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Abstract

Neural biomedical named entity recognition
(BioNER) methods usually require a large
amount of annotated data, while the anno-
tated BioNER datasets are often difficult to
obtain and small in scale due to the limita-
tions of privacy, ethics and high degree of
specialization. To alleviate the lack of train-
ing samples, unlike conventional methods that
only use token-level information, this paper
proposes a method that simultaneously utilize
the latent multi-granularity information in the
dataset. Concretely, the proposed model is
based on a multi-task approach, which lever-
ages different training objectives by introduc-
ing auxiliary tasks, i.e. binary classification,
multi-class and multi-token classification. Ex-
perimental results over three BioNER datasets
show that the proposed model produces better
performance over the BioBERT baseline and
can get more than 3% improvements of F1-
score in low-resource scenarios. Finally, we
released our code at https://github.com/
zgzjdx/MT-BioNER.

1 Introduction

Biomedical named entity recognition (BioNER)
aims to identify entity mentions such as
gene/protein, disease and chemicals from unstruc-
tured text. Such information is useful for down-
stream natural language processing (NLP) tasks
like relation extraction (Zhou et al., 2014), auto-
matic abstracting (Mishra et al., 2014) and question
answering (Athenikos and Han, 2010), etc. Differ-
ent from those named entity recognition (NER)
tasks for general domain like news, BioNER is
particular challenge due to the naming complex-
ity (Liu et al., 2015), large variations in same en-
tity names (Jia et al., 2019; Kim et al., 2019), and
new entity mentions rapidly reported in scientific
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Figure 1: Examples from our constructed dataset. In
our work, we designed three auxiliary tasks to help im-
proving the main NER task. Two of them are sentence-
level tasks and the other one is a token-level task. Con-
cretely, the first sentence-level task predicts whether or
not a sentence contains entities; the second sentence-
level task predicts how many entities a sentence con-
tains; and the token-level task predicts whether or not
a given token belongs to a multi-token entity. Clearly,
to support training the auxiliary tasks, additional labels
have been added in our data. However, please note that,
the additional labels could be derived from the original
NER labels and do not need additional manual anno-
tations. In a word, what we have done in this paper
is try to use the multi-granularity information implied
in the original dataset to improve the performance of
BioNER.

publications (Luo et al., 2018). These various fac-
tors lead to the small number and size of current
BioNER datasets. In recent years, neural BioNER
has become a main approach because of its out-
standing performance (Lample et al., 2016; Habibi
et al., 2017; Yadav and Bethard, 2019). Some re-
searchers have investigated introducing multi-task
learning (Crichton et al., 2017; Khan et al., 2020)
and pre-training (Peng et al., 2019; Lee et al., 2020)
to solve the problem of lacking extensive training
data and boost the performance of BioNER model.
However, few of them combined these two methods
together and tried to transfer sentence-level knowl-
edge to tokens (Rei and Søgaard, 2019; Kruengkrai
et al., 2020), which had proven to be effective in

https://github.com/zgzjdx/MT-BioNER
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other domains (Abhishek et al., 2017).
In this paper, we focus on improving BioNER by

exploiting multi-granularity information implied in
the dataset, without depending on additional man-
ually annotated data. As shown in Figure 1, Be-
sides the main sequence labeling task, we employ
three related classification tasks, i.e. a binary clas-
sification task for predicting whether a sentence
contains entities or not, a multi-class classification
task for predicting how many entities a sentence
contains and a multi-token entity classification task
(Hu et al., 2020). In the rest of this paper, these
three tasks will be named bCLS, mCLS and mtCLS,
respectively, while the main task will be named
NER. Our primary motivation is to mine useful
training signals from coarse-grained classification
to guide a more robust and interpretable token-level
representation.

Our key contributions can be summarized as
follows:

• To take full advantage of the implicit informa-
tion contained in NER dataset, we present a
multi-task model for jointly learning sentence-
level and token-level labels, which incorpo-
rates BioBERT (Lee et al., 2020) as text en-
coding layers and shares the hidden states
between different tasks. To the best of our
knowledge, we are the first to introduce dif-
ferent grained-level information in BioNER
domain.

