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Abstract

Writing a coherent and engaging story is not
easy. Creative writers use their knowledge and
worldview to put disjointed elements together
to form a coherent storyline, and work and
rework iteratively toward perfection. Auto-
mated visual storytelling (VIST) models, how-
ever, make poor use of external knowledge and
iterative generation when attempting to create
stories. This paper introduces PR-VIST, a
framework that represents the input image se-
quence as a story graph in which it finds the
best path to form a storyline. PR-VIST then
takes this path and learns to generate the final
story via a re-evaluating training process. This
framework produces stories that are superior in
terms of diversity, coherence, and humanness,
per both automatic and human evaluations. An
ablation study shows that both plotting and re-
working contribute to the model’s superiority.

1 Introduction

Writing a story is a complicated task. Human writ-
ers use their knowledge to tie all the disjointed ele-
ments, such as people, items, actions, or locations,
together to form a coherent storyline. Writers also
re-evaluate their work constantly during the writ-
ing process, and sometimes even alter their writing
goals in the middle of a draft. Flower and Hayes
(1981) characterize a solo writer’s cognitive pro-
cess as a series of components in which the writer’s
own knowledge is described as the long-term mem-
ory, and the planning, translating, and reviewing
steps can occur in a recursive, interconnected man-
ner. These creative steps are essential to human
writing. However, automated visual storytelling
(VIST) models that compose stories given five im-
ages (Huang et al., 2016) do not make extensive
use of human knowledge to tie the elements to-

∗* denotes equal contribution

gether, nor do they use human insight to evaluate
the outputs and guide the generation process.

As for linking elements, most works generate vi-
sual stories in an end-to-end fashion (Huang et al.,
2016; Kim et al., 2018), treating the task as a
straightforward extension of image captioning. Re-
cent works have begun to use relations between
entities to improve visual storytelling, but often
narrow in a particular subset of relations, such as
relations between elements within the same im-
age (Yang et al., 2019), relations between two ad-
jacent images (Hsu et al., 2020), or relations be-
tween scenes (Wang et al., 2020). The full poten-
tial of rich real-world knowledge and intra-image
relations have yet to be fully utilized. As for re-
evaluation, recent work uses reward systems (Wang
et al., 2018b; Hu et al., 2019) or estimated topic co-
herence (Wang et al., 2019) to automatically assess
the output story and guide the generation process.
However, these approaches are often optimized to-
wards predefined aspects such as image relevancy
or topic coherence, which do not necessarily lead
to engaging stories from a human perspective. In
the cognitive process of human writing, the writer’s
judgment is critical, and visual storytelling models
could benefit by considering human ratings.

This paper introduces PR-VIST, a novel visual
storytelling framework that constructs a graph and
captures the relations between all the elements in
the input image sequence, finds the optimal path
in the graph that forms the best storyline, and uses
this path to generate the story. An overview of
PR-VIST is shown in Figure 1.

• Stage 1 (Story Plotting): PR-VIST first con-
structs a story graph for the image sequence by
extracting various elements (i.e., term nodes,
object nodes) from all the images and linking
these elements using external knowledge (i.e.,
VIST graph, VG graph). PR-VIST then finds
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Figure 1: Overview of PR-VIST. In Stage 1 (Story Plotting), PR-VIST first constructs a graph that captures the
relations between all the elements in the input image sequence and finds the optimal path in the graph that forms
the best storyline. In Stage 2 (Story Reworking), PR-VIST uses the found path to generate the story. PR-VIST
uses a story generator and a story evaluator to realize the “rework” process. In Stage 0 (Preparation), a set of
knowledge graphs that encode relations between elements should be prepared for the uses in Stage 1.

the best path in the story graph as the storyline
and passes it to Stage 2.

• Stage 2 (Story Reworking): PR-VIST uses a
story generator and a story evaluator to realize
the reworking process: the generator takes the
storyline produced in Stage 1 as the input to
generate the story and backpropagates with an
evaluator-augmented loss function. The evalu-
ator, a discriminator model trained on human
rating score data to classify good and bad sto-
ries, outputs a story quality score and modifies
the loss. After a few optimization epochs, the
generator eventually learns to generate stories
that reflect human preferences.

