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Abstract

We introduce a collection of recognizing tex-
tual entailment (RTE) datasets focused on fig-
urative language. We leverage five exist-
ing datasets annotated for a variety of figura-
tive language – simile, metaphor, and irony
– and frame them into over 12,500 RTE ex-
amples.We evaluate how well state-of-the-art
models trained on popular RTE datasets cap-
ture different aspects of figurative language.
Our results and analyses indicate that these
models might not sufficiently capture figura-
tive language, struggling to perform pragmatic
inference and reasoning about world knowl-
edge. Ultimately, our datasets provide a chal-
lenging testbed for evaluating RTE models.

1 Introduction

Figurative language is ubiquitous in many forms
of discourse from novels, poems, and films, to
scientific literature and social media conversa-
tions (Ghosh, 2018). It is often used to con-
vey intimacy (Gerrig and Gibbs Jr, 1988), hu-
mour (Roberts and Kreuz, 1994), intense emo-
tions (Fussell and Moss, 1998), or veiled polite-
ness (Jorgensen, 1996). Despite its ubiquity, figu-
rative language remains “a bottleneck in automatic
text understanding” (Shutova, 2011).

Recognizing Textual Entailment (RTE), the task
of identifying whether one sentence (context) likely
entails another (hypothesis), is often used as a
proxy to evaluate how well Natural Language
Processing (NLP) systems understand natural lan-
guage (Cooper et al., 1996; Dagan et al., 2006;
Bowman et al., 2015). Figurative language is de-
fined as any figure of speech which depends on a
non-literal meaning of some or all of the words
used. Thus, understanding figurative language can
be framed as an RTE task (figurative language ex-

∗Equal Contribution.

I I start to prowl across the room like a
tightrope walker on dental floss.

I start to prowl across the room recklessly.
7

I They had shut him in a basement that
looked like a freight elevator.

Simile

They had shut him in a basement that
looked dangerously claustrophobic.

3

I He weathered the costs for the accident.
He avoided the costs for the accident.

7

Metaphor
I The bus bolted down the road.

The bus paced down the road.
3

I Made $174 this month, gonna buy a
yacht!

I don’t make much money.
7

Irony I Fans seem restless, gee, don’t understand
them.

Fans seem restless - don’t know the rea-
son behind it.

3

Table 1: Example RTE pairs focused on similes,
metaphors, and irony that RoBERTa incorrectly labels.
I indicates a context and the following sentence is its
corresponding hypothesis. 3 and 7 respectively in-
dicate that the context entails, or does not entail the
hypothesis. Bold text represent simile and metaphors
and Italic represent their entail/not entail interpreta-
tions (top two rows).

pression vs. intended meaning), where the figura-
tive language expression is the context and the in-
tended meaning is the hypothesis in an RTE frame-
work (See examples in Table 1).

We investigate how suitable are state-of-the-art
RTE models trained on current RTE datasets to cap-
ture figurative language. We focus on three specific
types of figurative language: similes, metaphors,
and irony. Similes evoke comparisons between two
seemingly different objects, metaphors expand the
imagination beyond the literal narrative, and irony
conveys the opposite of what is said.

We leverage five existing datasets annotated for
these types of figurative language to create over
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12,500 RTE examples that require understanding
or identifying these phenomena. We evaluate how
well standard neural RTE models capture these
aspects of figurative language. Our results demon-
strate that, although, systems trained on a popu-
lar RTE dataset may capture some aspects of vari-
ous types of figurative language, they fail on cases
where the interpretation relies on pragmatic infer-
ence and reasoning about world knowledge. We
release the code and the data. 1

2 Related Work

We follow recent work that test for an ex-
panded range of inference patterns in RTE sys-
tems (Bernardy and Chatzikyriakidis, 2019) by
evaluating how well RTE models capture specific
linguistic phenomena, such as pragmatic infer-
ences (Jeretic et al., 2020), veridicality (Ross and
Pavlick, 2019), and others (Pavlick and Callison-
Burch, 2016; White et al., 2017; Dasgupta et al.,
2018; Naik et al., 2018; Glockner et al., 2018; Kim
et al., 2019; Kober et al., 2019; Richardson et al.,
2020; Yanaka et al., 2020; Vashishtha et al., 2020;
Poliak, 2020).