• Experimental results on three datasets show
that our proposed method is effective, espe-
cially in the low-resource scenarios.

• We performed preliminary pair-wise compar-
ison analysis to investigate the relations be-
tween tasks and pointed out that token-level la-
bels are more helpful for sentence-level tasks.
While at the same granularity, high-difficulty
tasks are more helpful to low-difficulty tasks.

2 Related work

Traditional BioNER methods could be divided
into rule- or dictionary-based approaches (Tjong
Kim Sang and De Meulder, 2003; Kulick et al.,
2004; Gerner et al., 2010). And recent works had
shown neural network architecture based BioNER
methods achieved promising results. Habibi et al.
(2017) used a LSTM-CRF model, which was com-
pletely agnostic to entity types. Crichton et al.

(2017), on the contrary, used a CNN-based model
that takes tokens and their surrounding tokens as
input. To solve the label inconsistent problem, Luo
et al. (2018) proposed a Att-BiLSTM-CRF model
and achieved better performance with little feature
engineering.

The neural BioNER system is known to be ex-
tremely data-intensive, while the available training
datasets are relatively small in scale. To tackle
this problem, research has been conducted and lan-
guage models and multi-task learning have been
shown to be effective to deal with this problem (Pe-
ters et al., 2018; Liu et al., 2019). Jia et al. (2019)
proposed a cross-domain NER model, which ex-
tracted knowledge from raw texts through a novel
parameter sharing network. Yoon et al. (2019)
proposed CollaboNet, which consists of multiple
BiLSTM-CRF models where models could send in-
formation to one another for more accurate predic-
tions, and got best F1-score at that time. Although
these studies have exploited additional token-level
information from auxiliary tasks or language mod-
els, they do not consider information from other
levels that contained in the NER dataset.

More recently, a transformer-based (Vaswani
et al., 2017) large-scale pre-training language
model, called BERT (Devlin et al., 2018), led to im-
pressive gains on several NLP benchmarks and the
domain-specific BERTs, such as blueBERT (Peng
et al., 2019), BioBERT (Lee et al., 2020), SciB-
ERT (Beltagy et al., 2019) and PubmedBERT (Gu
et al., 2020), have largely outperformed the previ-
ous state-of-the-art BioNER systems. But research
on multi-task learning based on BERT is still few,
and the association between tasks needed to be fur-
ther explored (Khan et al., 2020; Vu et al., 2020).

The most similar work to ours is the findings
of Kruengkrai et al. (2020). However, they only
focused on introducing one auxiliary task that re-
quires additional manual annotations, while we
attempted to try multiple auxiliary tasks, and our
proposed method did not rely on other additional
annotations, except for BioNER.

3 The proposed model

3.1 Tasks

As mentioned in Section 1, our model involves
four tasks: bCLS, mCLS, mtCLS and NER. The
goal is to optimize the token-level representa-
tion of BioBERT by introducing auxiliary tasks
(bCLS, mCLS, mtCLS) and improve the perfor-
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Figure 2: The input and output descriptions of the proposed model. Actually, our model involve three input
embeddings and four outputs, and we adopt two special token [CLS] and [SEP] to represent the beginning and the
end of the input sentence, respectively.

Figure 3: The architecture of our multi-task BioBERT-
based model that can jointly learn sentence-level and
token-level labels.

mance of the main task (NER). The pre-training
model BioBERT are shared across all tasks by hard
parameter sharing (Ruder, 2017). The input se-
quence and output labels of our proposed model
are represented in Figure 2. Given a sentence
X = {x1, ..., xi, ..., xn}, where xi is a token, n
is the length of the input sequence. The first token
of each X is always a special classification embed-
ding [CLS] and the transformer encoder module
maps X into a sequence of input embedding vec-
tors, which are the sum of the token, segment and
position embeddings. The detailed description of
each task is shown as follows. bCLS: This is a
sentence-level binary classification task. Given X ,
the goal is to predict whether it contains entities
or not. In some cases, for X that do not contain
entities, the model may incorrectly predicts that it
contains entities. Or for X that contains entities,
the model may incorrectly predicts that it not con-
tain entities. Therefore, we design bCLS task with
the hope of solving this problem by introducing a
global guidance information.

