
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3225–3234
August 1–6, 2021. ©2021 Association for Computational Linguistics

3225

SSMix: Saliency-Based Span Mixup for Text Classification

Soyoung Yoon1,2∗† Gyuwan Kim1∗ Kyumin Park2

1Clova AI, Naver Corp. 2KAIST
{soyoungyoon,pkm9403}@kaist.ac.kr, gyuwan.kim@navercorp.com

Abstract

Data augmentation with mixup has shown to
be effective on various computer vision tasks.
Despite its great success, there has been a
hurdle to apply mixup to NLP tasks since
text consists of discrete tokens with variable
length. In this work, we propose SSMix, a
novel mixup method where the operation is
performed on input text rather than on hidden
vectors like previous approaches. SSMix syn-
thesizes a sentence while preserving the local-
ity of two original texts by span-based mixing
and keeping more tokens related to the pre-
diction relying on saliency information. With
extensive experiments, we empirically vali-
date that our method outperforms hidden-level
mixup methods on a wide range of text classi-
fication benchmarks, including textual entail-
ment, sentiment classification, and question-
type classification. Our code is available at
https://github.com/clovaai/ssmix.

1 Introduction

Data augmentation gains popularity in natural lan-
guage processing (NLP) (Feng et al., 2021) due to
the expensive cost of data collection. Some of them
are based on simple rules (Wei and Zou, 2019) and
models (Edunov et al., 2018; Ng et al., 2020) to gen-
erate similar text. Augmented samples are trained
jointly with original samples by a standard way or
advanced training methods (Zhu et al., 2019; Park
et al., 2021). On the other hand, mixup (Zhang
et al., 2018) interpolates input texts and labels for
the augmentation.

Training with mixup and its variants become
a popular regularization method in computer vi-
sion to improve the generalization of neural net-
works. Mixup approaches are categorized into
input-level mixup (Yun et al., 2019; Kim et al.,

∗Equal contribution.
†Work done during the internship at Clova AI.

Figure 1: Illustration of SSMix. Two data samples
xA and xB are labeled negative and positive respec-
tively for sentiment classification task. For each token,
saliency maps are visualized where darker concentra-
tion of colors mean higher contribution to correspond-
ing label. We select the least salient span from xA and
replace it with the most salient span from xB . The out-
put results in x̃ = mixup(xA, xB). We also assign ỹ
by the mixup ratio λ. In this example, λ is set to 0.2 as
the span length is 2 out of 10.

2020; Walawalkar et al., 2020; Uddin et al., 2021)
and hidden-level mixup (Verma et al., 2019) de-
pending on the location of the mix operation. Input-
level mixup is a more prevalent approach than
hidden-level mixup because of its simplicity and
the ability to capture locality, leading to better ac-
curacy.

Applying mixup in NLP is more challenging
than in computer vision because of the discrete
nature of text data and variable sequence lengths.
Therefore, most previous attempts on mixup for
texts (Guo et al., 2019; Chen et al., 2020) apply
mixup on hidden vectors like embeddings or in-
termediate representations. However, input-level
mixup might have an advantage over hidden-level
mixup with a similar intuition from computer vi-
sion. This motivation encourages us to examine
input-level mixup approaches for text data.

In this work, we propose SSMix (Fig 1), a novel
input-level spanwise mixup method considering
the saliency of spans. First, we conduct a mixup by
replacing a span of contiguous tokens with a span
in another text, which is inspired from CutMix

https://github.com/clovaai/ssmix

3226

(Yun et al., 2019), to preserves the locality of two
source texts in the mixed text. Second, we select a
span to be replaced and to replace based on saliency
information to make the mixed text contain tokens
more related to output prediction, which may be
semantically important. Our input-level method is
different from hidden level mixup methods in that
while current hidden level mixup methods linear
interpolate original hidden vectors, our method mix
tokens on the input level, resulting in a nonlinear
output. Also, we utilize saliency values to select
span from each sentence and discretely define the
length of span and mixup ratio, which is outside
the hidden level.