In Stage 0 (Preparation), a set of knowledge
graphs that encode relations between elements are
prepared for use in Stage 1. In this work, we pre-
pare two knowledge graphs: a VIST graph and a
visual genome (VG) graph. We construct the VIST
graph based on the VIST dataset, representing in-
domain knowledge; the VG graph is an existing re-
source (Krishna et al., 2017), representing generic
knowledge. Note that as the PR-VIST framework is
generic, it can use any knowledge graphs as needed.

Automatic and human evaluations show that PR-
VIST produces visual stories that are more diverse,
coherent, and human-like. We also conduct an abla-
tion study to show that both story plotting (Stage 1)
and reworking (Stage 2) contribute positively to

the model’s superiority. We believe this work also
shows the potential of drawing inspiration from hu-
man cognitive processes and behavior to improve
text generation technology.

2 Related Work

Visual Storytelling Researchers have been try-
ing to advance the visual storytelling task since
it was introduced by Huang et al. (2016). Some
work modifies end-to-end recurrent models for bet-
ter story generation (Hsu et al., 2018; Gonzalez-
Rico and Fuentes-Pineda, 2018; Kim et al., 2018;
Huang et al., 2019; Jung et al., 2020), and some
use adversarial training to generate more diverse
stories (Chen et al., 2017; Wang et al., 2018a,b; Hu
et al., 2019). These methods produce legitimate
stories and easier to implement because they relies
only on one dataset. However, the generated stories
can sometimes be monotonous and repetitive.

Leveraging External Resources for VIST An-
other set of work leverages external resources and
knowledge to enrich the generated visual stories.
For example, Yang et al. (2019) apply Concept-
Net (Liu and Singh, 2004) and self-attention for
create commonsense-augmented image features;
Wang et al. (2020) use graph convolution networks
on scene graphs (Johnson et al., 2018) to associate
objects across images; and KG-Story (Hsu et al.,
2020) is a three-stage VIST framework that uses
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Visual Genome (Krishna et al., 2017) to produce
knowledge-enriched visual stories.

Editing or Optimizing Visual Stories A few
prior work tries to post-edit visual stories or opti-
mize the story content toward specific goals. VIST-
Edit is an automatic post-editing model that learns
from an pre- and post-edited parallel corpus to edit
machine-generated visual stories (Hsu et al., 2019).
While VIST-Edit is useful, it requires parallel train-
ing data, which is often unavailable. Hu et al.
(2019) use a reward function to optimize the gen-
erated stories toward three aspects; Li et al. (2019)
customize the emotions of visual stories. These
methods use automatic metrics to optimize visual
stories toward specific goals; our work, on the other
hand, leverages the human evaluation data to guide
the generation process.

Story Plotting in Story Generation Research
in automatic story generation has demonstrated the
effectiveness of story plotting (Yao et al., 2018; Fan
et al., 2019), which typically involves organizing
the “ingredients” into a well-organized sequence
of events. Nevertheless, none of the studies applied
story plotting for visual stories.

3 Stage 0: Preparation

To prepare for story plotting, we collect informa-
tion from the images and knowledge from the
knowledge graphs.

3.1 Story Element Extraction

To extract information from the images, two extrac-
tion methods are used to extract image-oriented and
story-oriented story elements: objects and terms,
respectively representing image and story intuition.

Objects These can be detected by current object
detection models, for which we use a pre-trained
object detection model—Faster-RCNN (Ren et al.,
2015). To ensure the detected objects’ reliabil-
ity, only those objects with the top five confidence
scores are used in each image.

Terms These are story-like nouns such as events,
time, and locations, which current object detection
models are unable to extract. Therefore, we fur-
ther use a Transformer-GRU (Hsu et al., 2020) to
predict story-like terms. For each image and story
pair, we use image objects as the input and the
nouns in the corresponding human-written story as

Figure 2: From the stories in VIST training data, a story
is transformed into a golden storyline following the hu-
man reading direction, as part of the VIST graph.

the ground truth. The Transformer-GRU learns to
convert objects to nouns commonly used in stories.