mCLS: This is a sentence-level multi-
classification task. Given X , the goal is to predict
how many entities it contains. To balance label
numbers, this paper set mCLS as a 4-classification
task, which X contains 0, 1 and 2 entities is set to
0, 1 and 2, respectively, while X with more than
2 entities are all set to 3. Compared with bCLS,
mCLS is more difficult and we introduce this task
to alleviate the under- or over-recognition entity
problem.

mtCLS: Multi-token classification is a token-
level 3-classification problem. Given xi in X , the
goal is to predict whether it belongs to a multi-
token entity like “brain disease” or a single-token
entity like “peroxydase” or neither. Our motivation
for introducing this task is that if the model knows
whether xi is multi-token entity or single-token
entity or neither, it can alleviate the entity boundary
problem.

NER: Given X , NER aims to predict corre-
sponding labels Y = {y1, ..., yi, ..., yn}, where yi
is predefined and differs according to the annota-
tion scheme such as BIO and BIOES. We use this
main task to measure the model performance and
effectiveness of auxiliary tasks.

3.2 Architecture

The overall architecture of our proposed model
is shown in Figure 3, which mainly includes two
parts: the shared encoder and task-specific layers.
We use multi-task learning to jointly train the main
task and auxiliary tasks, which has been shown ef-
fective for transferring knowledge among multiple
tasks (Yoon et al., 2019). For the shared encoder,
we take cased BioBERT-base v1.11 as feature ex-
tractor and hard shared its parameters. Set X as an
input sequence, where xi denotes the i− th token

1https://github.com/naver/biobert-pretrained
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in X . We represent each xi using the pre-trained
BioBERT embeddings hi ∈ Rd, where d is the
dimension of hidden states. And the task-specific
layers have independent parameters, which include
a project layer and a classifier for generating out-
puts. We use the output of the shared encoder,
i.e. H = {h1, ..., hi, ..., hn}, as the input of task-
specific layers for both sentence- and token-level
tasks, as described in detailed as follows.

Sentence-level tasks. As mentioned in subsec-
tion 3.1, bCLS and mCLS are two sentence-level
classification tasks. Different from the standard
BERT-based classification models, which optimize
the [CLS] token (Sun et al., 2019) to perform clas-
sification. Our model aims at optimizing the token
representations of the shared encoder by sentence-
level labels. Therefore, we created a fixed size
vector by applying mean/max pooling (Reimers
and Gurevych, 2019) over H , which encourages
the model to capture the most useful local features
encoded in hidden states. Finally, the probability of
class k is predicted by a linear layer and a logistic
regression with softmax.

P (m|X) = softmax(Wh+ b) (1)

where h ∈ Rd is the pooling output of model, W ∈
Rd×m and b ∈ Rm are trainable weight matrix and
bias. m denotes the number of category labels,
which is 2 for bCLS and 4 for mCLS. Finally, the
loss for our sentence-level task is calculated as
follows:

LS = −
∑
m

σ(ym = ŷ)log(P (m|X)) (2)

where σ(ym = ŷ) = 1 if the classification ŷ of
X is the right ground-truth label for the class m.
Otherwise, σ(ym = ŷ) = 0.

Token-level tasks. As mentioned in subsection
3.1, mtCLS and NER are two token-level classifica-
tion tasks2. Given the dataset D, which consists of
N training samples, i.e. D = (xj , yj)

N
j=1, where

j denotes the sentence index in D. To train the
token-level tasks, we minimize the negative log-
likelihood of the correct label sequences over D
with the loss function defined as follows:

LT = − 1

N

N∑
j=1

log(P (yj)|Hj) (3)

2Generally, NER was treated as a sequence labeling prob-
lem. However, for a fair comparison with previous works,
instead of using sequence labeling algorithms such as Condi-
tional Random Field (CRF) (Wallach, 2004) in task-specific
layers, we still use softmax for token-level tasks.

Algorithm 1 Training a MT-BioBERT model

Initialize: Model parameter of shared layers
θBioBERTi by BioBERT and task-specific layer
θtaski randomly. Max epochs, max sequence
length, learning rate, etc.