We are not the first to explore figurative language
in RTE. Agerri (2008) analyze examples in the Pas-
cal RTE-1 (Dagan et al., 2006) and RTE-2 (Bar-
Haim et al., 2006) datasets that require understand-
ing metaphors and Agerri et al. (2008) present an
approach for RTE systems to process metaphors.
Poliak et al. (2018)’s diverse collection of RTE
datasets includes examples based on figurative lan-
guage, but focuses only on identifying puns.

3 Dataset Creation

We create RTE test sets that focus on similes,
metaphors, and irony. We provide further back-
ground for these types of figurative language and
describe the methods used for creating these test
sets. Table 2 reports the final test sets’ statistics.

3.1 Simile
Comparisons are inherent linguistic devices that ex-
press the likeness of two entities, concepts, or ideas.
When used figuratively, comparisons are called
similes. Similes are used to spark the reader’s
imagination by making descriptions more emphatic
or vivid (Paul et al., 1970). Similes use a com-
mon PROPERTY to compare two concepts of-

1https://github.com/tuhinjubcse/
Figurative-NLI

Data Total E NE
Simile 600 300 300

Metaphor 613 307 306

Irony Meaning SIGN2000 2,000 133 1867
Sim-Hint 4,762 - 4,762

Irony Intention 4,601 2,212 2,389

Table 2: Dataset statistics and class distribution, En-
tailment (E) and Not-Entailment (NE) for each type of
figurative language.

ten referred to as the TOPIC (the logical subject)
and the VEHICLE (the logical object of compar-
ison). For example, in the simile “Love is like
an unicorn”, love (TOPIC) is compared to a uni-
corn (VEHICLE), portraying the implicit property
“rare”. Recently Chakrabarty et al. (2020) released
a test set of 150 literal sentences from subreddits
r/WritingPrompts and r/Funny, each aligned with
two human-written paraphrases with similes that
retain the original meaning.

To create our RTE test set that focuses on simi-
les, we treat these simile-literal aligned sentences
as entailed context-hypothesis pairs. Given a lit-
eral input, “They had shut him in a basement that
looked dangerously claustrophobic", an expert
annotator re-framed it as “They had shut him in a
basement that looked like a freight elevator".2 We
create Not-Entailed examples by flipping the literal
verb/property with their respective antonyms and
use the original (Literal, Simile) pairs as Entailed.
For instance, in the case of an existing context-
hypothesis pair expressing Entailment - “Hitler
skittered off like an enthusiastic sloth” → “Hitler
skittered off slowly" - we alter “slowly" to “fast" to
make it a pair of Not-Entailment (NE) instance.

3.2 Metaphor

Metaphors express deep feelings and complex
attitudes (Veale et al., 2016). Understanding
metaphors requires comprehending abstract con-
cepts and making connections between seemingly
unrelated ideas to appropriately deviate from lit-
eral meaning (Gutierrez et al., 2016; Mohammad
et al., 2016; Kintsch and Bowles, 2002; Glucksberg,
1998).When generating metaphoric paraphrases,
Chakrabarty et al. (2021) create a diverse test set
of 150 literal sentences curated from different do-
mains and genres and asked two expert annotators
to create metaphorical sentences, resulting in a total

2Note, such re-framing task (content generation task) does
not involve assigning a label to a text fragment, thus, comput-
ing inter-annotator agreement is not applicable here.

https://github.com/tuhinjubcse/Figurative-NLI
https://github.com/tuhinjubcse/Figurative-NLI
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Genre PairID Example

Slate 143311e
I Praise from a stranger is like a glass of water served at a restaurant in: You drink it warily, if at all,

fearing it may be tainted

Praise from someone you do not know can be taken lightly

Fiction 60838c
I The stars are no more like the sun than the glow of my cigarette is like a forest fire.