3.2 Knowledge Graph Preparation
To collect interactive relations between nouns, we
prepare Visual Genome graph Gvg and VIST graph
Gvist . These graphs contain interlinked real-world
objects and terms, displaying visual and story-
telling interaction. Table 1 summarizes the statistic
of each graph.

Visual Genome Graph Gvg describes pairwise
relationships between objects in an image, describ-
ing visual interactions. No prepositional relations
are included; only verb relations are preserved. All
relations are converted into semantic verb frames
using Open-SESAME (Swayamdipta et al., 2017),
in which the semantic frames were pre-defined in
FrameNet (Baker et al., 1998).

VIST Graph we propose Gvist to collect the sto-
rytelling interactions. We develop this novel story
knowledge graph by converting references in the
VIST training and validation datasets (Huang et al.,
2016) to graphical data. Following the reading di-
rection, in each reference, we extract nouns and
semantic verb frames using SpaCy1 and Open-
SESAME to obtain noun–verb–noun (NVN) tu-
ples. Using nouns and semantic verb frames as
nodes and edges, these are collectively assembled
into a golden storyline. For example, for “first
pitcher thrown for the game” in Figure 2, we ex-
tract pitcher, game, and Cause motion, which is
a semantic verb frame for thrown, as a NVN tu-
ple. Additionally, we include a noun token <si>
as the transition point to the next sentence or ter-
mination point of a story, and a verb frame token
empty frame to interlink two nouns when a se-
mantic frame is absent. To conclude, all of the
golden storylines are assembled into Gvist .

1SpaCy: https://spacy.io/
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Nodes Relations Links
Gvg 3,323 564 22.31
Gvist 2,048 531 11.75
Gvg+vist 4,158 880 22.78

Table 1: The statistics of knowledge graphs. The ta-
ble shows the number of distinct nodes and relations
in each graph. It also shows the average link per node.
Note that the nodes and relations from Gvg and Gvist
have overlaps.

4 Stage 1: Story Plotting

4.1 Storyline Predictor
In Stage 1, PR-VIST uses a storyline predictor to
find what it deems the best path in the story graph
as the storyline and then pass this to Stage 2. For
the storyline predictor, we use UHop (Chen et al.,
2019), a non-exhaustive relation extraction frame-
work. A single hop is defined as searching from
one entity to another entity by a single relation.
UHop performs multiple single-hop classifications
consecutively in the graph to find the path repre-
senting the storyline, that is, a path that consists of
a sequence of nouns and verb frames.

Single-hop classification can described as Equa-
tion 1 and Figure 3. In step i, at the current head
entity hi, the model is given a list of candidate re-
lations ri ∈ Ri and tail entities ti ∈ Ti. Each ri is
in [verb.ti] or [verb.noun] format, containing infor-
mation for both the verb frame and the tail noun
entity. The scoring model F is given objects and
predicted relations r1, ..., ri−1 as input. The model
predicts a score for each ri and selects the highest
verb-noun pair ri from Q:

ri = argmax
q∈Q

F (objects, r1, ..., ri−1). (1)

Training UHop learns to find a path for the story-
line from the golden storyline. The training proce-
dure starts with an initial noun token entity <s0>
in the golden storyline for single-hop classification,
where h1 = <s0>. It learns to select the correct
relation ri from a list of candidate relations Ri in
Gvg and Gvist . Then, it calculates the error to the
noun and verb frame in the golden storyline for
backpropagation. In the next hop, the framework
proceeds to the next noun in the golden storyline
and repeats the single-hop classification.

