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Abstract

How to combine several pieces of evidence to
verify a claim is an interesting semantic task.
Very complex methods have been proposed,
combining different evidence vectors using an
evidence interaction graph. In this paper, we
show that in case of inference based on trans-
former models, two effective approaches use
either (i) a simple application of max pool-
ing over the Transformer evidence vectors; or
(ii) computing a weighted sum of the evidence
vectors. Our experiments on the FEVER claim
verification task show that the methods above
achieve the state of the art, constituting strong
baseline for much more computationally com-
plex methods.

1 Introduction
Automatic Fact Checking is quickly gaining at-
tention of the NLP and AI communities. The
FEVER.ai Fact Extraction and Verification Shared
Task (Thorne et al., 2018) provides a benchmark
for evaluating fact-checking systems. In FEVER,
given a claim, C, and a collection of approximately
five million Wikipedia pages, W , the task is to
predict whether C is supported (SUP) or refuted
(REF) by W , or whether there is not enough infor-
mation (NEI) in W to support or refute C. If C is
classified as SUP or REF, the respective evidence
should be provided. Tab. 1 shows a FEVER claim
and the gold-standard evidence refuting it.

The overall task is complex, as one needs to re-
trieve the documents that contain the evidence (doc-
ument retrieval, DocIR), select relevant evidence
(evidence selection, ES) and label the claim given
the evidence (evidence reasoning, ER), which is
the focus of our work. Formally, given a claim, C,
and a list top K evidence sentences, (E1, ..., EK),
retrieved with DocIR and selected by ES respec-
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Claim Evidence
Coeliac disease is not
treated by maintaining a
gluten-free diet. (REF)

[(Coeliac disease, “The only
known effective treatment is a strict
lifelong gluten-free diet....”)]

Table 1: FEVER data examples

tively, the ER task is to predict the claim label
(SUP/REF/NEI).

There can be multiple inter-dependent evidence
sentences per claim, thus joint modeling them al-
lows for taking multiple clues into account, thus
intuitively improving system accuracy. Indeed, in-
dividual sentences may not constitute standalone
evidence, but they can contain several clues, which,
together, can support or refute the claim. For ex-
ample, Sentence 8 of the Gluten-free diet
Wikipedia page, “..gluten-free diet is demonstrated
as an effective treatment, but several studies show
that about 79 % ... an incomplete recovery of the
small bowel...”, which is not listed as ground truth
evidence for the claim, still supports the REF sig-
nal.

Given the above intuition, recent state-of-the-art
(SOTA) approaches (Zhou et al., 2019; Ye et al.,
2020; Liu et al., 2020; Zhong et al., 2020; Zhao
et al., 2020) combine different pieces of evidence
with graph networks, also increasing computational
and space complexity. In this paper, we show that
simple joint transformer-based methods achieve
better performance than the best complex systems.
Specifically, we (i) text-concatenate evidence sen-
tences, (ii) apply max pooling to their individual
embedding representation, or (iii) compute their
weighted sum. Since June 1st 2021, our baseline
is sixth in terms of Label Accuracy (LA) and sev-
enth in terms of FEVER score on the official task
leaderboard1, where the absolute difference from
the fourth top LA is 0.2%.

We believe our results are important to enable
1https://competitions.codalab.org/

competitions/18814#results

https://competitions.codalab.org/competitions/18814#results
https://competitions.codalab.org/competitions/18814#results
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researchers to select the right scientific challenge,
providing the appropriate baselines. For example,
proposing complex models that are less accurate
than our baselines can most likely mislead the re-
search community, thus knowing our baselines can
help to lead research in this area in the right di-
rections. Additionally, our baselines are strong,
simple to use, and easily reproducible, enabling
fast comparison with innovative inference models.