The sun is comparable to the stars because they are the same.

Telephone 99298c
I But uh still I I question the ability of some of the teachers to uh really do a bang-up job and

yet others i know are just wonderful

All teachers sucks

Table 3: Examples from MNLI that include figurative language. I indicates a context and the following line is its
corresponding hypothesis.

of 300 metaphorical examples. The expert annota-
tors re-framed the literal sentences independently
by replacing the literal verb with a metaphorical
verb. For instance, an expert reframed the literal
sentence “The tax cut will help the economy" to
“The tax cut will fertilize the economy".

Since the most frequent type of metaphor is ex-
pressed by verbs (Martin, 2006; Steen, 2010) these
literal and metaphorical paraphrases differ only by
the verb they use. In an RTE framework, we treat
these metaphorical-literal pairs as entailed context-
hypothesis examples. To create Not-Entailed ex-
amples, we generate hypotheses by manually swap-
ping the literal verb in the entailed hypothesis
with its antonym. Note that for both simile and
metaphor, automatic substitution using available
lexicons is problematic as it often leads to ungram-
matical sentences. Manually replacing the words
with its antonym guarantees a high quality test set.
We use antonyms to create Not-Entailed examples
for Simile and Metaphors which contain both Neu-
tral and Contradiction classes. Such lexical replace-
ment using antonyms would clearly lead to higher
quality contradiction example creation. On the con-
trary, creating neutral examples by lexical perturba-
tion is challenging and if not done properly, it can
lead to grammatical errors or incoherent sentences.

3.3 Irony

When using irony, speakers usually mean the oppo-
site of what they say (Sperber and Wilson, 1981;
Dews et al., 2007). We develop different test sets
focusing on whether the RTE models should un-
derstand the conveyed meaning of ironic examples
or should identify the speaker’s ironic intent (i.e.,
identify if an utterance is ironic or not) given the
hypothesis that the speaker was ironic.

Understanding Ironic Meaning (IMeaning)
Peled and Reichart (2017) used skilled annotators
to create a parallel dataset between tweets with ver-
bal irony and their non-ironic rephrasings (15K
pairs). Annotators also had the option to copy
the original tweet or just to paraphrase it, in case
the ironic intent is not easy to identify. Likewise,
Ghosh et al. (2020) released a parallel dataset of
speakers’ ironic messages (Sim) and hearers’ inter-
pretations (Hint) of the speaker’s intended mean-
ing. This dataset (Sim-Hint) contains 4,761 ironic-
literal pairs. We use both datasets in our experi-
ments and henceforth denote them as SIGN and
Sim-Hint, respectively. For both datasets, the origi-
nal ironic messages are treated as the contexts and
the intended meanings are the hypotheses. How-
ever, all RTE contexts do not contradict their cor-
responding hypotheses. For instance, in case of
Peled and Reichart (2017), the authors allowed an-
notators to not rephrase the ironic sentences with
their opposite intended meanings (in case the sar-
castic or ironic intent was not clear). Thus, for
evaluation purposes (see Table 4), we annotated a
subset of 2,000 random pairs from SIGN and eval-
uated the RTE models on that subset (denoted as
SIGN2000 henceforth). Around 93% of the RTE
pairs in SIGN2000 are Not-Entailed examples and
100% of RTE pairs in Sim-Hint are Not-Entailed
examples.

Recognizing Ironic Intent (IIntent) We lever-
age additional ironic examples from Van Hee et al.
(2018). Following Poliak et al. (2018)’s method for
recasting annotations for puns and sentiment, we
use templates to generate contexts (a) and hypothe-
ses (b). We use all the ironic tweets (training and
test) released by Van Hee et al. (2018) to generate
4,598 RTE pairs. Akin to Poliak et al. (2018), we
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Model
Testset Simile Metaphor IMeaning IIntent

sm− im SIGN2000

NBoW 51.17 54.81 86.37 71.50 61.72
InferSent 55.01 65.75 71.62 68.84 11.72
RoBERTa-large 85.47 88.09 94.76 93.42 52.81

Table 4: Accuracy of different models on our datasets focusing on similes, metaphors, and irony.

replace Name with names sampled from a distribu-
tion of names based on the US census data.3. The
templates are a) Name tweeted that tweet, b) Name
was ironic.

