of the slot representations between the source
task and the target task (Bapna et al., 2017; Lee
and Jha, 2019; Shah et al., 2019; Liu et al., 2020).
Bapna et al. (2017) proposed the Concept Tagging
model (CT), which unified the slot filling model on
the source tasks and the target task by combining
the slot representations modeled by slot descrip-
tion information, and then conducting BIO 3-way
classification. Based on CT, Lee and Jha (2019)
proposed the Zero-Shot Adaptive Transfer model
(ZAT), which introduced an attention layer in build-
ing representations of slot description; Meanwhile,
Shah et al. (2019) proposed the Robust Zero-shot
Tagger (RZT) model, which used a small number
of sample slot values of the target slot to constrain
the slot filler to avoid the negative transfer caused
by the misalignment of slot names.

The second is a coarse-to-fine approach, which
first identifies all candidates of slots and then classi-
fies them into corresponding slots. Liu et al. (2020)
proposed a Coarse-to-fine approach (Coach). They
first predicted whether the tokens are slot value
candidates, and then identified their specific slot
types based on the similarity between the tokens
and the representation of each slot description. In
addition, Coach utilized a template regularization
method which clusters the representations of se-
mantically similar utterance into a similar vector
space. It greatly improves the robustness of the
model.

Most of these efforts focus on building a cross-
task transferable model by exploiting the correla-
tion information between source and target tasks.
All source data is used to train the transfer model
no matter if the data is helpful for target slot filling.
On the contrast, this paper proposes a new method
to select parts of source slots and their labeled data
for model training.

3 Methodology

This section describes the cross-domain slot filling
method proposed in this paper. First, we propose
the concept of slot transferability and its measure-
ment STM in Section 3.1. Then we describe the
method of finding source slots for target slot based
on the STM in Section 3.2. Finally, we introduce
how this method can be deployed and implemented
on existing models in Section 3.3. The STM is
model-agnostic and will be validated on multiple
existing models.
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3.1 Slot Transferability Measure

Given slots sa and sb, the transferability from sa
to sb refers to the degree of that the slot filling
information of sa can be used for slot filling of sb,
denoted as STM(sa, sb).

Let pv(si) be the distribution of slot value rep-
resentation of slot si(i = {a, b}), pc(si) be the
distribution of slot value context representation of
slot si(i = {a, b}). We define the transferability
from slot sa to slot sb as Equation (1):

STMβ(sa, sb) = 1−

tanh

(
(1 + β2)sim(pv(sa), pv(sb))sim(pc(sa), pc(sb))

β2sim(pv(sa), pv(sb)) + sim(pc(sa), pc(sb))

)
(1)

where sim(p, q) denotes the similarity between
distribution p and q. The β parameter determines
the weight of similarity between distributions of
slot value context representations. β > 1 favors
similarity between distributions of slot value con-
text representations, β < 1 lends more weight
to similarity between distributions of slot value
representations. The larger the STMβ(sa, sb), the
higher the transferability from slot sa to slot sb.

Maximum Mean Discrepancy (MMD) is em-
ployed to calculate sim(p, q). MMD is usually
used as a loss function in transfer learning (Tzeng
et al., 2014; Zhang et al., 2015; Long et al., 2015,
2016, 2017; Yan et al., 2017). It minimizes the
difference between different domains to obtain the
domain-invariant features. It serves as test statistics
to determine if two distributions are the same, as
well as measure the similarity between two distri-
butions. The smaller the MMD is, the higher the
similarity between distributions is. Let F be a class
of functions F : X → R. Let X = {x1, ..., xm}
and Y = {y1, ..., yn} be samples composed of
independent and identically distributed observa-
tions drawn from distribution p and q, respectively.
MMD is defined as Equation (2), and the square of
the MMD can be empirically estimated by Equa-
tion (3) (Borgwardt et al., 2006):

MMD2[F , p, q] = sup
f∈F

(Ep[f(x)]− Ep[f(y)]) (2)

MMD2[F , X, Y ] =
1

m(m− 1)

m∑
i6=j

k(xi, xj)