Input: Dataset D
1: shuffle D
2: for each epoch in epochmax do
3: for each bt in D do
4: # bt is a mini-batch of D
5: Compute Loss: L(θ) = αL(θ)ner +
βL(θ)mtCLS + γL(θ)bCLS + δL(θ)mCLS

6: L(θ)bCLS = Eq.2 for binary classifica-
tion

7: L(θ)mCLS = Eq.2 for multi-class classi-
fication

8: L(θ)ner = Eq.3 for sequence labeling
9: L(θ)mtCLS = Eq.3 for multi-token clas-

sification
10: Compute gradient ∆θ

11: Update model θ = θ − ε∆θ

12: end
13: end

Dataset Sentences Entity Type and Counts
BC2GM 20,131 Gene/Protein (24,583)

BC5CDR 13,938
Chemical(15,935),
Disease(12,852)

NCBI 7,287
Disease(6,881),
Gene/Protein(35,336)

Table 1: Dataset description. We use BC2GM (Smith
et al., 2008), BC5CDR (Li et al., 2016) and NCBI
(Doğan et al., 2014) to conduct our experiments.

where Hj ∈ Rn×d is the hidden state of xj .
Algorithm 1 provides the procedure for our cross-

task joint training method, where α, β, γ, δ are
hyper-parameters. Moreover, the final loss of the
proposed model is calculated by weighted sum-
ming the losses of different tasks.

4 Experiments

4.1 Datasets
We evaluated the performance of proposed ap-
proach on three benchmark datasets3 used by Wang
et al. (2019b); Yoon et al. (2019); Lee et al. (2020);
Khan et al. (2020). Table 1 gives the statics of these
datasets. Following previous works, we merged the

3https://github.com/cambridgeltl/MTL-Bioinformatics-
2016
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Model
BC2GM BC5CDR-chem NCBI-disease

P R F1 P R F1 P R F1
Baseline systems

Habibi et al. (2017) 81.57 79.48 80.51 87.60 86.25 86.92 86.11 85.49 85.80
Sachan et al. (2018) 81.81 81.57 81.69 88.10 90.49 89.28 86.41 88.31 87.34
Devlin et al. (2018) 81.17 82.42 81.79 90.94 91.38 91.16 84.12 87.19 85.63
Wang et al. (2019b) 82.10 79.42 80.74 93.09 89.56 91.29 85.86 86.42 86.14
Yoon et al. (2019) 80.49 78.99 79.73 94.26 92.38 93.31 85.48 87.27 86.36
Khan et al. (2020) 82.10 84.04 83.01 88.46 90.52 89.48 86.73 89.70 88.19
Beltagy et al. (2019) - - 83.36 - - 92.51 - - 88.25
Gu et al. (2020) - - 83.82 - - 92.85 - - 89.13
SOTA (Lee et al., 2020) 85.16 83.65 84.40 93.27 93.61 93.44 89.04 89.69 89.36
SOTA* 83.57 85.22 84.38 92.98 94.24 93.60 87.83 90.21 89.00

Our methods
Ours CLS 83.21 85.00 84.09 92.95 94.28 93.61 88.29 90.31 89.29
Ours MEAN 84.31 83.78 84.04 94.08 93.24 93.66 87.75 91.77 89.71
Ours MAX 84.42 85.14 84.78 93.29 94.69 93.98 88.90 90.94 89.91

Table 2: Model performance comparison on the three benchmark datasets, where SOTA* is our reproduce results
of BioBERT, Ours CLS uses the [CLS] token for sentence-level tasks and Ours MEAN or Ours MAX adopts the
mean or max pooling strategy for sentence-level tasks, respectively.

Dataset Metric
FULL-SIZE 50%-SIZE 25%-SIZE 10%-SIZE

CS-MTM SOTA Ours CS-MTM SOTA Ours CS-MTM SOTA Ours CS-MTM SOTA Ours
BC2GM P 83.21 85.16 84.42 79.37 82.21 81.78 79.44 80.15 80.82 72.95 75.27 76.60

R 85.74 83.65 85.14 85.05 83.73 84.52 78.98 81.60 82.56 75.39 79.27 79.32
F1 84.41 84.40 84.78 82.12 82.96 83.13 79.21 80.87 81.68 74.15 77.22 77.93

BC5CDR-chem P - 93.27 93.29 - 91.97 92.00 - 89.99 91.38 - 89.78 90.29
R - 93.61 94.69 - 92.37 93.96 - 92.48 93.30 - 90.90 91.33
F1 - 93.44 93.98 - 92.17 92.97 - 91.22 92.33 - 90.34 90.81

NCBI-disease P 86.59 89.04 88.90 84.72 85.77 92.50 81.00 81.22 83.96 79.32 79.69 83.65
R 86.42 89.69 90.94 84.76 91.67 86.04 81.00 88.33 90.52 74.40 80.52 83.13
F1 86.50 89.36 89.91 84.74 88.62 89.16 81.00 85.79 87.12 76.68 80.10 83.39

Table 3: Impacts of the dataset size. We keep the test set unchanged and only cut the training set.

training and developing sets for the model training.
As a part of the data preprocessing step, token la-
bels were encoded using the standard BIO scheme
(Reimers and Gurevych, 2017). In this scheme,
for example, a token describing a disease entity is
tagged with ”B-Disease” if it is at the beginning of
the entity, and ”I-Disease” if it is inside the disease
entity. Other tokens that not describing entities of
interest are tagged as ”O”.

4.2 Settings

Following the work of Peng et al. (2020), all
datasets are trained with the batch size of 32, maxi-
mum sequence length of 256 and a dropout (Srivas-
tava et al., 2014) with the probability of 0.1 after
the shared encoder. We use the Adam optimizer
(Kingma and Ba, 2014) with a learning rate 5e−5
for BC2GM, BC5CDR-chem and 1e−5 for NCBI-
disease. The training procedure contains 50 epochs

for BC2GM, BC5CDR-chem and 100 epochs for
NCBI-disease. A linear learning rate decay sched-
ule with warm-up over 0.1, and a weight decay of
0.01 applied to every epochs of the training by fol-
lowing Liu et al. (2019). Finally, all models were
trained on NVIDIA RTX TITAN and used standard
F1 metrics4 to evaluate the overall performance.

4.3 Performance

We compare our model with single-task models,
such as LSTM-CRF (Habibi et al., 2017), BiLM-
NER (Sachan et al., 2018), domain-specific BERTs
(Devlin et al., 2019; Beltagy et al., 2019; Gu et al.,
2020) and multi-task models, such as MTM-CW
(Wang et al., 2019b), CollaboNET (Yoon et al.,
2019), MT-BioNER (Khan et al., 2020).

Table 2 shows the overall performance of our
model compared with the existing approaches on

4https://github.com/chakki-works/seqeval
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Model
Dataset
BC2GM BC5CDR-chem NCBI-disease
P R F1 P R F1 P R F1

Ours 84.42 85.14 84.78 93.29 94.69 93.98 88.90 90.94 89.91
w/o bCLS 83.72 84.71 84.21 92.82 94.06 93.43 87.41 91.14 89.24
w/o mCLS 84.48 84.28 84.39 93.82 93.67 93.75 88.12 91.15 89.61
w/o mtCLS 83.44 84.82 84.12 93.98 93.57 93.78 87.48 91.67 89.52
w/o Joint 83.68 83.26 83.47 93.41 92.88 93.14 87.30 89.48 88.37

Table 4: Ablation study results, where w/o Joint means using the training strategy of MT-DNN (Liu et al., 2019)
to replace our training algorithm.

Dataset Model Result

BC2GM
BioBERT They are growth – inhibited by TGF - beta1 .
Ours They are growth – inhibited by TGF - beta1 .

BC5CDR-chem
BioBERT

Anaesthesia with a propofol infusion and avoidance of serotonin
onists provided a nausea - free

Ours
Anaesthesia with a propofol infusion and avoidance of serotonin
onists provided a nausea - free

NCBI-disease
BioBERT

We conclude that paternal transmission of congenital DM is rare
and preferentially occurs with onset of DM ...