4 Experimental Setup

MNLI (Williams et al., 2018) is one of the widely
used large-scale corpora that contains instances
of figurative language (Table 3). Following re-
cent work, we evaluate RTE models trained on
MNLI (Williams et al., 2018) using three stan-
dard neural models: bag of words (NBoW) model,
InferSent (Conneau et al., 2017), and RoBERTa-
large (Liu et al., 2019). In NBoW, word embed-
dings for contexts and hypotheses are averaged
separately, and their concatenation is passed to a
logistic regression softmax classifier. InferSent en-
codes the context and hypotheses independently
using a BiLSTM, then their sentence representa-
tions are fed to a MLP.4 For RoBERTa, we use
the model fine-tuned on MNLI from the Trans-
former’s library (Wolf et al., 2020). We expect
models trained on MNLI to capture some forms of
figurative language that often appear in works of
fictions, conversations, speeches, and magazines
like Slate. Table 3 illustrates a few examples from
MNLI that include figurative language

5 Results and Discussions

Table 4 reports models’ accuracy on our figura-
tive language RTE datasets. We observe that for
similes, metaphors and irony meaning, RoBERTa-
large drastically outperforms the other two models.
For Irony datasets, NBoW outperforms InferSent.
While all models perform poorly on IIntent, In-
ferSent’s very low accuracy stands out. The low
performances might be due to the templatic nature
of this recast dataset which might be very different
from the MNLI training data.5 We now turn to
an in-depth analysis of RoBERTa’s performance

3http://www.ssa.gov/oact/babynames/names.zip
4Both NBoW and InferSent use 300D Glove embed-

dings (Pennington et al., 2014).
5We leave further analysis of this issue for future work.

across these datasets.

Ironic Meaning. RoBERTa-large attains over
90% accuracy on the two datasets focused on ironic
meaning. When analyzing these examples, a vast
majority of the hypotheses in both datasets use lex-
ical antonyms (“flattering” ↔ “disgusting) or nega-
tion (“is great” ↔ “is not great”) to represent the
intended meaning. Thus, the presence of antonyms
might be enough for RoBERTa to correctly predict
that the hypothesis is not-entailed by the context.

However, this does not hold true for hypothe-
ses where the intended meanings were represented
via more complex rephrasing. Ghosh et al. (2020)
conducted a thorough study of the linguistic strate-
gies that annotators have used for the rephrasing
tasks. They presented a linguistically motivated ty-
pology of the strategies (e.g., “Lexical and phrasal
antonyms”, “Negation”, “Weakening the intensity
of sentiment”, “Interrogative to Declarative Trans-
formation”, “Counterfactual Desiderative Construc-
tions”, and “Pragmatic Inference”) and empirically
validated the strategies over the SIGN and Sim-
Hint datasets.6 During our analysis, we observe
that for the vast majority of cases where RoBERTa
predicts incorrectly, the examples contain Rhetor-
ical Questions (“nice having finals on birthday?”
↔ “do not like finals . . . ”), pragmatic inferences
(“Made $174 this month . . . a yacht!" ↔ “I don’t
make much money”), or desiderative constructions
of [I wish] (that) (“glad you related the news” ↔
“[I wish] that you have told me sooner”. We also
observe that RoBERTa-large’s predictions are reg-
ularly incorrect when the ironic messages contain
certain irony markers (Ghosh and Muresan, 2018),
such as metaphor (“shoe smell like bed of roses” ↔
“smells bad”), alternate spelling where the speaker
frequently overstate the magnitude of an ironic
event (“dancing in heels is grrrrreat” ↔ “. . . hurts
your feet”) or hashtags that are composed of multi-
word expressions that capture the irony (“god bless
you . . . #notinthemood).