2 Related work
SOTA approaches. Most recent approaches en-
code claim and evidence texts using Transformer-
based language representation models (LRM), such
as BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and others. GEAR (Zhou et al., 2019) and
KGAT (Liu et al., 2020) construct graphs with evi-
dences as nodes and use deep graph neural ER net-
works to propagate knowledge; DREAM (Zhong
et al., 2020) reasons on a graph built on top
of a semantic role labeler output; Transformer-
XH (Zhao et al., 2020) propagates knowledge be-
tween [CLS] tokens of different evidence pieces;
CorefBERT (Ye et al., 2020) trains a BERT-based
LRM, which employs an additional objective mod-
eling coreference knowledge, and use it within
KGAT architecture. The winners of the original
FEVER competition (Nie et al., 2019) used older
LRMs and a modified enhanced sequential infer-
ence model (ESIM) (Chen et al., 2017) to do ER.

The top-scoring published approach, DOM-
LIN++ (Stammbach and Ash, 2020), simply text-
concatenates evidence pieces and uses a RoBERTa-
based classifier, thus supporting our thesis that sim-
ple models can be very effective. On the other
hand, they use additional DocIR components and
data (MultiNLI (Williams et al., 2018) corpus) for
fine-tuning. To the best of our knowledge, their
code/output are not available online yet2, so we
cannot compare to them directly at the moment.
Baselines. The baselines in the above works, apart
from the previous SOTA systems, consist in apply-
ing a transformer-based classifier to (i) concate-
nation of C and all Ei, i = 1..K (Zhou et al.,
2019; Zhong et al., 2020; Zhao et al., 2020); or (ii)
separate (C,Ei) pairs, i = 1..K, and aggregating
the results heuristically (Zhou et al., 2019). The
latter also considered max-pooling and weighted-

2We could try to re-implement their pipeline following
the high-level descriptions in their paper, however, our re-
implementation still will not be able to re-produce their ER
input due to the inevitable implementation differences

sum baselines, but used them only on subsets of
the development set with multiple gold evidence
pieces per claim. In this work, we use them in the
full-scale setting.

3 Strong baseline models
BERT for classification. BERT LRM and its
version with the improved training procedure,
RoBERTa, have obtained outstanding results on
a number of NLP tasks. When using BERT-based
architectures for classification, a special[CLS]3

token is prepended to an input text sequence. Its
embedding from the last layer of the transformer,
h[CLS] ∈ Rhdim is a vector representation of the
sequence. hdim is the hidden dimension size.
The final prediction is p = softmax(L), where
L = Wh[CLS] ∈ RN , W ∈ RN×hdim , and N is
the number of classes4.
Baseline approaches. We investigate four sim-
ple Transformer-based baseline approaches: Local,
Concat, MaxPool, WgtSum.

The input to the task are a claim, C, and a list of
top K evidence sentences selected by an ES com-
ponent, E = {Ei}, i = 1, ..,K. Tab. 2 describes
the input format. Following Liu et al. (2020), we
incorporate Ei source page name into the input.
We use cross-entropy loss to train all the models.
Local: for each Ei, we (i) use the standard 3-way
classification Transformer-based model, Tclass, to
get an evidence-level label prediction, Pi, along
with its corresponding li = max(Li) score, where
Li ∈ RN is the logits vector produced by Tclass
for Ei; (ii) sort the predictions list, P = [(Pi, li)],
on l in the reverse order; (iii) create P ′, a sublist
of P , where Pi is not NEI and li > 0. If P ′ is not
empty, P ′1 is the claim label, otherwise it is NEI.
We introduce P ′, because we want to capture the
SUP/REF signal even if it is weaker compared to
that of NEI.
Concat: Tclass run on the input described in Tab. 2.
Local and Concat are similar to the Bert-pair
and Bert-Concat baselines, respectively introduced
in (Zhou et al., 2019).
MaxPool: encodes each (C,Ei) pair with a trans-
former model, concatenates the resulting h[CLS]

i

into a matrix H [CLS] ∈ Rhdim×K and max-pools
it, column-wise, into h[CLS]

mp ∈ Rhdim . The output

3This is standard for BERT, other language models can use
a different token in a different position