Ours
We conclude that paternal transmission of congenital DM is rare
and preferentially occurs with onset of DM ...

Table 5: Case study on three datasets, where words in red and in green represent incorrectly and correctly recog-
nized entities, respectively.

the three benchmark datasets, where the current
SOTA model is BioBERT. In line with the ex-
pectations, Ours MAX, which uses the max pool-
ing strategy, achieved the best results, with the
improvements of 0.40, 0.37 and 0.91 F1-scores
for the three datasets, respectively. On the con-
trary, Ours CLS and Ours MEAN achieved neg-
ative results from our experiments. The above-
mentioned phenomenon is consistent with Reimers
and Gurevych (2019); Kruengkrai et al. (2020). An-
other interesting result is that our best model also
achieves higher recall score than all the other ap-
proaches expect SOTA* result in BC2GM, which
indicates that the introducing of coarse-grained
tasks helps the model to predict more positive re-
sults.

To simulate low-resource scenarios, we also used
the reduced training datasets by randomly remov-
ing sentences in training sets, while test sets are not
modified. As shown in Table 3, CS-MTM was
a multi-task model with cross-sharing structure
proposed by Wang et al. (2019a), we record the
performance of different situations and the best
F1-score for each resource size are bolded. When
training sets are reduced and test sets are kept, the

missing information in removed sentences make
all models produce worse results. However, for
50%-size, 25%-size and 10%-size datasets, our
model can get an average of 0.56, 0.79 and 1.72
F1-score improvements over the BioBERT, which
demonstrates our designed auxiliary tasks can reg-
ularize model to generate more robust token-level
representations. For BC2GM, BC5CDR-chem and
NCBI-disease in all data size, our model can get
an average of 0.47, 0.95 and 1.26 improvements
in F1-score, which the largest improvement is ob-
served on NCBI-disease. The smaller the training
set is the larger improvement could achived by our
model. This finding proves our method is more
effective in low-resource scenarios. Specifically,
on 10%-size NCBI-disease, our model can get 3.29
F1-score improvements over the BioBERT.

To prove that our joint training algorithm is ef-
fective, we plot the performance curve of different
tasks, which can be found in Figure 4. Moreover,
different task combinations can produce different
results in multi-task learning. To measure the im-
pact of our designed auxiliary tasks and training al-
gorithm, we conducted ablation studies and showed
in Table 4.
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Figure 4: Performance curves for different tasks of our
proposed model. Where x-axis is the number of train-
ing epoch and y-axis is F1-score. During the model
training process, the tasks complement each other and
gradually converge.

From the results of the ablation experiment, re-
moving the joint training algorithm leads to a con-
sistent drop in the F1-scores. Compared with the
results of Liu et al. (2019), Khan et al. (2020) and
Peng et al. (2020), we point out that multi-task
learning algorithms such as MT-DNN require a
large amount of training data to achieve improve-
ments. Furthermore, all of the auxiliary tasks are
helpful to the main task but the impact of different
tasks vary. Specifically, mtCLS is the best part-
ner for BC2GM dataset and bCLS can bring the
most improvement for BC5CDR-chem and NCBI-
disease dataset. This phenomenon shows that dif-
ferent BioNER datasets have different recognition
difficulties. For example, the recognition difficulty
of BC2GM may mainly related to entity bound-
ary problem, while the recognition difficulty of
BC5CDR-chem and NCBI-disease is the entity
sparsity problem. Therefore, for BC5CDR-chem
and NCBI-disease, the model trends to incorrectly
recognize entities in sentences that do not contain
entities. This finding is consistent with our statis-

tical results, where such cases are 2.38%, 2.71%
and 2.87% on the three datasets, respectively. Com-
pared to bCLS, mCLS is less helpful. This implies
that the effect of auxiliary tasks in multi-task lean-
ing is closely related to their performances. In fact,
the classification performances of mCLS are lower
than that of bCLS due to its higher difficulty.