6https://github.com/debanjanghosh/interpreting_verbal_irony
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Gold Pred

Simile

I
Your guardian angel is just a little too much like a nerd at a comic convention.

3 7
Your guardian angel is just a little too enthusiastic

I
Growing up, people always thought you were like a social pariah.

7 3
Growing up, people always thought you were ordinary

I
They all agree the books are good reads, but they are like pseudo science fiction.

3 7
They all agree the books are good reads, but they are too unrealistic.

Metaphor

I
The smell of smoke carpeted on the delinquent.

7 3
The smell of smoke took off on the delinquent

I
As they strike the ground, they are effaced.

7 3
As they strike the ground, they are remembered

I
The avalanche polvarized anything standing in its way.

7 3
The avalanche protected anything standing in its way.

Irony

I
Life was never been perfect and would never be.

3 7
Life has never been perfect and would never be.

I
The highlight of my day figuring out how to make contact sheets . . . such a boring life.

3 7
My entire day was occupied in making contact sheets in design such a waste.

I
Gotta read 70ish+ pages today #great #mysundayfunday #thisshouldbefun.

7 3
I have to read 70ish+ pages today. This is bad.

Table 5: Examples from our Simile, Metaphor, and Irony datasets where Roberta-large fine-tuned on MNLI fails
to classify the sentence pairs correctly. Gold and Pred means the true label and the predicted label respectively. I
indicates a context and the following sentence is its corresponding hypothesis. 3 and 7 respectively indicate that
the context entails, or does not entail the hypothesis.

Simile. Likewise, for the simile dataset, we no-
tice that RoBERTa-large often fails to reason with
implicit knowledge about the physical and visual
world knowledge (Table 5). This is inline with
Weir et al. (2020)’s finding that transformer-based
contextual language models poorly capture knowl-
edge grounded in visual perceptions. For example,
RoBERTa-large incorrectly predicts that the con-
text “You wake one morning to find your entire fam-
ily lying like gray slabs of cement” does not en-
tail the hypothesis “You wake one morning to find
your entire family lying unconscious”. Neverthe-
less, RoBERTa-large correctly predicts that, “my
eyes teared up . . . turning like a ripening tomato”
entails “my eyes teared up . . . face turning red”. We
hypothesize that here RoBERTa-large was able to
identify the association between “ripening tomato”
and “red” that resulted in the correct prediction.

Metaphor. We notice RoBERTa-large makes
wrong predictions when it encounters unconven-
tional metaphors (Table 5). Metaphors are deemed
unconventional depending on “how well-worn or
how deeply entrenched a metaphor is in every-
day use by ordinary people for everyday purposes"
(Gelo and Mergenthaler, 2012). For instance, for
a unconventional (metaphoric, literal) pair, “night
sky flurried with the massive bombardment” →
“night sky doused with the massive bombardment”

(i.e., “flurried” ↔ “doused”) the model fails. On
the contrary, the model correctly predicts the fol-
lowing conventional (metaphoric, literal) pair -
“sudden fame kindled her ego” → “. . . increased
her ego” (i.e., “kindled” ↔ “increased”).

6 Conclusion

To understand the figurative language inference
capabilities of RTE models, we introduce datasets
adapted from existing corpora focusing on similes,
metaphors, and irony. By testing models trained
on MNLI, we find that while the RoBERTa-large
model is able to capture some aspects of figurative
language, it fails when the interpretation requires
word knowledge and pragmatic inferences. We
hope this work will spark additional interest in
the research community to incorporate and test for
figurative language in their NLU systems.

7 Ethical Considerations

We leverage freely available open source datasets
and software tools to create RTE datasets that in-
volve similes, metaphors, and irony. We are granted
the rights to further annotate and distribute the exist-
ing datasets as part of our RTE setup. This research
is exempt from institutional review boards since we
do not study human subjects and all social media
data used is publicly available.
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