4This strategy is employed by BERT. Practical implementa-
tions of the other models can also apply more transformations
to h[CLS] to obtain L.
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Baseline Input type example
Local, MaxPool, [CLS] C [SEP] Epage

i <psep>
WgtSum Ei [SEP]
Concat [CLS] C [SEP] Epage

1 <psep>
E1 [SEP] ... [SEP] Epage

K
<psep> EK [SEP]

Table 2: Input data for the baselines. Epage
i is the name of

the Ei source Wikipedia page. [SEP] and [CLS] are the
standard “separator” and “classification” tokens used in BERT-
like models. <psep> is delimiter separating page name from
the evidence text. We use “. ”, while Liu et al. (2020) use
[SEP]

is p = softmax(Wmph
[CLS]
mp ), Wmp ∈ R3×hdim .

It is inspired by the max pooling evidence aggre-
gation procedure employed by (Hanselowski et al.,
2018; Zhou et al., 2019).
WgtSum: encodes each (C,Ei) pair with
a transformer, computes the weighted sum
h
[CLS]
ws =

∑K
i=1 αih

[CLS]
i ∈ Rhdim , αi =

softmaxi(Wwsh
[CLS]
i ), Wws ∈ R1×hdim . The

weight αi is intended to reflect the relative
importance of Ei. The output is p =

softmax(Wh
[CLS]
ws ), W ∈ R3×hdim . WgtSum is

similar to the Zhou et al. (2019)’s attention baseline
in the sense that we aggregate pieces of evidence
representations via a weighted summation. How-
ever, differently from us, they obtain the weights by
computing attention between the claim and the evi-
dence hidden states. We refer to Concat, MaxPool
and WgtSum as global systems.

4 Experiments
Implementation. Our system is an AllenNLP
pipeline (Gardner et al., 2017). Our code
is available at https://github.com/iKernels/

reasoning-baselines. We use the pre-trained
BERT and RoBERTa LRMs from the transform-
ers5 library, namely bert-base-cased, roberta-base
and roberta-large.
Training setup. We train for three epochs, with an
evaluation checkpoint every 500 and 2500 training
steps for global and local models correspondingly,
thus having 14 checkpoints in total. We use K =
5 evidence pieces per claim. For all the models
the batch size/number of gradient accumulation
steps are 8/8 and 2/32 with base and large LRMs,
respectively. We use Adam optimizer with slanted
triangular learning rate (Howard and Ruder, 2018),
cut frac = 0.1, ratio of 326.

When experimenting with roberta-base we tried

5https://github.com/huggingface/
transformers

6Standard values suggested in (Howard and Ruder, 2018)

Split #SUP #REF #NEI
TRAIN 80,035 29,775 35,639

DEV 6,666 6,666 6,666
TEST 6,666 6,666 6,666

Table 3: FEVER dataset statistics. # denotes the number of
claims in a given class.

learning rates [1e-5; 5e-5] with the step of 1e-5
and observed no noticeable difference between the
rates in the range [2e-5; 5e-5]. Additional details
are available in the appendix.
FEVER metrics. The primary shared task metric
is FEVER7. It takes the correctness of the evidence
set provided with the claim label8 into account. The
evidence set must contain all sentences belonging
to at least one evidence9 associated with a claim.
No evidence is needed for NEI claims. Label Ac-
curacy (LA) is another standard metric. Oracle
FEVER (OFEVER) is the FEVER metric computed
using oracle downstream components after DocIR
or ES, i.e., it estimates downstream component’s
upper bound performance.

4.1 The dataset
We conduct our experiments on the official FEVER
1.0 Shared Task dataset10. Tab. 3 reports the
FEVER 1.0 statistics. Verifiable (SUP or REF)
claims are associated with at least one evidence.
35.23% of verifiable claims in DEV are associated
with multiple evidence sentences, independent or
inter-dependent.
Evidence Reasoning (ER) dataset. We run the
ER experiments on the evidence sentences retrieved
by Liu et al. (2020), published on their github11

with ES OFEVER score of 96.25. Their DocIR
module retrieves documents for a given claim via
entity linking following (Hanselowski et al., 2018),
and the ES module selects relevant evidence (ES)
via BERT-based system with pairwise loss.

Following (Liu et al., 2020), when training and
selecting the best checkpoint we use gold evidence
completed with the non-gold evidence pieces re-
trieved by ES, so that the total amount of evidence
pieces per claim is K. When evaluating on DEV
we simply use top 5 evidence pieces retrieved by
ES, i.e. the results in Sec. 4.2 are obtained on the

7Scorer: https://github.com/sheffieldnlp/
fever-scorer

8At least one of top 5 predicted evidences must be correct.
9An evidence consists of one or more sentences. One claim

can have multiple evidences.
10FEVER 1.0 Shared Task at https://fever.ai/

resources.html
11https://github.com/thunlp/KernelGAT/

tree/master/data

https://github.com/iKernels/reasoning-baselines
https://github.com/iKernels/reasoning-baselines
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/sheffieldnlp/fever-scorer
https://github.com/sheffieldnlp/fever-scorer
https://fever.ai/resources.html
https://fever.ai/resources.html
https://github.com/thunlp/KernelGAT/tree/master/data
https://github.com/thunlp/KernelGAT/tree/master/data


4827

FEVER LA LRM
KGAT SOTA baseline, lr=5e-05

1: KGATpub 75.88 78.02 bert-base-cased
2: (Liu et al., 2020) 76.11 78.29 roberta-large

Reproducing KGAT results, lr=5e-05
3: KGAT 75.64 77.80 bert-base-cased
4: 77.21 79.52 roberta-base

Other learning rates (lr) for KGAT
5:

KGAT, lr=2e-5
74.87 77.15 bert-base-cased

6: 77.66 79.98 roberta-base
7: 78.66 80.77 roberta-large
8: KGAT, lr=3e-5 75.28 77.48 bert-base-cased
9: 77.75 80.06 roberta-base

Local models, lr=2e-05
10: Aggr. heuristic 1 73.05 75.11 bert-base-cased
11: 75.62 77.85 roberta-base
12: Aggr. heuristic 2 71.79 73.66 bert-base-cased
13: 73.98 75.96 roberta-base

Global baselines, lr=2e-05
14:

Concat
74.23 76.51 bert-base-cased

15: 77.09 79.25 roberta-base
16: 78.27 80.31 roberta-large
17:

MaxPool

74.72 76.99 bert-base-cased
18: 77.48 79.82 roberta-base
19: 78.85 81.16 roberta-large
20:

WgtSum
74.48 76.85 bert-base-cased

21: 77.62 80.01 roberta-base
22: 79.02 81.30 roberta-large

Table 4: Results on the official DEV set. pub is the result
officially published in the reference paper; lr is learning rate.
Aggr. is a shorthand for Aggregation.

real-life gold standard-agnostic output of the DocIR
and ES modules.

Note that by construction, we generate one
train/test instance per each (C,Ei) pair when train-
ing/testing Local models and then aggregate the
labels predicted for different evidence pieces, i.e
the total amount of instances is around number of
claims times K12. For example, we train Local on
722K examples, split into 548K NEI, 127K SUP,
48K REF. When training/testing Concat, Wgt-
Sum and MaxPool, we generate one instance per
each claim.

4.2 Results
Tab. 4 reports the performance of the systems de-
scribed in Sec. 3 on the official DEV set.

In previous work, systems employing KGAT
ER architecture (Liu et al., 2020; Ye et al., 2020)
achieve top performance in terms of FEVER.
KGAT ER input data are publicly available en-
abling us to conduct fair comparison. Lines 1 and
2 report KGAT performance as in (Liu et al., 2020).
We integrated their implementation of the KGAT
ER component into our pipeline and obtained per-
formance numbers comparable to those published
(lines 3, 1). Interestingly, our runs with roberta-

12It can be less, as for some claims fewer evidence pieces
were retrieved.

base outperform the published results of KGAT
runs with roberta-large (lines 4, 6, 9). We also
include its best result (that is an upperbound of
KGAT) with roberta-base that we obtained with
the learning rate of 3e-5. KGAT with roberta-large
and learning rate of 2e-5 further pushes the per-
formance 1 point up, while the training with the
learning rates of 3e-5 and 5e-5 did not converge.

Local models. Lines 10-13 report performance of
our local models with two evidence label aggrega-
tion heuristics. Heuristic 1 consists in applying the
procedure described in Sec. 3 to the labels assigned
to all evidence pieces by Local. Heuristic 2 is to
simply pick the label assigned to the evidence sen-
tence top-ranked by ES as in (Zhou et al., 2019).
The aggregation heuristic 1 is more competitive.

Global models. Lines 14-22 report performance
of the Concat, WgtSum, MaxPool global systems,
which all clearly outperform Local. Note, that in
the Concat setting C and Ei, i = 1, ..,K, are con-
catenated, thus it is sensitive to the relative Ei or-
der. Overall, all three models perform comparably
between each other and to KGAT (lines 14-22 vs 5-
7). MaxPool and WgtSum marginally outperform
Concat with roberta-large.

We also trained Concat with roberta-large set-
ting K=1 both for training and predicting, i.e., us-
ing only top evidence piece retrieved by ES. The
resulting LA of 79.57 is only approximately one
point behind that of Concat (Line 16) and KGAT
(Line 7). This suggests that good performance can
be obtained on the FEVER dataset even without
joint reasoning over multiple Ei-s, and that there is
still room for further improvement for the systems
able to reason upon multiple evidence pieces. Also
this could be partially attributed to the observation
by Schuster et al. (2019) who showed that FEVER
claims contain certain linguistic biases and BERT
model fine-tuned on the claim texts only signifi-
cantly outperforms the majority baseline. Schuster
et al. (2019) proposed a debiased symmetric test
set, but its instances are claim-evidence pairs. This
means that K = 1, and thus we did not evaluate
our baselines on it as with K = 1 they all become
equivalent to Local.
Comparison to the state of the art. Tab. 5 com-
pares the performance of MaxPool and WgtSum
to that of the SOTA systems as of June 1st, 2021.
Our simple baselines outperform all the other sys-
tems on DEV, but we may have overfitted on it, as
we report the performance of the best checkpoint.
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System DEV TEST
FEVER LA FEVER LA

Competition systems
NSMN (#1) (Nie et al., 2019)13 66.59 69.6 64.23 68.16

Post-competition systems
BERT Pair 68.90 73.30 65.18 69.75
BERT Concat 68.89 73.67 65.64 71.01
GEAR 70.69 74.84 67.19 71.60
(Zhou et al., 2019)
DREAM (#2 LA) n/a 79.16 70.60 76.85
(Zhong et al., 2020)
* KGAT with
* - BERT Base 75.88 78.02 69.40 72.81
* - RoBERTa Large 76.11 78.29 70.38 74.07
(Liu et al., 2020)
Transformer-XH 74.98 78.05 69.07 72.39
(Zhao et al., 2020)
KGAT with
- CorefBERTBase n/a n/a 69.82 72.88
- CorefBERTLarge n/a n/a 70.86 74.37
- CorefRoBERTaLarge n/a n/a 72.30 75.96
(Ye et al., 2020)
DOMLIN++ 74.98 77.48 74.27 76.60
(Stammbach and Ash, 2020)

Codalab leaderboard as of June 1, 2021
#1 dominiks n/a n/a 76.78 79.16
#2 h2oloo n/a n/a 75.87 79.35
#3 nudt nlp n/a n/a 74.42 77.38
#4 krishnamrith12 n/a n/a 74.37 79.25
#5 totopower n/a n/a 73.90 77.21
#6 gump n/a n/a 73.72 77.05

Our results
Concat (roberta-large) 78.27 80.31 72.59 75.85
MaxPool (roberta-large) 78.85 81.16 72.77 76.55
WgtSum (roberta-large) 79.02 81.30 73.44 77.18
Table 5: FEVER state of the art. We mark results outperform-
ing us with underscore. We mark the systems using exactly
the same input to the ER component as us with *.

On the blind TEST data, WgtSum with roberta-
large scores seventh in terms of FEVER and sixth
in terms of LA on the official Codalab leaderboard.

Despite our best efforts, we were not able to track
the publications related to the leaderboard submis-
sions #1-#6. We do not know whether their supe-
rior performance is due to a better ER approach,
a stronger LRM with billions of parameters, or
to a better DocIR/ES. In the latter two cases, the
baselines in this work still remain relevant.

The best-performing system with published de-
scription, DOMLIN++, uses roberta-large and the
Concat approach. We cannot compare the results
of our ER model directly, since they use a different
ES system which might have better evidence recall.
Note that we still marginally outperform them in
terms of LA. This may indicate that even though
our gold evidence recall may be lower due to a pos-
sibly less powerful DocIR/ES pipeline (resulting in
lower FEVER score), we are still able to predict a
correct label given the evidence sentences we have
at our disposition. Then, they do additional pre-

training on MultiNLI, while we do not exploit any
external corpora.

Qualitative analysis We compared the outputs
of the Concat, MaxPool, WgtSum and KGAT
systems. We analyzed 50 DEV set examples where
only one out of four systems produced the correct
label. We aimed to understand the reason behind
the correct prediction, but we have not observed any
patterns explaining why one system outperforms
the others. The systems seem to be equivalent in
their abilities.

When analyzing the WgtSum output, we ob-
served that when summing the weighted distributed
representations of evidence pieces retrieved by
KGAT ES for a specific claim (see Sec. 3), it tends
to assign higher weights to the evidence pieces
which are correct according to the gold standard.

5 Conclusion
We have proposed lightweight strong baselines for
the FEVER fact-checking task and showed that
they can outperform heavier models on the official
leaderboard with blind TEST set. In our future
work, we plan to capitalize from our results to build
systems that can effectively trade-off efficiency for
accuracy.
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A Learning rate selection.

When experimenting with roberta-base we tried
learning rates (lr) [1e-5; 5e-5] with the step of 1e-
5. Table 6 summarizes the results. The results
obtained with the learning rates in range [2e-5; 5e-
5] are very similar, so we used the learning rate
of 2e-5 in the majority of our experiments in this
paper.

B Model complexity.

Tab. 7 reports the amount of trainable parameters
in the ER component of each model when run on

Model FEVER LA LR

Concat

76.40 78.60 1e-05
77.09 79.25 2e-05
76.97 79.14 3e-05
76.81 79.00 4e-05
76.76 78.95 5e-05

KGAT

77.39 79.74 1e-05
77.66 79.98 2e-05
77.75 80.06 3e-05
77.53 79.79 4e-05
75.80 77.93 5e-05

MaxPool

76.97 79.40 1e-05
77.48 79.82 2e-05
77.58 79.88 3e-05
77.61 79.95 4e-05
77.67 79.98 5e-05

Table 6: Experimenting with different learning rates with
roberta-base as LRM.
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Model # parameters-base # parameters-large
LRM parameters

LRM (RoBERTa) 124,645,632 355,359,744
Parameters in the joint inference ER component

KGAT 792,112 1,318,192
Concat/MaxPool 2,307 3,075
WgtSum 3,076 4,100
Table 7: Number of trainable parameters in the ER models
with RoBERTa LRM. We report the amount of LRM and ER
component parameters separately (i.e. the full ER model size
is their sum). -base/-large refers to the LRM version.

top of different LRMs14. Our simple baselines per-
form comparably to SOTA using an ER inference
component having 3K parameters only (in addition
to LRM parameters).

14Naturally, we update the LRMs parameters as well.