+
1

n(n− 1)

n∑
i6=j

k(yi, yj)−
2

mn

m,n∑
i,j=1

k(xi, yj) (3)

where k is the kernel function. Gaussian kernel
functions are usually used as. Therefore, the sim-

ilarity between the distributions of slot value rep-
resentations of slots sa and sb, and the similarity
between distributions of slot value context repre-
sentation of slots sa and sb are Equations (4) and
(5) respectively:

sim(pv(sa), pv(sb)) = MMD2[F ,Ωva,Ωvb] (4)

sim(pc(sa), pc(sb)) = MMD2[F ,Ωca,Ωcb] (5)

where Ωvi and Ωci is the sample set of the slot val-
ues representation distribution and the sample set
of the slot value context representation distribution
corresponding to slots si(i = {a, b}).

Given labeled data Dsa = {(x(i), y(i))}Nai=1 for
slot sa , where x(i) = (x

(i)
1 , x

(i)
2 , · · · , x(i)l ) is a se-

quence of words, y(i) = (y
(i)
1 , y

(i)
2 , · · · , y(i)l ) is the

corresponding label sequence. Since x(i) contains
the slot value of slot sa, there is either “B-sa” (the
slot value is a word) or “B-sa” and “I-sa” (the slot
value includes several words) in the label sequence.
We first extract all slot value words from labeled
dataset Dsa, and have the sample set Ωva of the
slot value representation of slot sa, as shown in
Equation (6):

Ωva =
{
E(x

(i)
j ) | if Iva(x(i)j , sa)

}i=Na,j=l
i=1,j=1

(6)

where E is a word embedding mapping, and Iva
indicates whether x(i)j is the slot value of slot sa
defined as Equation (7):

Iva(x
(i)
j , sa) =


1, if y

(i)
j = B-sa

or y
(i)
j = I-sa

0, otherwise

(7)

Then we extract the slot values context. N words
before and after the slot values are extracted to
form the sample set Ωca as shown in Equation (8):

Ωca =
{
E(x

(i)
k ) | if Ica (x

(i)
k , sa)

}i=Na,k=l
i=1,k=1

(8)

where E is a word embedding mapping, and Ica
indicates whether x(i)k is the slot value context for
slot sa defined as Equation (9):

Ica(x
(i)
k , sa) =


1, if x

(i)
k 6= B-sa and x

(i)
k 6= I-sa

and (y
(i)
k+N = B-sa or y

(i)
k−N = I-sa

or y
(i)
k−N = B-sa)

0, otherwise

(9)
Similarly, we can obtain Ωvb and Ωcb. Based
on Ωva, Ωca, Ωvb and Ωcb, we can calculate



4973

sim(pv(sa), pv(sb)) and sim(pc(sa), pc(sb) based
on Equations (4) and (5) and then calculate
STMβ(sa, sb) based on Equation (1).

Slot transferability has the following two proper-
ties:

Symmetry STM is symmetric. Let the transfer-
ability from sb to sa be STMβ(sb, sa), we have:

STMβ(sa, sb) = STMβ(sb, sa) (10)

Relativity When comparing the STM between
two slot pairs, it is meaningful only their source slot
or target slot is the same. When STMβ(sa, sb) <
STMβ(sc, sb), the transferability from sa to sb
is higher than that from sc to sb, or when
STMβ(sa, sb) < STMβ(sa, sc), the transferabil-
ity from sa to sb is higher than that from sa to
sc. The comparison between STMβ(sa, sb) and
STMβ(sc, sd) is meaningless.

3.2 Selection of source slots based on STM

Given a slot set S = {s1, · · · , sns} from source
tasks and the target slot st. Each source slot sa
has a labeled dataset DT

sa = {(x(i), y(i))}N
T
sa

i=1 , and
the target slot st is given a labeled dataset DV

st =

{(x(i), y(i))}N
V
st

i=1 for validation. We select a slot set
St for training the target slot filling model from S
basing on the following steps.

1. For each slot si in the source slot set, we cal-
culate the transferability STMβ(si, st).

2. After sorting [s1, · · · , sns] from big to
small basing on STMβ(si, st), we get
[s(1), · · · , s(n)], the slots sequence according
to the order of transferability from highest to
lowest.