4.4 Case study
Table 5 shows the case study of three datasets. The
BC2GM example showed the effect of bCLS task
in that our model could correctly recognize the en-
tity “TGF - beta1” while the BioBERT model fails.
In the BC5CDR-chem example, the input sentence
contains two entities “propofol” and “serotonin”,
and the BioBERT model could only identify one
of them, while our model could correctly recog-
nize two entities by incorporating the mCLS task.
For the NCBI-disease example, “congenital DM”
is a multi-token entity and “DM” is a single-token
entity. It could be found that without the help of
the mtCLS task, the BioBERT model could not
capture such difference and incorrectly recognized
two “DM”. Overall, these examples confirm that
supervised objectives at different granularities, i.e.
global information and local information, can be
combined to help producing better representations.

Although the case study show that our model
with auxiliary tasks outperformed the BioBERT
model, these tasks can not completely solve the
above problems due to their coarser granularities.
Take the bCLS task as an example, the model could
noticed that current input sentence contains entities
by sentence-level label, but still may trapped in the
number of entities or entity boundary.

4.5 Impacts of the task relationship
In this subsection, we would like to preliminary
study the relationship between different tasks
in the same domain, such as the interaction be-
tween sentence-level tasks and token-level tasks,
and whether or not tasks could help one other.
Therefore, we conducted pair-wise comparison ex-
periments, as shown in Figure 5, where x-axis is
the secondary task and y-axis is the main task.

First, we point out the token-level labels are
more helpful for the sentence-level tasks. For
mCLS, it can get an average improvement of
0.79%, 0.54% and 0.15% on the three datasets by
taking mtCLS, NER and bCLS as auxiliary tasks,
respectively. Considering that mtCLS and NER are
token-level tasks and bCLS is a sentence-level task,



4811

Figure 5: Results of the pair-wise experiments of our
model on three datasets.

the results suggest that the coarse-grained tasks can
significantly benefit from fine-grained tasks. This
finding could be used to guide the choosing of the
tasks for multi-task learning.

Second, the same granularity of information also
contributes to each other. Concretely, bCLS and
mCLS can get an average improvement of 0.39%,
0.15% from mCLS and bCLS, respectively. And
mtCLS and NER can get an average improvement
of 0.42%, 0.22% from NER and mtCLS, respec-
tively. Meanwhile, the difficulty of task is also a
factor that affects the effectiveness of multi-task
learning, in that bCLS gets 0.24% more improve-
ments compared to mCLS, and mtCLS gets 0.20%
more improvements compared to BioNER.

In addition, the same task combinations per-
forms differently on different datasets. For exam-
ple, the combinations of mtCLS and mCLS got neg-
ative results of -0.25% and -0.33% on the BC2GM
and BC5CDR-chem datasets, while achieved 1.3%
boost on the NCBI-disease dataset. We guessed it
may related to the transferability of specific dataset.
So we visualized the task embedding of three
datasets, which were generated with the method5

proposed by Vu et al. (2020), using T-SNE (Belk-
ina et al., 2019) dimension reduction algorithm and
showed the results in Figure 6. From the visual-

5https://github.com/tuvuumass/task-transferability

Figure 6: A 2D visualization of the tasks space.

ization results, we found that the embedding dis-
tance between the same tasks (e.g., BC2GM-bCLS,
BC5CDR-chem-bCLS, NCBI-disease-bCLS) or
the same type of tasks is closer (e.g., NER and
mtCLS, bCLS and mCLS). And the embedding
distance between different types of tasks is farther
(e.g., bCLS and NER), but more specific relations
need further exploration.

5 Conclusion

In this work, we investigated whether coarse-
grained label could benefit the token-level repre-
sentation for BioNER. We had shown that the pro-
posed BERT-based jointly sentence and token label
model was valid without using external data and
hand-crafted feature for BioNER in three datasets:
BC2GM, BC5CDR-chem, NCBI-disease. Finally,
we preliminary discussed the correlation between
main task and auxiliary task.

For multi-task learning, describing and reason-
ing about the relations between tasks through ex-
periments require an amount of computational re-
sources. In future work, with domain related in
mind, we will explore efficient methods for gener-
ating vectorial representations to measure the rela-
tionship between different NLP tasks.
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