Testing In PR-VIST’s testing step, for each story,
five images are transformed into a story graph

dog parkSelf_motion.park

owner

dinner
Possess.dinner

0.45 peopleFilling.people

0.63

lake

giraffes0.13

Self_motion.owner
0.21

0.34

Containing.lake
0.24

Containing.giraffes

Figure 3: Storyline pathfinding process. All entities
are from object or term list, and all relations are in
[verb.noun] format, which the verbs are verb frames
from knowledge graphs and the nouns are the tail en-
tities. The single-hop classification begins with dog.
The storyline predictor is given three candidate rela-
tions. The framework selects the highest score relation
and move on to the next entity park. Then, the single-
hop classification repeats.

Gstory . As demonstrated in Figure 1, we first ex-
tract the object and term story elements for each
story, and then link these together using the verb
frames in Gvist and Gvg as edges. This yields a well-
defined graph presenting a comprehensive view of
five images for each story—Gstory . Next, a trained
UHop finds a storyline in Gstory , where all entities
are only the objects and terms from the given five
images. The framework starts with <s0> to per-
form single-hop classification, where h1 = <s0>.
Unlike training, it only selects ri from Ri listed
in Gstory . In the next hop, the previous predicted
entities are used as the start entity: h0 = ti−1. It
then continues to hop from entity to entity until
it reaches the next token <s1>. The path from
<si-1> to <si> is called an event ei. The path
search from <si> to the next token <si+1> con-
tinues until the search is terminated by the termina-
tion decision described in UHop. Eventually, the
model finds a storyline of arbitrary length L, that
is, a storyline that contains any number of events:
e1, ..., eL.

4.2 Implementation Details

HR-BiLSTM (Yu et al., 2018) is adopted as the
scoring model F , in which objects are converted
to word embeddings via GloVe (Pennington et al.,
2014) as E(object). All relation embeddings E (r)
are decomposed into graphical embedding Egraph

and textual embedding Etext . Egraph transforms a
verb frame v and a tail entity’s image position pt

into a one-hot vector, denoting the graphical and
image positional information. Etext is composed
of the verb frame and tail entity word embedding.
Then, Egraph and Etext are concatenated into a uni-
fied representation E (r). We formulate the repre-
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sentation of relation r as

Egraph(r) = [1(v);1(pt)],

Etext(r) = [Ew(f);Ew(t)],

E (r) = [Egraph(r);Etext(r)],

(2)

where 1(·) returns the one-hot representation,
Ew(·) returns the word embeddings via GloVE,
and [;] denotes concatenation.

A verb frame and tail entity are combined into ri
due to relational ambiguity issues among candidate
relations. Using Figure 3 as an example, given
a head entity dog, candidates self motion.park
and self motion.owner represent different semantic
meanings when tail entities park and owner are in-
cluded. However, excluding tail entities results in
identical relation candidates self motion and thus
ambiguity between two different candidates.

5 Stage 2: Story Reworking

In story reworking, the framework consists of two
components: the story generator and the story eval-
uator. The story generator generates a story ac-
cording to the storyline, and the story evaluator—a
discriminator trained on the MTurk human ranking
data to classify good and bad stories—outputs a
story quality score and modifies the loss functions.

5.1 Story Generator
A storyline consists of a set of events e1...eL that
are input to the story generator, which is based on
the Transformer (Vaswani et al., 2017). Unlike
most VIST models, the story generator is dynamic:
the number of output sentences depends on the
number of events. To manage a diverse number of
events, the Transformer is designed as a sentence
generator that iteratively generates one sentence
per event until it generates L sentences. For each
step i, event ei and the previous predicted sentence
yi−1 are used to predict the next sentence yi. After
L steps, the story generator outputs a story s =
y1, ...yL.

5.2 Story Evaluator
Most VIST works use human evaluations to exam-
ine their work’s quality via crowdsourcing, compar-
ing their generated stories with the baseline stories.
In this paper, we use the first- and last-place stories
in the MTurk human ranking data as positive and
negative samples. The story evaluator, a discrim-
inator trained on the MTurk human ranking data,
learns to distinguish positive and negative samples.