3. First, we select a slot filling model M and
define the union of training data correspond-
ing to the first h slots (h is initialized to 1)
in the sorted list [s(1), · · · , s(ns)] as DACC

h =

DT
(1) ∪ D

T
(2) ∪ · · · ∪ D

T
(h). After replacing

the B-∗ and I-∗ tags on DACC
h and DV

d with
the labels B and I , we train the model M
with DACC

h and then test the trained model on
DV
st to get the corresponding F1 value, which

is denoted as fh = M(DACC
h , DV

st). Then
h = h+ 1, till F1 gets to its maximum, then
St = [s(1), · · · , s(h)].

3.3 Model training

Given a set of source tasks T = {T1, · · · , Tn}, a
target task Ttgt and the slot set Si = {s1, · · · , sNi}
corresponding to task Ti. We define the set of all
source task slots as Sunion = S1∪· · ·∪Sn, and the
set of target task slots as Stgt. For an existing cross-
domain slot filling model Mbase, we deploy our
approach on the model by following these steps.

Firstly, the training set and validation set cor-
responding to the target task and the source task
are divided into the training set and validation set
corresponding to each slot according to whether
the slots contained in each sample. Then select the
corresponding source slot set Sti for each slot sti in
the target task slot set from all the source tasks set
Sunion. We combine the source slot set correspond-
ing to all target task slots to get the source slot set
for the target task Stgt = St1 ∪ · · · ∪ StNtgt and
then replace the labels corresponding to all slots in
the source task training set that are not in Stgt with
labels O. Finally, the source slot set Stgt and the
training data after replacement are used to train the
model Mbase.

4 Experiments

In this section we describe the dataset used for eval-
uation, the baseline models used for comparison,
and more details of the experimental settings.

4.1 Datasets

To evaluate the effectiveness of our approach, we
conduct experiments on SNIPS (Coucke et al.,
2018). In order to further evaluate the general-
ization ability of our approach, we also construct a
cross-task slot filling dataset called MultiWoz-Slot
(MWS) based on the multi-domain task-oriented di-
alog dataset MultiWoz (Budzianowski et al., 2018;
Eric et al., 2020). Table 1 displays some statis-
tics about the two datasets. Details about the two
datasets and how the MWS dataset is constructed
are described as follows.

SNIPS SNIPS is a public SLU dataset that con-
tains 7 tasks (intents) and 39 slots, and each task
contains approximately 2000 training samples. As
shown in Table 1, the data contains a total of 14,484
samples, the vocabulary size is 12,134, the average
length of the sample utterance is 9, and the average
number of slots in each sample is 2.6.

Multiwoz-Slot MultiWoz is a public multido-
main task-oriented dialogue dataset that contains 7
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MWS vocab
size

utters
num

avg
len

avg slot
num

slot
num slots

attraction1 1132 4616 15.3 1.2 3

area123, arrive45, day235, depart45, dest45,

food3, leave45, name123, people235,

price23, stars2, stay2, time3, type12

hotel2 1481 11258 16 1.7 8
restaurant3 1734 11669 14.4 1.8 7
taxi4 961 1758 15.7 1.3 4
train5 1391 10538 13.9 1.7 6
total 3314 39839 14.9 1.6 14

SNIPS vocab
size

utters
num

avg
len

avg slot
num

slot
num slots

AddToPlaylist1 3261 2042 9.2 2.7 5 album4, artist14, best rating5, city23, country23,

condition description3, condition temperature3,

cuisine2, current location3, entity name1, year4,

geographic poi3, location name7, playlist owner1,

object type567, party size description2, rating unit5,

movie type7, served dish2, service4, sort24, genre4,

music item14, object location type7, object name56,

object part of series type5, object select5, facility2,

party size number2, playlist14,movie name7, poi2,

rating value5, restaurant name2, restaurant type2,

state23, timeRange237, track4, spatial relation237

BookRestaurant2 2639 2073 12 3.2 14
GetWeather3 2260 2100 9.5 2.3 9
PlayMusic4 2961 2100 7.1 2.2 9
RateBook5 1906 2056 8.8 3.8 7
SearchCreativeWork6 3222 2054 7.8 1.7 2
SearchScreeningEvent7 1718 2059 8.7 2.2 7
total 12134 14484 9 2.6 39