SSMix has empirically proven effective through
extensive experiments on a wide range of text clas-
sification benchmarks. Especially, we prove that
input-level mixup methods generally outperform
hidden-level methods. We also show the impor-
tance of using saliency information and restricting
token selection in span-level when conducting our
method via ablation study.

2 SSMix

We propose SSMix to synthesize a new text x̃ by
replacing a span xAS from one text xA into another
span xBS from another text xB based on saliency
information. Also, we have to set a new label ỹ
for x̃ using yA and yB which are one-hot labels
corresponding to xA and xB , respectively. Con-
sequently, we can additionally use this generated
virtual sample (x̃, ỹ) for training.

Saliency Saliency measures how each portion of
data (in this case, tokens) affects the final predic-
tion. Gradient-based methods (Simonyan et al.,
2013; Li et al., 2016) are widely used for the
saliency computation. We compute the gradient
of classification loss L with respect to input embed-
ding e, and use its magnitude as the saliency: i.e.,
s = ‖∂L/∂e‖2. We apply the L2 norm to obtain
the magnitude of a gradient vector, which becomes
a saliency of each token similar to PuzzleMix (Kim
et al., 2020).

Mixing text Text data xA and xB are discrete to-
ken sequences. Using saliency scores as explained
earlier, we can find the least salient span in xA

with a length lA as xAS and the most salient span
in xA with a length lB as xBS . We set lA = lB =
max(min([λ0|xA|], |xB|), 1) given a prior mixup
ratio λ0. Then, final x̃ becomes the concatena-

Algorithm 1 Mixup loss calculation

procedure SSMIX_LOSS(xA, xB, yA, yB, λ)
x̃← SSMix(xA, xB)
logit← model(x̃)
lossA ← CrossEntropy(logit, yA)
lossB ← CrossEntropy(logit, yB)
total_loss ← lossA ∗ λ + lossB ∗ (1 − λ)

return total_loss
end procedure

tion of (xAL ;x
B
S ;x

A
R) where xAL and xAR are tokens

located to the left and the right side of xAS respec-
tively in the original text xA.

Same span length We set the length of the orig-
inal (lA) and replaced (lB) span to be the same,
since allowing different length of spans would re-
sult in redundant and ambiguous mixup variations.
Also, calculating the mixup ratio between different
span length would be too complex. This same-size
replacement strategy is also adopted in (Yun et al.,
2019) and (Uddin et al., 2021). In situations where
span length is the same, our method maximizes the
effect of saliency. Since SSMix doesn’t restrict the
position of tokens, we can pick the most salient
span and replace it with least salient span on the
other text.

Mixing label We set mixup ratio λ for label as
λ = |xBS |/|x̃|. Since λ is recalculated by counting
the number of tokens in the span, it may differ from
λ0. We set the label of x̃ to ỹ = (1− λ)yA + λyB .
Algorithm 1 shows how we utilize the original sam-
ple pairs to compute the mixup loss for augmented
samples. We calculate the cross-entropy loss of the
augmented output logit with respect to the original
target label of each sample and combine them by
weighted sum, which is similar to the original im-
plementation of (Zhang et al., 2018).1 Therefore,
applying SSMix is independent of the total num-
ber of labels of the classification dataset. On any
dataset, output label ratio is calculated by linear
combination of two original labels.

Paired sentence tasks For tasks requiring a pair
of texts as an input such as textual entailment and
similarity classification, we conduct mixup in a
pairwise manner and calculate the mixup ratio
by aggregating token counts in each mixup result.
Denoting xA = (pA, qA), xB = (pB, qB), and

1https://github.com/hongyi-
zhang/mixup/blob/master/cifar/utils.pyL34

https://github.com/hongyi-zhang/mixup/blob/master/cifar/utils.py##L34
https://github.com/hongyi-zhang/mixup/blob/master/cifar/utils.py##L34