It outputs a score for each story, and the scores are
converted into rewards, as shown below:

pLM (u|s) = softmax(tanh(WLM (s))+b), (3)

R(s) = −pLM (u|s) + c, (4)

where LM (·) is a GRU language model (Cho et al.,
2014), u = 1 indicates story s is a positive sample,
and u = 0 indicates s is a negative sample. Lan-
guage model pLM (·) returns a score from 0 to 1
to reflect story quality. The story evaluator R(·)
returns a reward, an inverse of pLM (·) with coef-
ficient c = 1.5. The reward later manipulates the
loss, optimizing toward human preference. Note
that the story evaluator is pre-trained.

5.3 Optimization with Story Evaluator
For optimization, the story generator uses sentence-
level and story-level loss functions. Given refer-
ence y∗1, ..., y

∗
L and predicted story y1, ..., yL, in

the maximum likelihood estimation (MLE) opti-
mization process, in each step from 1 to L, the
model predicts a sentence yi to calculate the loss
between yi and y∗i and then backpropagates, as
shown in Figure 4. After predicting L sentences,
in story-level optimization, the model predicts
y1, ..., yL to calculate the negative log-likelihood
to the reference y∗1, ..., y

∗
L and then backpropagates.

The sentence-level and story-level optimization by
MLE on dataset D are formulated as

JMLE
sen (θ,D) =

∑
Y ∈D
− log pθ(yi|ei, yi−1), (5)

JMLE
story (θ,D) =

∑
Y ∈D

1

L

L∑
i=1

− log pθ(y
′
i|ei, y′i−1),

(6)
where ei and yi denote the i-th event and the sen-
tence respectively, y′i represents the updated sen-
tence after sentence-level optimization, and θ repre-
sents the story generation model parameters, which
are updated using Adam (Kingma and Ba, 2015).

After training for 30 epochs 2, the story evaluater
begins to manipulate the story-level loss. Inspired
by reinforcement learning (Williams, 1992), which
utilizes rewards to guide the training process, we
use the story evaluator R(·) 3 to encourage the

2The generation model converges at around 20 epochs in
our experiment, and we give it extra 10 epochs for precautions.

3The pre-trained LM’s weights are frozen to stabilize the
training.
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yi-1
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Layer
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yiy1 yL... ...

... ...

predicted story

step 1 step i step L step L+1

Story Generator
reference

Emb

y1* yi yL* *

Figure 4: Optimization flowchart for story generator.
For steps 1 to L, the model is optimized using sentence-
level loss. In stepL+1, all sentences are generated, and
the model is optimized using story-level loss.

generation model to focus on stories preferred by
humans. The reward directly multiplies the story-
level loss as

Jreward
story (θ,D) =

{
JMLE
story if epoch ≤ 30
R(s)JMLE

story if 30 < epoch ≤ 60
. (7)

6 Experimental Results

6.1 Data Setups

We used four datasets in this paper: the VIST
dataset, Visual Genome, ROCStories, and MTurk
human ranking data. The VIST dataset and Vi-
sual Genome are used to construct the knowl-
edge graphs, and ROCStories (Mostafazadeh et al.,
2016) is a large quantity of pure textual stories
used for pre-training the story generator. The VIST
dataset is also used in story plotting to train the
storyline predictor and in story reworking to fine-
tune the story generator. Notably, we also col-
lected MTurk human ranking data to train the story
evaluator. We used the ranking results from KG-
Story4 (Hsu et al., 2020). This data contains two
experiments, each of which ontains 500 distinct
photo sequences. A photo sequence contains a set
of machine-generated stories ranked by 5 MTurk
workers. Thus we have 5000 rankings from MTurk
workers. Specifically, MTurk workers were asked
to rank AREL (Wang et al., 2018a), KG-Story, two
KG-Story ablation models, and reference stories,
using three different model settings in each experi-
ment. We selected the rank-1 and rank-5 stories as
positive and negative samples.

6.2 Baselines

We used several competitive baseline models.
AREL (Wang et al., 2018a) and GLAC (Kim

4Data obtained from the authors of KG-Story.

et al., 2018) are end-to-end models with reinforce-
ment learning and global-location attention mech-
anisms that achieved top ranks in the VIST Chal-
lenge (Mitchell et al., 2018). KG-Story (Hsu et al.,
2020), the current state-of-the-art framework, uti-
lizes a knowledge graph to enrich story contents
and generates stories using Transformer.

6.3 Evaluation Methods
Per the literature (Wang et al., 2018a), human eval-
uation is the most reliable way to evaluate the qual-
ity of visual stories; automatic metrics often do
not align faithfully to human judgment (Hsu et al.,
2019). Therefore, in this paper, we prioritize hu-
man evaluation over automatic evaluations.

Human Evaluation: Ranking Stories and Fill-
ing a Questionnaire We recruited crowd work-
ers from Amazon Mechanical Turk (MTurk) to
assess the quality of the generated stories. For each
experiment, we randomly selected 250 stories, each
of which was evaluated by five different workers
in the US. The experiment includes a comparison
study with three baseline models and three abla-
tion studies, and each annotator was compensated
$0.10 for each experiment. Workers were asked to
rank the stories (e.g., ours and those of the base-
line/ablation models) based on their overall quality.

In addition, the user interface also provides a
questionnaire to collect in-depth feedback from
MTurk workers. The questions include “What do
you like about the best stories” and “What do you
dislike about the worst stories” for workers to se-
lect aspects that affect overall story quality. These
aspects are provided by Huang et al. (2016): they
include focus, coherence, shareability, humanness,
grounding, and detail. We calculated the average
rank and the majority rank among five workers for
each story, as well as total votes for each model’s
best and worst aspects.

Non-Classic Automatic Evaluation: BLEURT,
voc-d, and MLTD Many VIST studies have
shown that classic automatic evaluation scores like
BLEU and METEOR correlate poorly with human
judgment (Hsu et al., 2020; Hu et al., 2019; Wang
et al., 2020; Li et al., 2020; Yang et al., 2019; Hsu
et al., 2019; Wang et al., 2018a; Modi and Parde,
2019). These n-gram matching metrics fail to ac-
count for the semantic similarity to the reference
stories and lexical richness in the generated stories.

Therefore, we adopted BLEURT (Sellam et al.,
2020), a state-of-the-art BERT-based evaluation
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AREL       : avg rank #3.6 
the parade started with a lot of people in the parade. there were a lot of people
there. there was a lot of people there. there were a lot of people there. there
were a lot of cars in the parade.
GLAC       : avg rank #2.4
the marathon was about to begin. there were many people there. it was a great
day. everyone was very excited. they were all very fast.
KG-Story       : avg rank #2.2
the parade started with a beautiful day. many people showed up. there were
runners. everyone was watching the parade. one woman stood in a car to get
everyone involved. it was a nice car.
PR-VIST       : avg rank #1.8
we went to see the parade. there was a band guard. many people showed up
to watch the parade runners. the runners started to gather in line. there were
many cars at the show. the family decided to walk around town.

Figure 5: Generated stories for PR-VIST and baseline
models. MTurk workers were asked to rank the stories.

metric, to further correlate generated stories and
reference stories based on their semantic meaning.
We also adopted lexical diversity metrics voc-d and
MLTD (McCarthy and Jarvis, 2010) to quantify
story lexical richness. Several works have shown
that lexical diversity is positive correlated to story
quality (Liu et al., 2019; Dai et al., 2017).

6.4 Results

In our experiments, the stories generated by PR-
VIST have an average of 5.96 sentences. 57.3% of
these stories contain at least one event (sentence)
that uses story elements extracted from two (or
more) images, showing PR-VIST’s ability to utilize
intra-image entities.