Table 1: Some statistics about SNIPS and MWS. The upper script on task indicates the task id. The upper script
on slot indicates the task it belongs.

tasks and 24 slots. Since the (hospital, police) tasks
have little conversation data and only appear in the
training data, we use user-side utterance for just
five tasks (attractions, hotel, restaurant, taxi, train)
to construct the MWS dataset, which contains 14
slots. When constructing the training, validation
and test data of a task in MWS, we extract the user-
side utterance containing the task separately from
the conversations in the training set, validation set
and test set of Multiwoz. Since the training set of
the target task is generally used as the final test set
in the cross-domain slot filling task, we combine
the validation set and test set as validation set for
each task. Table 1 shows the number of slots and
the number of sample of training set and validation
set included in each task in MWS. As shown in
Table 1, the data contains a total of 39,839 samples,
and the vocabulary size is 3,314, the average length
of the sample utterance is 15, and the average num-
ber of slots in per sample is 1.7.

Compared to SNIPS, MWS has smaller vocabu-
lary size and the number of slots in each task. How-
ever, MWS has more samples in each task, so when
it is used as a cross-domain slot filling dataset, its
source tasks have more sufficient training samples,
and the correlation between these tasks is stronger.

4.2 Models

We conduct our experiments on the following mod-
els.

Concept Tagger (CT) A cross-domain slot fill-
ing model proposed by Bapna et al. (2017), which

uses the information of the slot descriptions to es-
tablish implicit alignment between target slots and
source slots.

Robust Zero-shot Tagger (RZT) A model pro-
posed by Shah et al. (2019), which uses the slot
value sample of slots to improve the robustness of
the model on the target task based on the CT model.

Coarse-to-fine Approach (Coach) A two-stage
cross-domain slot filling method proposed by Liu
et al. (2020), which splits the cross-domain slot fill-
ing task into two stages: coarse-grained BIO 3-way
classification and fine-grained slot type classifica-
tion, and uses slot descriptions in the second stage
to help recognize unseen slots.

Coach+TR A variant of Coach proposed by Liu
et al. (2020), which further uses template regular-
ization on the basis of Coach to improve the perfor-
mance of the model on similar or the same slots, is
the state-of-the-art model.

4.3 Implementation Details

We deploy the proposed method on above slot fill-
ing models CT, RZT, Coach, and Coach+TR.
β is set to 1. A two-layer BiLSTM (Schmidhuber

and Hochreiter, 1997) model is used for selecting
source slots for all models. 300 dimensions Glove
(Pennington et al., 2014) vector is used for word
embedding. The hidden layer dimension is set to
300, the learning rate is 0.001. We train the model
30 epochs and select the model with the best per-
formance on the validation set as the final model.
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Model CT RZT Coach Coach+TR
Data/Domain ↓ Training Setting→ ALL STM1 ALL STM1 ALL STM1 ALL STM1

MWS

attraction 74.52 84.99 74.96 84.22 67.26 73.35 65.06 76.16
hotel 58.81 47.73 50.63 43.82 59.03 61.12 59.00 60.74
restaurant 69.93 63.47 66.29 61.01 78.65 65.36 79.00 71.53
taxi 51.61 69.32 52.82 66.25 63.88 81.17 70.04 79.34
train 80.78 79.66 80.02 81.37 77.68 82.85 77.91 85.23
Average F1 67.13 69.03 64.94 67.33 69.30 72.77 70.20 74.60

SNIPS

AddToPlaylist 38.82 41.95 42.77 42.92 45.23 53.36 50.90 50.54
BookRestaurant 27.54 31.17 30.68 30.21 33.45 32.60 34.01 32.89
GetWeather 46.45 53.03 50.28 62.32 47.93 60.91 50.47 62.38
PlayMusic 32.86 23.09 33.12 22.33 28.89 35.60 32.01 34.45
RateBook 14.54 15.39 16.43 25.37 25.67 16.37 22.06 25.39
SearchCreativeWork 39.79 38.72 44.45 42.63 43.91 49.88 46.65 52.21
SearchScreeningEvent 13.83 14.13 12.25 15.15 25.64 23.75 25.63 26.05
Average F1 30.55 31.07 32.85 34.42 35.82 38.92 37.39 40.56

Table 2: The main result of the four models (CT, RZT, Coach, Coach +TR) trained using original data (All data)
and data selected by our method (STM1). Scores in each row are F1 of target task.

In order to make a fair comparison, we use the
same settings with Liu et al. (2020) to construct the
cross-domain slot filling model. We concatenate
the 100-dimensional character-level representation
and the 300-dimensional word-level representation
as word representation. We set the hidden layer
dimension of all the BiLSTM encoders to 300 and
set the dropout rate to 0.3. We use Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.0005. The samples of each task in SNIPS
are divided into two parts: 500 samples as valida-
tion set, and the remaining samples as training set.
When a task is set as a target task, its training set
is used as a test set. We evaluate on two datasets
respectively. For each test, we choose one task as
the target task and set the other tasks as the source
tasks.

5 Result and Discussion

In this section, we describe and analyze the ex-
perimental results. Firstly, the main results of the
experiment are described in Section 5.1. Then, we
analyze the impact of some factors on STM in Sec-
tion 5.2.

5.1 Main Results
Quantitative Analysis Table 2 shows the main
result of the four models. For each model, the first
column is F1 of the model trained by all labeled
data available, i.e., the original way for using the
model. The second column is F1 of the model
trained by labeled data selected by method pro-
posed in the paper. As can be seen from the Table
2:

1. Our method improves the average F1 (aver-

age on all target tasks) of all four models on
two datasets consistently, e.g. our method
improves the average F1 of coach+TR by 4.4
points on MWS, and by 3.17 points on SNIPS.

2. Our method improves the performance of all
four models on most target tasks, even im-
proves several of them by more than 10 points.

Qualitative analysis We perform a qualitative
analysis of the STM on the MWS dataset. Figure
1 shows the thermal diagram of slot transferability
between any two slots in MWS. Each cell in the fig-
ure represents the value of STM1 between the slot
labeled in the horizontal axis and the vertical axis.
The higher the brightness, the higher the transfer-
ability. The figure is symmetric because the STM1

is symmetric. It can be found that the slot with high
transferability to each other are roughly divided
into 7 categories, as shown in Table 3. After ob-
serving the data, we find that there are mainly three
kinds of slots in the same category. The first type is
the slot with high coincidence degree of slot value
set. For example, ”attraction-name” and ”taxi-dest”
have some common values, such as ”adc theatre”,
”all saints church”, ”county folk museum” and so
on. The second kind of slots is that the slot values
appear in similar context. For example, ”attraction-
name” and ”hotel-name” have some common con-
text words, such as ”about”, ”for”, ”at” and so on.
The third kind of slots are the slots with higher co-
incidence degree, as well as similar context of slot
values, such as ”attraction-area” and ”hotel-area”.
These phenomena are consistent with the definition
of STM.
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Figure 1: the thermal diagram of slot transferability be-
tween any two slots in MWS.

Category Slots

1 attraction-area, hotel-area,
restaurant-area

2 hotel-day, restaurant-day, train-day

3 hotel-people, hotel-stars, hotel-stay,
restaurant-people, train-people

4 hotel-price, restaurant-price

5
attraction-name, hotel-name,
restaurant-name, taxi-depart,

taxi-dest, train-depart, train-dest

6 restaurant-time, taxi-arrive,
taxi-leave, train-arrive, train-leave

7 attraction-type, hotel-type,
restaurant-food

Table 3: The MWS slots categories. The slots in the
same categories have the high transferability.

5.2 The impact of some factors on STM

There are three main factors in the calculation of
STMbeta. The following is an experimental analy-
sis of the impact of the three factors on STM.

The impact of β on STM β parameter deter-
mines the weight of similarity between distribu-
tions of slot value context representations . We ran-
domly select four slot pairs which are (attraction-
name, hotel-name), (attraction-name, restaurant-
name), (attraction-name, taxi-dest), and (hotel-
name, taxi-dest). In the first two groups, the slot
values appear in similar context, but the sets of slot
values almost have no intersection. In the last two
groups, the sets of slot values set have high consis-
tency, but the contexts of slot values are not similar.
β is range from 0 and +∞. When β = 0, STMβ

only measures the similarity of distributions be-
tween slot values representations of the two slots,
and when β = +∞, STMβ only measures the

Figure 2: The impact of β on STM.

Figure 3: The impact of sample number on STM.

similarity of distributions between the slot value
context representation of the two slots. As shown
in Figure 2, the STMβ of the first two groups in-
creased with the increase of β, while the STMβ of
the last two groups decreased with the increase of
β. Therefore, when β increases, the effect of slot
value similarity on STMβ becomes greater, and
the effect of slot value context similarity on STMβ

becomes smaller.

The impact of sample number on STM In or-
der to measure the impact of sample number on
STMβ , we randomly selected three slot pairs
which are (taxi-arrive, train-arrive), (taxi-arrive,
restaurant-time) and (taxi-arrive, hotel-name) for
comparative experiment. We select 25%, 50%,
75% and 100% samples from the validation set
used to calculate STMβ on the three groups of
slots. The experimental results are shown in Figure
3. According to the figure, although the absolute
values of STMβ of the three slot pairs changed,
their relative relations didn’t change. That is, sam-
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Figure 4: The impact of N on sim(pc(sa), pc(sb)).

ple size will affect the value of STMβ . However,
for the same source slot, the relationship between
STMβ to different target slots does not change.

The impact of N on STM When calculating
slot transferability, we fuse distribution similar-
ity of the slot value representations and of the
slot value context representations. We select one
word before and after slot value as slot value con-
text. In order to measure the impact of slot context
window size N on slot transferability, (attraction-
name, hotel-name), (attraction-name, restaurant-
name), (attraction-name, taxi-dest), (attraction-
name, hotel-stars), (hotel-stay, restaurant-people)
and (hotel-stay, restaurant-name) are randomly se-
lected for comparing. The first two groups have
similar context, the middle two have similar slot
values sets, and the last two have low similarity in
both slot values and context. N is range from 1 and
10. We observe the change of context representa-
tion distribution similarity sim(pc(sa), pc(sb)) and
STM1 among 6 groups of slots. As shown in Fig-
ure 4 and Figure 5, the similarity among context
representation distributions increases with the in-
crease of context window size N, and the context
similarity among 6 groups of slots tends to be the
same. In addition, STM increases with the increase
of window size N, and the distinction of STM be-
tween different types of slot pairs decreases. We
conjecture this is due to the fact that the context
we extracted contains too much slot-independent
context when the window size N becomes large.

5.3 Running time analysis

The method proposed in Sec 3.2 does increase the
running time. However, there are two sides of run-
ning time. Selecting slots by a Bi-LSTM cost some

Figure 5: The impact of N on STM.

times, while training the model with selected (less)
data saves times. We don’t calculate the save min-
utes in training, however, we find the increase of
time consumption in slots selection is small, it is
acceptable considering the performance improve-
ments it brings. Since the process in Sec 3.2 is
offline and once for a new domain, and the model
used in Sec 3.2 is a simple Bi-LSTM model, it in-
creases only a little time. To be more detailed, we
conducted experiments on one Titan V GPU, the
average running time of the method in Sec 3.2 is
80 minutes for a new domain.

6 Conclusions and Future Work

In this paper, we propose a metric STM to measure
the slot transferability of the slots across task, and
the calculation of this metric is model-agnostic.
Based on this metric, we also propose a cross-
domain slot filling method to improve the per-
formance of the existing models by selecting the
source slots with high transferability for the target
slots. The results on several existing models and
datasets show that our method can bring consistent
performance improvement to the slot filling models
of the target tasks, which show the effectiveness
of the STM. We also further explore the impact of
some factors on STM. In the future, we hope to use
STM to further guide the improvements of models.
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