3227

Dataset Task # Label Size

SST-2 Sentiment 2 67k / 1.8k

QQP Paraphrase 2 364k / 391k

MNLI NLI 3 393k / 20k

QNLI QA/NLI 3 105k / 5.4k

RTE NLI 2 2.5k / 3k

MRPC Paraphrase 2 3.7k / 1.7k

TREC-coarse Classification 6 5.5k / 500

TREC-fine Classification 47 5.5k / 500

ANLI NLI 3 162.8k / 3.2k / 3.2k

Table 1: Dataset name, task, number of total labels, and
dataset size of datasets we used as benchmark. Task
column describes the objective of each dataset. ANLI
dataset shows aggregated dataset statistics among dif-
ferent rounds. GLUE tasks report the size as (train / val-
idation) format, TREC reports (train / test) and ANLI
reports (train / validation / test).

x̃ = (p̃, q̃), we define mixup of paired sentence
data as x̃ = (mixup(pA, pB),mixup(qA, qB)).
Here, we set the mixup ratio on paired sentence
tasks as λ = (|pS | + |qS |)/(|p̃| + |q̃|), where pS
and qS are replacing spans of independent mixup
operations. Illustation is available in Appendix B.3.

3 Experimental Setup

3.1 Dataset

As listed in table 1, to evaluate the effectiveness
of SSMix, we perform experiments on various text
classfication benchmarks: six datasets in GLUE
benchmark (Wang et al., 2018), TREC (Li and
Roth, 2002; Hovy et al., 2001), and ANLI (Nie
et al., 2020). Two of them are single sentence
classification tasks, and six of them are sentence
pair classification tasks. All datasets are extracted
from HuggingFace datasets library.2

For GLUE, we use SST-2 (Socher et al., 2013),
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Bentivogli et al., 2009), MRPC
(Dolan and Brockett, 2005), and QQP3. Among
GLUE, we leave out datasets that were not evalu-
ated by accuracy, along with WNLI, because the
size is too small to show any general trend of effec-
tiveness.

TREC is a commonly used dataset to evaluate
mixup methods in sentence classification (Guo
et al., 2019; Thulasidasan et al., 2019). We use

2https://github.com/huggingface/datasets
3https://www.quora.com/First-Quora-Dataset-Release-

Question-Pairs

two different versions of TREC (coarse, fine) that
have different levels of label number to test the
dependency of mixup effectiveness on the number
of class labels. In addition, we use ANLI to see
how mixup can help to improve model robustness.
For training ANLI, we concatenate all training data
from different rounds and use them to train the
model.

3.2 Baseline

We compare SSMix with three baselines: (1) stan-
dard training without mixup, (2) EmbedMix, and
(3) TMix. EmbedMix apply mixup on the embed-
ding layer, which is similar to the wordMixup in
Guo et al. (2019) except their experiments are per-
formed with LSTM or CNN architecture. TMix,
borrowed from Chen et al. (2020), interpolates hid-
den states of two different inputs at a particular
encoder layer and forward the combined hidden
states to the remaining layers. For EmbedMix and
TMix, we follow the best settings stated in the orig-
inal papers: mixup ratio is set by λ′ ∼ Beta(α, α),
λ = max(λ′, 1 − λ′) with α = 0.2. During the
training with TMix, we randomly sample the mixup
layer from [7, 9, 12].

3.3 Ablation study

To investigate how much (1) considering saliency
and (2) restricting mixup operation on the span-
level individually benefit our proposed method, we
conduct an ablation study. We implement SSMix
without considering saliency information (SSMix
- saliency) where the spans are randomly selected,
and additionally without the span-level restriction
(SSMix - saliency - span). For SSMix - saliency -
span, we randomly sample tokens from xB , which
need not be a contiguous span and are conducted on
a per-token basis. Then, we replace tokens accord-
ingly with the position of the token be preserved,
meaning that the second token from xA is replaced
with the second token from xB , and so on. For
all ablation studies, the lambda values were set to
0.1 to compare methods with the same setting as
SSMix. Detailed implementation and illustration of
ablation methods and comparison with simple word
dropout methods are described in Appendix B.

3.4 Training Details

Among the entire experiment, we use sequence
classification task with the pre-trained BERT-base
model having 110M parameters from Hugging-

https://github.com/huggingface/datasets
https://www.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/First-Quora-Dataset-Release-Question-Pairs

3228

Face Transformers library.4 We perform all ex-
periments with five different seeds (0 to 4) on a
single NVIDIA P40 GPU and report the average
score. We set a maximum sequence length of 128,
batch size of 32, with AdamW optimizer with eps
of 1e-8 and weight decay of 1e-4. We use a lin-
ear scheduler with a warmup for 10% of the total
training step. We update the best checkpoint by
measuring validation accuracy on every 500 steps.
For datasets that have less than 500 steps per epoch,
we update and validate every epoch.

Considering our objective of enhancing perfor-
mance through mixup, we conduct training in two
steps. We first train without mixup with a learn-
ing rate of 5e-5 for three epochs, and then train
with mixup starting from previous training’s best
checkpoint, with a learning rate of 1e-5 for five
epochs. This two-step training, which also utilized
by Zhang et al. (2018), speeds up the model con-
vergence. We report the best accuracy among both
training with and without mixup. For the ANLI
task, we select the best checkpoint for training with-
out mixup separately for each round, then conduct
training with mixup and report the best accuracy of
each round’s evaluation dataset.

For each iteration, we split the batch into two
smaller batches with the same size, A andB. Since
mixup operation in SSMix is not symmetric, we
conduct mixup back-and-forth so that mixup perfor-
mance is evaluated regardless of the data position
in batch. To prevent the training data distribution
getting too far from the original data distribution,
we train with and without mixup together as He
et al. (2019). As a result, we forward each step
with average loss from A, B, mixup(A, B), and
mixup(B, A).

We leave out tokens specific to transformer ar-
chitecture (e.g., [CLS], [SEP]) when conducting
a mixup to preserve special signs. As stated by
Zhang et al. (2018), giving too high values for
mixup ratio may lead to underfitting, while giving
λ close to 0 leads to the same effect of giving non-
augmented original data. From our experiments,
we found out that augmentation with prior ratio
λ0 = 0.1 is the optimal hyperparameter.

In terms of computation time, SSMix takes about
twice the training time compared with other mixup
methods since we need an additional forward and
backward step to compute the saliency of tokens.
Among hidden-level mixup methods, TMix takes a

4https://github.com/huggingface/transformers

Figure 2: Visualization of original data and synthesized
data by hidden-level mixup (EmbedMix or TMix) and
SSMix in the hidden space. Black dots indicate the orig-
inal data, xA and xB . For hidden-level mixup, syn-
thetic data (x̃) are created only along the line (blue)
connecting two points, since it is a linear combina-
tion within the hidden space. However, SSMix explore
larger synthetic sample space for x̃, since it consists
of a discrete combination within the input space. Syn-
thetic data for SSMix are illustrated in pink dots.

slightly longer time to train than EmbedMix.

4 Results and Discussion

Table 2 illustrates our results. We investigate the
effectiveness of SSMix compared with hidden layer
mixup methods on the aspect of dataset size, num-
ber of class labels, and paired sentence tasks.

Dataset size Compared with hidden-level mixup
methods, SSMix fully demonstrate its effective-
ness on datasets having a sufficient amount of data.
Since SSMix is a discrete combination rather than
a linear combination of two data samples, it cre-
ates data samples on a synthetic space in a larger
range than hidden-level mixup (Fig. 2). We hy-
pothesize that a large amount of data help better
representation in synthetic space.

The number of class labels SSMix is especially
effective for multiple class label datasets (TREC,
ANLI, MNLI, QNLI). Accordingly, the accuracy
gain of SSMix from the training without mixup is
much higher on TREC-fine (47 labels) than TREC-
coarse (6 labels), with +3.56 and +0.52, respec-
tively. We hypothesize that this result originates
from the mixup characteristic that benefits more
from cross-label mixup than mixup with the same
label, as stated at Zhang et al. (2018).5 Since
datasets with multiple total class labels increase the

5Zhang et al. (2018) states that mixing random pairs from
all classes (per-batch basis) has the strongest regularization
effect compared with mixup by per-class (same class) basis.

https://github.com/huggingface/transformers

3229

Model
GLUE TREC ANLI

SST-2 QQP MNLI QNLI RTE MRPC coarse fine R1 R2 R3

No mixup 92.96 91.32 84.27 91.28 65.56 86.37 97.08 86.68
56.40 47.10 47.62
57.16 47.36 48.00

EmbedMix 93.03 91.36 84.35 91.43 67.73 86.72 97.44 90.04
56.78 47.84 47.67
57.16 47.42 48.00

TMix 93.03 91.34 84.33 91.40 66.86 86.42 97.52 90.16
56.68 47.58 47.78
57.28 47.90 48.42

SSMix 93.10 91.43 84.54 91.54 67.22 86.57 97.60 90.24 57.26 48.36 47.78
57.34 48.06 48.00

SSMix - saliency 93.12 91.32 84.48 91.29 67.00 86.42 97.44 89.56
57.04 48.22 47.95
57.16 47.94 48.07

SSMix - saliency - span 93.14 91.32 84.54 91.45 66.93 86.37 97.40 89.20
56.74 47.52 47.77
57.20 47.90 48.00

Table 2: Experimental results of comparison with baselines and ablation study. All values are average accuracy
(%) of five runs with different seeds. MNLI indicates MNLI-mismatched dev set accuracy. We report validation
accuracy for GLUE, test accuracy for TREC, and valid (upper) / test (lower) accuracy for ANLI. We report variance
on Appendix. A.

possibility of being selected cross-label in a ran-
dom sampling of mixup sources, we assert mixup
performance increases in such datasets.

Paired sentence tasks SSMix have a competi-
tive advantage on paired sentence tasks, such as
textual entailment or similarity classification. We
suspect this accuracy gain originates from consid-
eration of individual tokens. Existing methods
(hidden-level mixup) apply mixup on the hidden
layer, without consideration of special tokens, i.e.,
[SEP], [CLS]. These methods may lose informa-
tion about the start of the sentence or appropriate
separation of pair of sentences. In contrast, SSMix
can consider the individual token property when ap-
plying mixup. Here, our mixup strategy on paired
data (Section 2) preserves the property of [SEP],
which is not guaranteed by hidden mixup.

Ablation Study The results of SSMix and its vari-
ants demonstrate that the performance improves as
we add span constraint and saliency information.
Adding span constraint in the mixup operation ben-
efit from better localizable ability, and most salient
spans have more relationship to corresponding la-
bels while discarding least salient spans have a
higher probability that those spans are not semanti-
cally important with respect to the original labels.
Among those two, introducing saliency informa-
tion contributes to accuracy relatively more than
the span constraint.

5 Conclusion

We present SSMix, a novel and simple input-level
mixup method for text data that improves regu-
larization ability leading to better performance in
text classification. SSMix preserves the locality of
mixing texts by replacing in span-level and keep
most discriminative tokens in the mixed text us-
ing saliency score. Throughout the experiment, we
show that our method improves performance in var-
ious types of text classification tasks. For future
work, we plan to apply SSMix on a broader range
of tasks, including generation or different scenarios
like semi-supervised learning.

Acknowledgments

The authors would like to thank Clova AI members
for proofreading this manuscript and the anony-
mous reviewers for their constructive feedback. We
use Naver Smart Machine Learning (Sung et al.,
2017; Kim et al., 2018) platform for the experi-
ments. This work was supported by Institute of
Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2019-0-00075, Artificial
Intelligence Graduate School Program (KAIST)).

3230

References
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo

Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
Text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2147–
2157, Online. Association for Computational Lin-
guistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation ap-
proaches for nlp. arXiv preprint arXiv:2105.03075.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019.
Augmenting data with mixup for sentence clas-
sification: An empirical study. arXiv preprint
arXiv:1905.08941.

Zhuoxun He, Lingxi Xie, Xin Chen, Ya Zhang, