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Abstract

We introduce a novel dataset of human judg-
ments of machine-edited text and initial mod-
els of those perceptions. Six machine-editing
methods ranging from character swapping to
variational autoencoders are applied to collec-
tions of English-language social media text
and scientific abstracts. The edits are judged
in context for detectability and the extent to
which they preserve the meaning of the orig-
inal. Automated measures of semantic similar-
ity and fluency are evaluated individually and
combined to produce composite models of hu-
man perception. Both meaning preservation
and detectability are predicted within 6% of
the upper bound of human consensus labeling.

1 Introduction

Machine-editing systems produce new versions of
text using text as input. They contribute to tasks
such as automatic summarization, simplification,
natural language generation and generative adver-
sarial NLP systems. These tasks have communica-
tive goals, for example shorter, more accessible,
or more appropriate text, and system developers
are encouraged to improve their correlation with
human performance on these tasks. While the mea-
sured task performance of machine-editing systems
continues to improve, one might consider how hu-
mans perceive machine-edited text compared to
human-produced text. One-off human evaluation
of editing systems is expensive, incomparable, and
must be constantly repeated. In this work we make
first attempts at direct, general-purpose modeling
of human perception of these texts and develop
a model of human perception as it relates to two
goals: to maximally maintain the meaning of an
original and be minimally perceptible as machine
output.

Approved for Public Release; Distribution Unlim-
ited. Public Release Case Number 21-0320. ©2021 The
MITRE Corporation. ALL RIGHTS RESERVED.

We present a dataset of human judgments
about detectability and meaning preservation for
machine-edited text.1 This dataset consists of
14,400 judgments about contextualized pairs of
machine-edited sentences. The original texts are
English-language and come from two domains: sci-
entific papers and social media. The edits are cre-
ated by six different algorithms using a variety of
techniques. By comparing trivial editors to more
subtle approaches under the same evaluation frame-
work, we move toward generic models of percep-
tion of edited text.

Our analysis finds high interannotator agreement
and examines human preference among the six ma-
chine editors that generated the candidates. Exist-
ing measures of similarity and fluency are evaluated
as models of perception. We find that reference-
informed models come close to human consensus
of meaning preservation and detectability. How-
ever, language models that don’t have access to the
reference text have less success as generic models
of detection. This dataset and analysis constitute
a step toward modeling meaning preservation and
detectability under a variety of machine-editing
conditions representative of the state of the prac-
tice.

2 Background

Machine editing is a component of multiple tasks
that balance meaning preservation and fluency dif-
ferently.

2.1 Machine-Editing Tasks

Text simplification (Saggion, 2017) and summariza-
tion (Narayan et al., 2018) produce new versions
of text that are simpler or shorter, intended to be
useful to a human reader. Evaluation measures in-
formativeness relative to a reference. Abstractive
techniques that fully rewrite the text have recently

1https://github.com/mitre/hpmet

https://github.com/mitre/hpmet
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become viable alternatives to extractive techniques
that build new texts from portions of the original
text.

Paraphrase generation is the task of producing
semantically equivalent variants of a sentence and
can underlie applications like question answering
and data augmentation. Recent approaches include
a component that generates alternatives and a com-
ponent that estimates their quality as paraphrase (Li
et al., 2018; Kumar et al., 2020).

Natural language watermarking of text (Venu-
gopal et al., 2011) and text steganography (Wilson
et al., 2014) are conditional text generation prac-
tices that require both a meaningful surface form
and the hidden encoding of additional information.
In this case, it’s essential that the text appear plau-
sible as readers should not suspect the encoded
information (Wilson et al., 2015).

Edited texts are used in adversarial learning and
attacks for text processing systems. Adversarial in-
puts change a system output without altering some
relevant aspect of human perception of the text,
e.g. sentiment when attacking a sentiment analysis
system (Alzantot et al., 2018). In cases of adver-
sarial learning, where edited texts are used only to
promote system robustness, human perception is
not a concern (Jia and Liang, 2017). In contrast,
adversarial attack vectors rely on human perception
of the attack, whether it be communicating mean-
ing regardless of detectability (Eger et al., 2019) or
guaranteeing fluency (Zhang et al., 2019a). While
authors have quantified the effect of adversarial
perturbations on metrics of text quality like word
modification rate and count of grammatical errors
(Zeng et al., 2020), the relation of these automatic
metrics to human perception is not yet studied.

2.2 Meaning Preservation

Machine editing often aims to guarantee semantic
similarity or meaning preservation between input
and output. Meaning preservation can be insen-
sitive to surface forms such as tokenization, case-
folding, stylistic variation in punctuation, spacing,
font choice, and tense. Compact text represen-
tations (e.g. Morse code) tend to regularize all
potential surface forms.

Semantic textual similarity and paraphrase iden-
tification are active areas of investigation in the
NLP community (Cer et al., 2017). Natural lan-
guage inference (NLI) also relies on notions of
semantic similarity to recognize a larger set of rela-

tions between texts (Bowman et al., 2015). These
subfields of NLP investigate semantic relatedness
between human-authored texts.

Meaning preservation is related to the concept of
informativeness used in automatic summarization
and adequacy for machine translation. Summariza-
tion metrics tend to lean toward recall to make sure
the central concepts of reference summaries are
produced and MT metrics tend to lean toward pre-
cision to penalize systems that generate something
outside of the references.

Many adversarial text editors don’t require strict
paraphrase, but simply that their perturbations not
change the input’s classification to a human reader
(Ren et al., 2019; Lei et al., 2019; Alzantot et al.,
2018; Ebrahimi et al., 2018). Other authors ask
judges about similarity to the unperturbed original
(Zhao et al., 2018; Alzantot et al., 2018; Ribeiro
et al., 2018; Jin et al., 2020). New work correlates
automatic metrics with human judgments capturing
both semantic similarity and fluency about three
word- and character-swapping algorithms (Michel
et al., 2019).

2.3 Detectability

Language models were introduced early in both au-
tomatic speech recognition (Bahl et al., 1983) and
statistical machine translation (Brown et al., 1990)
to make output text more readable. They aimed
to avoid decoding results that appeared computer-
generated.

Recent work in several natural language gener-
ation tasks augments automatic evaluation, which
approximates informativeness, with one-off human
evaluations that estimate text quality. Authors elicit
judgment for abstractive summaries about readabil-
ity (Paulus et al., 2018), fluency (Hardy and Vla-
chos, 2018), and preference between human and
machine-written abstracts (Fan et al., 2018). Desai
et al. (2020) elicit human judgements of grammati-
cality for a compressive summarization system that
deletes plausible spans. In image captioning and
dialogue systems, several learned metrics judge
system output to be higher quality when it is less
distinguishable from human text (Cui et al., 2018;
Lowe et al., 2017)

Several methods of generating adversarial text
have been evaluated through surveys of human per-
ception, for example by asking humans to detect
the location of machine edits (Liang et al., 2018),
or to judge the likelihood that a sentence is mod-
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arxiv reddit
item count 7200 7200

total sentence lengths 177 078 140 453
mean length 24.7 19.5

mean context length 96.8 265.9

Table 1: Dataset size in words.

ified by a machine (Ren et al., 2019) or written
by a human (Lei et al., 2019). Other authors ask
human annotators about proxies like grammatical-
ity (Jin et al., 2020), fluency (Zhang et al., 2019b)
or readability (Hsieh et al., 2019) as a proxy for
detectability.

Far more work asks whether computers can de-
tect machine-edited text. Research on text gen-
erated with large language models finds that the
output is easy to detect automatically because of
the probabilities of the particular language model
itself (Adelani et al., 2020; Gehrmann et al., 2019;
Zellers et al., 2019). In fact, the generation setting
that best fools humans produces output that is easy
to detect automatically (Ippolito et al., 2020). This
suggests human perception of such edits is different
from machine detection.

Detectability and meaning preservation are not
independent variables, but they represent different
aspects of human perception. Destroying the flu-
ency of a text can make it detectable as an edit in
a high quality research document, but rewriting a
section of chat in standard English can make it de-
tectable in context. One can often transpose digits
in scientific measurements to indetectably destroy
meaning, and one could rewrite an abstract in ran-
domized case patterns to raise suspicion without
altering meaning.

3 Methods

3.1 Dataset Construction

We present a dataset of human judgments about two
tasks, meaning preservation and detection, in each
of two domains, social media and science writing.
For each task and domain, we distributed packets of
600 multiple-choice questions to six judges. Each
question was an AB test for a pair of editing sys-
tems both operating on a sentence in context. The
first 105 questions of each packet were the same for
all judges and are used to measure interannotator
agreement. The remaining 495 sentences were the
same, but the pairs of systems compared by judges
varied. The judges were all native English speakers
who work in AI research and were unfamiliar with

Which better preserves the meaning of the reference?

Reference: Later on that day I emailed the company that I
purchased my order from and they confirmed it was deliv-
ered to that address.
A. Later that day I emailed the company I bought my order,
and they confirmed that was delivered to that address.
B. Later in that time i received the website and i sent my
email from what it said it was delivered for customer ad-
dress.

Location: Florida I didn’t know what to flair. About a
month ago a package I ordered was delivered to my old
apartment complex. When I went to the front office to ask
if a package with my name was turned in they said no such
thing had occurred. I don’t know how to move
forward from this.

Which sentence reads more like it was altered by a ma-
chine?

A. When thi applied voltage is ifcreased to a few mV we
find a strong declease of the spin injection efficiency.
B. While the required voltage is required to a tunnel voltage
to obtain a lower amount of the joule injection injection.

Semiconductor spintronics will need to control spin in-
jection phenomena in the non-linear regime. In order
to study these effects we have performed spin injec-
tion measurements from a dilute magnetic semiconductor
[(Zn,Be,Mn)Se] into nonmagnetic (Zn,Be)Se at elevated
bias. The observed behavior is modelled by ex-
tending the charge-imbalance model for spin injection to
include band bending and charge accumulation at the in-
terface of the two compounds. We find that the observed
effects can be attributed to repopulation of the minority spin
level in the magnetic semiconductor.

Figure 1: Sample prompts from the meaning preser-
vation task on Reddit (top) and the detection task on
ArXiv (bottom.)

the processes used to edit the original text.
Source sentences for the ArXiv dataset were ran-

domly selected from all sentences in ArXiv ab-
stracts submitted between its start in 1991 and the
end of January, 2018. The Reddit sentences were
randomly selected from all sentences in Reddit
posts made in January, 2018. The two source col-
lections were roughly the same size. Sentences
less than 10 tokens or longer than 40 tokens were
avoided in both collections to ensure judge produc-
tivity. To satisfy IRB and to minimize the likeli-
hood of negative effects on judges, we excluded
all posts from the subreddits listed on the official
nsfw list, and any that were no longer reachable by
September 2019. Table 1 describes statistics about
the sentences selected for editing and the contexts
provided for judges.

The meaning preservation task involved AB
judgments on six different editing systems. For
the detection task, we included the original texts
among the edited variants for a total of seven sys-
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tems. We refer to this as the null editor. An
all-pairs design of six systems requires 15 pairs
and an all-pairs design of seven systems requires
21 pairs. Both designs were iterated to yield 600
pairs of system variants, truncating the final seven
system pattern early. The first 105 example editing
pairs (seven full all-pairs sets for meaning and five
for detection) were identical for all judges and the
remaining 495 in each packet were chosen from
the possible pairs according to independent permu-
tations to encourage balance.

This can be described again for more clar-
ity. C(6, 2) = 15 (meaning preservation) and
C(7, 2) = 21 (detectability). 600 examples lines
up perfectly with a 15-item boundary but not with
a 210 item boundary. Thus, there are 12 examples
left over from a complete set of all-pairs of 7 sys-
tems in detectability when truncating to 600 items
per source per judge. The first 105 system pair
assignments come from 7 cycles through C(6, 2)
pairs or 5 cycles through C(7, 2). The remain-
ing sequences of pairs for each judge are all-pairs
cycles through independently randomized permu-
tations of the systems. Machine edit assignment
to positions A and B were independently shuffled
for each judge and the questions were presented to
each judge in randomly shuffled order. Judges were
instructed to choose between the two alternatives.

Each item was presented as a choice between
two edited versions of the same sentence, presented
with the rest of the Reddit post or ArXiv abstract as
context. Figure 1 shows examples and the specific
prompts used to elicit judgments. In the mean-
ing preservation example, the candidates were pro-
duced by round-trip machine translation and the
VAE. In the detection example, the candidates were
produced by charswap and the VAE. Cases where
detection paired the null system against a ma-
chine editor were collected to determine how often
each editor was preferred to the original.

Less than half of one percent of detectability
items are automatically marked as ties. These in-
clude cases where the edited text is the same string
as the original, disregarding casing and punctua-
tion, or where the VIPER editor (described below)
produced an alternative that rendered identically
in packets. These are included in the analysis to
capture the intuition that a perceptual model should
score ties the same.

3.2 Machine-Editing Systems

We employ six editing systems to capture the ef-
fect that varied systems have on human perception.
Each takes just the sentence to be edited, without
context.

3.2.1 Swapping editors

Simple word- and character-swapping editors are
prevalent in literature about adversarial attacks and
data augmentation (Michel et al., 2019). Our char-
swap editor is inspired by several works in adver-
sarial NLP that examine character swapping as a
minimal change to text inputs that can degrade
system performance (Belinkov and Bisk, 2018;
Ebrahimi et al., 2018). Our implementation ran-
domly swaps 1 to 3 lower-case ASCII characters
per input for other ASCII characters, selecting the
least likely of 100 alternatives under the GPT-2
language model (Radford et al., 2019).

VIPER is a character-swapping algorithm in-
formed by visual closeness, inspired by a common
strategy used to avoid keyword filters, for example
in online forums Eger et al. (2019). The VIPER al-
gorithm replaces random characters with their near-
est neighbors among embeddings based on their
glyph e.g. l→1 and 0→O. We further bias the open
source implementation toward visual closeness by
randomly swapping between 1 and 3 characters,
with the probability of each swap weighted by its
visual similarity.

The AddCos system uses word embedding dis-
tance to replace a single word with a paraphrase.
The algorithm is adapted from a machine trans-
lation metric that measures the fit of words that
are not in a reference, using the cosine similarity
of the proposed replacement and the sum of vec-
tors for sentence context (Apidianaki et al., 2018).
We adapt the open source implementation as a
machine editor, obtaining candidate replacements
from the Penn Paraphrase Database (Ganitkevitch
et al., 2013) and selecting the one best replacement.

3.2.2 Rewriting editors

Machine translation (MT) has recently become reli-
able and on-par with human translation capabilities
in some cases (Bojar et al., 2018). We utilized
round trip MT (from source English text to an-
other language and then back) as a type of text
editor. Three of the authors performed a blind as-
sessment of approximately one hundred candidate
languages available from an online MT provider
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and determined that en → pt → en is a high-
quality round trip route.

A variational autoencoder (VAE) learns a se-
mantically meaningful latent space. We use an
implementation2 based on the model of Zhang et al.
(2017) to train a VAE for each domain with 200,000
sequences of up to 40 tokens. Edits are obtained by
encoding an original sentence and sampling from
the latent distribution.

Syntactically controlled paraphrase net-
works (SCPNs) encode sentences and decode
them according to a target constituency parse
(Iyyer et al., 2018). Unlike swapping editors,
this system introduces syntactic variation. Using
the open source code and default templates, we
generate ten paraphrases per sentence. We select
the paraphrase with the best GPT-2 language
model score.

3.3 Modeling Human Perception

We evaluate a set of automatic metrics as models
of human perception. To test a metric as a model
of the collected judgments, the metric scores each
edited sentence and chooses the item in the pair
with the better score. The choice is compared to
the judge’s preference.

In addition, we learn a combination system that
scores sentences by weighting each component
metric. One combination is learned for each task,
using the data from both domains. The data is split
into a training set of 80% used for fitting the com-
bination, a validation set of 10% and a final test
set of 10% of examples. For items repeated among
judges, all six instances are assigned to the same
partition.

Our objective function, maximizing agreement
on AB tests, is neither continuous, smooth, nor
particularly amenable to a logistic transform. We
search for our mixture parameters using the Dlib
MaxLIPO+TR Lipschitz function and trust region
search algorithm (King, 2009). The model is op-
timized to minimize the errors in the training set
with an L1 regularization term. A best combina-
tion is selected using forward feature selection and
validation set accuracy.

4 Experiments

We examine text similarity and fluency metrics that
originate from several tasks in NLP as possible

2https://github.com/mitre/tmnt

models of human perception. We first present the
portfolio of metrics we use.

4.1 Measures of Meaning Preservation
Levenshtein edit distance measures the mini-
mum number of character operations needed to
change one string into another (Levenshtein, 1966).
We compute both the classical Levenshtein distance
over character edits and word edits (WER).

NLP Task Metrics. We evaluated several met-
rics used to measure the quality of NLP system out-
put compared to a human reference for tasks includ-
ing machine translation, summarization, and image
captioning. BLEU is a machine translation evalua-
tion method based on word n-gram precision, with
a brevity penalty (Papineni et al., 2002). The ME-
TEOR metric uses stemming and WordNet synsets
to characterize acceptable synonymy in transla-
tion (Banerjee and Lavie, 2005). CIDEr also uses
stemming and incorporates importance weighting
for ngrams based on corpus frequency (Vedan-
tam et al., 2015). The ROUGE-L metric, used in
summarization and image captioning, is based on
longest common subsequence between a reference
and hypothesis (Lin, 2004). ChrF and variants
like chrF++ compare bags of character and ngram
substrings to capture sub-word similarity without
language-specific resources (Popović, 2016, 2017).
The BEER metric is trained to correlate with hu-
man judgment at a sentence level using features
like character n-grams and permutation trees that
are less sparse at that level (Stanojević and Sima’an,
2014).

Neural Network-based Similarities. Recent
work uses trained, neural-network vector represen-
tations to quantify semantic similarity. We experi-
ment with three based on BERT, a neural network
trained on Wikipedia and the Google Books Cor-
pus (Devlin et al., 2019). BERTScore computes
an F1-based similarity score between the contex-
tual embeddings for subword tokens in a candi-
date and reference sentence (Zhang et al., 2020).
The metric can also be computed as RoBERTaS-
core using weights from RoBERTa pretraining
(Liu et al., 2019). BLEURT fine tunes BERT to
predict sentence-level machine translation quality
scores (Sellam et al., 2020). Sentence-BERT mea-
sures similarity using a model finetuned with a
paraphrase objective to create semantically mean-
ingful sentence vectors that can be directly com-
pared (Reimers and Gurevych, 2019).

https://github.com/mitre/tmnt
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detect meaning preferred
system arxiv reddit arxiv reddit arxiv reddit
addcos 0.60 0.48 0.74 0.64 0.04 0.03

mt 0.55 0.59 0.55 0.57 0.21 0.10
viper 0.54 0.56 0.79 0.88 0.00 0.01

charswap 0.46 0.46 0.67 0.67 0.01 0.01
scpn 0.21 0.35 0.17 0.18 0.02 0.06
vae 0.20 0.11 0.07 0.06 0.08 0.02

Table 2: Probability that system wins in A/B test or is
preferred to original. Rows are sorted by first column.

4.2 Measures of Detectability

Detectability is a property of text in context, with-
out regard for a reference. We evaluate language
model scores, which measure fluency, as proxies
for detectability.

We evaluate a Kneser-Ney 5-gram language
model trained on a full English Wikipedia
dump (Wikipedia contributors, 2020) with
KenLM (Heafield, 2011). We estimate the model
using modified Kneser-Ney smoothing without
pruning. We also evaluate the language model
score given by GPT-2, a large neural transformer-
based language model trained on 8 million web
pages (Radford et al., 2019). We use the technique
described in Salazar et al. (2020) to obtain a BERT
Masked Language Model (MLM) that accounts
for the model’s self-attention. We compute each
language model score under two conditions:
using only the edited sentence, and including
one sentence before and after the edited sentence
(+context).

Predictions from BERT’s Next Sentence Pre-
diction (NSP) task estimate the likelihood for a
sequence of sentences. This classifier is trained to
discriminate sequences of two sentences found in
the pretraining corpus from sequences drawn using
negative sampling (Devlin et al., 2019).

5 Results

Table 2 illustrates the relative success of the
machine-editing systems. Success is measured us-
ing the number of A/B tests where an edit by the
system was selected (for meaning) or the other item
selected (for detectability), divided by the num-
ber of prompts involving the editor. Preference
refers to only the portion of the detectability dataset
where the edited text is compared to the original.
The swapping algorithms are most often chosen as
preserving meaning. The visual perturbations of
VIPER have little effect on perception of meaning.
The preference for these editors is not as strong on

detectability items. For both tasks, the round-trip
machine translation model is preferred in slightly
over half of comparisons, while the VAE and SCPN
perform quite poorly. One substantial difference
in these conditional generation algorithms may be
that MT is trained on web-scale data, while the
others are trained in-house with relatively small
datasets.

Among detectability items, human judges prefer
an edited version over the original (null system)
4.9% of the time, 101 of 2054 relevant judgments.
These prompts most commonly include the round
trip machine translation editor, but all editing sys-
tems were preferred over the original at least once.
Round-trip machine translation is picked over the
original reference 20% of the time in ArXiv and
10% of the time in Reddit, suggesting that these out-
puts are more fluent or more typical for the domain
than the original. For these items, the character
swapping algorithms are most detectable.

5.1 Annotator Consistency

One hundred five prompts per task were presented
to all judges to measure interannotator agreement.
As judgments are made between constructed, ran-
domized flips and pairwise tests, we compare to the
raw prior of 50% agreement. For ArXiv, the prob-
ability of agreement among pairs of judges was
82.2% for meaning and 75.6% for detection. For
Reddit, the probabilities were 86.7% and 75.9%
respectively. The lower interannotator agreement
in the science and technology domain may reflect
lower familiarity with the subjects of the abstracts.

A consensus vote is determined by a plurality of
the six judges, or randomly in cases of ties. The
probability of agreement of a random judge with
the consensus is reported in Table 3 as an upper
bound for the performance of automatic systems.

5.2 Correspondence of Metrics with Human
Judgment

Table 3 shows the correspondence of the best met-
rics with the 630 multiply-annotated prompts and
includes the upper bound of human consensus. The
table shows only metrics with accuracy within five
items of the best. Table 4 shows agreement with
the entire dataset and over the full set of systems
tested. The meaning metrics are also evaluated as
measures of detectability. At editing time, they can
be used to estimate the detectability of a candidate
edit. However, they are not practical as generic
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detect meaning tot
arxiv reddit tot arxiv reddit tot

annotator consensus upper bound 0.838 0.848 0.843 0.884 0.917 0.900 0.871
max per source 0.781 0.794 0.788 0.843 0.870 0.857 0.822

RoBERTaScore/R 0.765 0.781 0.773 0.837 0.870 0.853 0.813
chrF 0.759 0.784 0.772 0.841 0.830 0.835 0.803

chrF/R 0.759 0.781 0.770 0.835 0.830 0.833 0.801
chrf++ 0.759 0.787 0.773 0.824 0.830 0.827 0.800
BEER 0.733 0.787 0.760 0.808 0.863 0.836 0.798

METEOR 0.775 0.778 0.776 0.843 0.792 0.818 0.797
BERTScore/R 0.775 0.765 0.770 0.830 0.813 0.821 0.795
BERTScore/F 0.775 0.775 0.775 0.811 0.806 0.808 0.792

CIDEr 0.759 0.787 0.773 0.824 0.781 0.802 0.788
RoBERTaScore/F 0.762 0.794 0.778 0.795 0.781 0.788 0.783

BERTScore/P 0.781 0.756 0.768 0.798 0.768 0.783 0.776
RoBERTa MLM 0.683 0.673 0.678

RoBERTa MLM +context 0.663 0.676 0.669
GPT-2 +context 0.654 0.679 0.667

Table 3: Probability of agreement of metrics with sets of 630 multiply-annotated human judgments. Consensus is
an upper bound. Results differing from the best by five items or fewer are shown in bold.

detect meaning tot
arxiv reddit tot arxiv reddit tot

max per source 0.788 0.790 0.789 0.845 0.841 0.843 0.816
RoBERTaScore/R 0.781 0.773 0.777 0.826 0.835 0.831 0.804

chrF 0.763 0.754 0.758 0.832 0.840 0.836 0.797
BERTScore/R 0.773 0.758 0.766 0.845 0.813 0.829 0.797

chrF++ 0.763 0.758 0.760 0.823 0.841 0.832 0.796
chrF/R 0.762 0.751 0.756 0.830 0.838 0.834 0.795

BERTscore/F 0.773 0.765 0.769 0.839 0.804 0.822 0.795
chrF++/P 0.763 0.764 0.764 0.815 0.833 0.824 0.794
ROUGE 0.775 0.763 0.769 0.825 0.813 0.819 0.794

chrF++/R 0.760 0.754 0.757 0.821 0.838 0.829 0.793
BLEU 0.765 0.765 0.765 0.817 0.824 0.821 0.793
chrF/P 0.767 0.765 0.766 0.814 0.826 0.820 0.793
BEER 0.753 0.758 0.756 0.810 0.841 0.826 0.791

Sentence-BERT 0.763 0.770 0.766 0.813 0.821 0.817 0.791
METEOR 0.779 0.766 0.772 0.828 0.791 0.809 0.790

edit distance 0.755 0.745 0.750 0.815 0.840 0.827 0.788
word error rate 0.766 0.757 0.762 0.810 0.817 0.814 0.788
BERTScore/P 0.775 0.766 0.770 0.822 0.779 0.800 0.785

CIDEr 0.769 0.758 0.764 0.817 0.793 0.805 0.784
RoBERTaScore/F 0.788 0.790 0.789 0.792 0.767 0.780 0.784

BLEURT 0.746 0.746 0.746 0.788 0.751 0.770 0.758
RoBERTaScore/P 0.773 0.781 0.777 0.730 0.700 0.715 0.746

RoBERTa MLM +context 0.663 0.712 0.688
RoBERTa MLM 0.642 0.700 0.671
GPT-2 +context 0.644 0.685 0.665

BERT NSP logit0(si−1, si) 0.672 0.650 0.661
BERT NSP logit1(si−1, si) 0.676 0.639 0.657

BERT NSP p(si−1, si) 0.666 0.640 0.653
BERT NSP p(si−1, si)p(si, si+1) 0.651 0.636 0.643

BERT NSP logit0(si, si+1) 0.652 0.631 0.641
BERT NSP logit1(si, si+1) 0.654 0.628 0.641

BERT MLM +context 0.640 0.638 0.639
BERT NSP p(si, si+1) 0.631 0.626 0.629

BERT MLM 0.617 0.627 0.622
GPT-2 0.586 0.642 0.614

KenLM 0.565 0.568 0.567

Table 4: Probability of agreement of metrics with 3600 human judgments. Results differing from the best by five
items or fewer are shown in bold.
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arxiv reddit mean
metric accuracy F1 accuracy F1 accuracy F1

max per source 0.902 0.252 0.895 0.229 0.899 0.241
RoBERTa MLM 0.870 0.231 0.862 0.220 0.866 0.226
GPT-2 +context 0.902 0.252 0.874 0.168 0.888 0.210

BERT MLM +context 0.867 0.243 0.802 0.158 0.835 0.201
BERT MLM 0.849 0.236 0.799 0.156 0.824 0.196

KenLM 0.767 0.216 0.691 0.150 0.729 0.183
GPT-2 0.806 0.213 0.812 0.150 0.809 0.181

BERT NSP p(si, si+1) 0.828 0.234 0.764 0.123 0.796 0.178
BERT NSP logit0(si, si+1) 0.749 0.194 0.722 0.112 0.736 0.153
BERT NSP logit1(si, si+1) 0.754 0.202 0.714 0.104 0.734 0.153

RoBERTa MLM +context 0.862 0.078 0.895 0.229 0.879 0.153
BERT NSP p(si−1, si)p(si, si+1) 0.793 0.196 0.714 0.104 0.754 0.150

BERT NSP p(si−1, si) 0.853 0.209 0.763 0.083 0.808 0.146
BERT NSP logit1(si−1, si) 0.762 0.164 0.718 0.088 0.740 0.126
BERT NSP logit0(si−1, si) 0.749 0.151 0.735 0.087 0.742 0.119

baseline 0.941 0.000 0.961 0.000 0.951 0.000

Table 5: Performance predicting which edits humans prefer over originals.

train dev test
meaning

combo 0.857 0.844 0.830
ChrF 0.839 0.831 0.785

detect
combo 0.689 0.752 0.724

RoBERTa MLM +context 0.678 0.731 0.687

Table 6: Combo performance results.

σ|w| w component
0.25 0.999 edit distance
0.15 0.912 BERTScore/R
0.013 0.0871 Sentence-Bert
0.0044 0.0307 BERTScore/P
0.0035 0.0046 BLEURT
0.0018 0.0354 RoBERTaScore/R
0.0012 0.0265 RoBERTaScore/F

m
ea

ni
ng

0.0012 0.0263 RoBERTaScore/P
0.83 0.0161 RoBERTa MLM +context
0.13 0.577 BERT NSP p(si, si+1)
0.11 0.462 BERT NSP p(si−1, si)

de
te

ct

0.0069 0.0106 GPT-2 +context

Table 7: Components in the detect and meaning combo
systems ranked by influence (σ|w|).

detection models sniffing out machine edits in the
wild where no original is available.

Several automatic metrics show good correspon-
dence with meaning. The best systems include
large, neural models intended to capture subtle syn-
onymy as well as simple metrics like chrF. In gen-
eral, the recall component of BERTScore-based
metrics correlates better than the precision com-
ponent. Though the BLEURT metric is trained
to predict human judgements of translation qual-
ity, it seems a poor fit for perceptions of meaning
preservation in our dataset.

Applied to the detection task, the reference-

informed metrics also approach the upper bound
of human consensus. Using RoBERTaScore as
a single model of both meaning preservation and
detectability reaches over 81% agreement with con-
sensus.

The language model metrics fall behind in perfor-
mance on detection but still perform well above the
level of chance. We find that including additional
context improves performance for the same system
and the large, neural models greatly outperform
the traditional 5-gram model. Across the board,
models with RoBERTa training perform better than
their BERT-based counterparts.

Table 5 shows performance for predicting the
detection items for which the judge preferred the
edited text to the original. A baseline system that
always selects the original gets around 95% accu-
racy, but cannot identify an edited text that a human
accepts as a substitute. All of the detection systems
tested were able to identify some substitutable ed-
its. The best overall are large language models with
context, reaching 0.241 F1.

As shown in Table 6, learned combinations of
metrics are able to achieve better performance than
the single best metric for each task. The compo-
nents of those systems are specified in Table 7,
sorted by their importance in the combination as
calculated by the product of the standard devia-
tion of their values (σ) and the magnitude of their
weights (w).

6 Conclusion

We introduced a novel dataset of human judgments
of machine-edited texts and initial models of those
perceptions. A portfolio of automated metrics was
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assessed for the ability to predict judges’ prefer-
ences on meaning preservation and detectability.
Automated measures of semantic similarity and
fluency were evaluated individually and combined
to produce factored models of human perception.
Both meaning preservation and detectability are
modeled within 6% accuracy of the upper bound of
human consensus labeling. However, we observe
that existing metrics poorly predict whether hu-
mans find an edited text to appear more human-like
than the original.

Future work could explore deeper models and
other factors of human perception not modeled by
the metrics present here. For example, humans
are sensitive to capitalization and correct spacing
but many automatic metrics perform tokenization
and normalization. Direct modeling of human per-
ception drives understanding of human factors in-
volving text variation. Adaptive models of human
text perception would enable text editing to target
understanding by individual readers.
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