Human Evaluation We asked MTurk workers
to rank four stories: those of PR-VIST, the three
baseline models, and the state-of-the-art KG-story.
Table 2 shows the results. PR-VIST outperforms
other models in average ranking: it outranks AREL
by 0.24 and KG-Story by 0.16. As for the percent-
age of 1st-rank stories, PR-VIST produces 12.0%
more than AREL and 7.5% more than KG-Story.
Figure 5 shows a representative example. Com-
pared with end-to-end models (i.e., AREL and
GLAC), graph-based methods (i.e., KG-Story and
PR-VIST) generate more diverse stories. Com-
pared with KG-Story, whose sentences are rela-
tively simple and plain, generating sentences such
as “Many people showed up”, our model reuses en-
tities such as “parade” in the first sentence and as-
sociates relations with other entities, e.g., “people”
and “runners”, to compose “many people showed
up to watch the parade runners”.

Moreover, Figure 6 shows the questionnaire (see

Method 1st 2nd 3rd 4th Avg Major
AREL 20.6% (258) 26.8% 27.2% 25.4% 2.57 2.56
GLAC 21.7% (271) 24.2% 25.5% 28.6% 2.61 2.73
KG-Story 25.1% (314) 25.2% 25.7% 24.0% 2.49 2.53
PR-VIST 32.6% (407) 23.7% 21.7% 22.0% 2.33 2.28

Table 2: Human rankings between PR-VIST and three
methods. The first four columns indicate the percent-
age of worker rankings for each method, and the fifth
and the last column denote the average and majority
ranks (1 to 4, lower is better). PR-VIST outperforms
other models in average ranks (p<0.05, N=250), major-
ity ranks, and also the percentage of 1st-rank stories.

91
79

116

84
102

69

119

49

97

32

72
62

PR-VIST
KG-Story

Figure 6: Aspect-wise votes for PR-VIST and KG-
Story’s first-place stories collected via the question-
naire (see Section 6.3). PR-VIST outperforms drasti-
cally in coherence, humanness, and grounding.

Section 6.3) result for the best-ranked stories. For
PR-VIST and KG-Story’s best-ranked stories, the
PR-VIST story count is significantly higher in all
aspects; specifically, coherence, shareability, and
humanness are higher than other categories.

Automatic Evaluations Table 3 shows that the
proposed method outperforms all the baselines
in BLEURT,voc-d, and MLTD. Although n-gram-
based automatic metrics are known to correlate
poorly with human judgment in VIST (see Sec-
tion 6.3), it is still noteworthy that PR-VIST results
in significantly lower BLEU-4 scores. This might
be cause by the fact that PR-VIST uses knowledge
to enrich the story content and increase lexical di-
versity, but could lower the performance in n-gram
matching.

Method BLEU-4 METEOR BLEURT MLTD voc-d
AREL 14.4 35.4 0.52 22.45 0.53
GLAC 10.7 33.7 0.71 32.87 0.67
KG-Story 9.93 32.2 0.72 40.52 0.71
PR-VIST 7.65 31.6 1.37 45.79 0.73

Table 3: The first two columns show the results of
classic n-gram based metrics. The third column shows
BLEURT, a BERT-based metric. The last two columns
show the lexical diversity evaluation results (MLTD
and voc-d). High lexical diversity corresponds to low
scores for n-gram metrics.
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7 Ablation Study

Three factors contribute to PR-VIST’s superior per-
formance: story elements, knowledge graphs, and
plot reworking. To evaluate the effectiveness of
each factor in our framework, we conducted three
ablation studies using human evaluations. The eval-
uation results are shown in Table 4. All three exper-
iments use the same qualitative analysis, and each
experiment ranks PR-VIST and two settings with
certain components removed.

Story Elements PR-VIST is compared to two
models, each of which uses only objects or terms
for the storyline predictor to plot storylines.

Knowledge Graphs PR-VIST is compared to
two models, each of which uses only Gvist or Gvg
for the storyline predictor to plot storylines.

Plot and Rework PR-VIST is compared to two
models: one without reworking and one without
plotting or reworking. Without-reworking means
the discriminator is removed, that is, the story gen-
erator uses Equation 6 for all epochs. Without-
plotting-reworking means that the storyline pre-
dictor is additionally removed, so no frames are
included; terms are used directly as the story gen-
erator’s input.

Table 4 shows that PR-VIST outperforms all the
ablation models. Furthermore, the first and sec-
ond experiments show that MTurkers prefer story-
like storylines to image-like storylines. That is,
terms and Gvist are better than objects and Gvg . For
the third experiment, we note a steady improve-
ment from without-plotting-reworking to PR-VIST,
showing the effectiveness of the proposed method.
An example is shown in Figure 7. The model can-
not manage the abundant story elements without
the guidance of story plotting. Comparing PR-
VIST with PR-VIST w/o R, we see that reworking
revises and enlivens (e.g., “[organization] in [loca-
tion]”) the stories.

8 Discussion

To understand areas for improvement, in the hu-
man ranking evaluation, we asked crowd workers
to select the aspect (out of six) they disliked about
the worst story (see Section 6.3.) Of the negative
votes, 24.6% were for “grounding.” Namely, lower-
ranked stories are often not visually grounded. We
examined the outputs and found that Faster-RCNN

objects terms Gvg Gvist Plot Rework Avg Major
X X X X X X 1.89 1.87

1 X X X X X 1.98 2.00
X X X X X 2.12 2.13
X X X X X X 1.97 1.94

2 X X X X X 1.98 1.99
X X X X X 2.00 2.06
X X X X X X 1.95 1.93

3 X X X X X 2.00 2.02
X X X X 2.03 2.08

Table 4: Human evaluation results for ablation studies:
1. Story elements 2. Knowledge graph 3. Plot and Re-
work. PR-VIST outperforms in all ablation settings, in-
dicating the importance of using all components.

PR-VIST: we visited the [organization] in [location]. 
everyone gathered in the [organization] room to 
celebrate.

PR-VIST w/o R: i visited [organization] [location]. 
everyone gathered in the [organization] room. 

PR-VIST w/o PR: today was the first place i saw a 
man sign for our trip to [location] [organization]. 
everyone was in his room at [organization] house.

Figure 7: Snippet of stories generated by the proposed
method and two configurations: without reworking (R)
and without plotting or reworking (PR). Nouns and
verb frames are denoted in blue and red. Reworked
parts are marked with wavy underlines.

in Stage 1 sometimes predicts objects that are in-
accurate but semantically related to the context.
Figure 8 shows a typical example, where the soccer
ball is identified as a frisbee, which is incorrect but
still fits the “sports” theme. When the storyline
predictor is unable to distinguish such mistaken
objects from appropriate objects, grounding errors
occur. A better object detector would mitigate this
problem, or we could jointly optimize plotting and
generation, for instance by including reworking
within storyline plotting.

9 Conclusion

We propose a novel story plotting and reworking
framework to mimic the human story-writing pro-
cess. To the best of our knowledge, no study has in-
tegrated knowledge graph and story plotting to uti-
lize visual elements in VIST. Also novel is our ap-
proximation of human-preferred stories by reusing
and aggregating story generation using the results
of human-annotated story ranking evaluations, e.g.,
human evaluation results from MTurk. We also
propose a novel questionnaire embedded in the
comparative study to collect detailed, meaningful
human-annotated data from MTurk. Experiments
attest PR-VIST’s strong performance in diversity,
coherence, and humanness.
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predicted 
event field soccer

Self_motion
male frisbee

Cause_motion

generated
story

they walked down the field to 
play soccer.

 [male] threw the frisbee too hard.

Figure 8: PR-VIST grounding error

10 Ethical Considerations

Although our research aims to produce short sto-
ries that are vivid, engaging, and innocent, we are
aware of the possibilities of utilizing a similar ap-
proach to generate inappropriate text (e.g., violent,
racial, or gender-insensitive stories). The proposed
visual storytelling technology enables people to
generate stories rapidly based on photo sequences
at scale, which could also be used with malicious
intent, for example, to concoct fake stories using
real images. Finally, as the proposed methods use
external knowledge graphs, they reflect the issues,
risks, and biases of such information sources. Miti-
gating these potential risks will require continued
research.
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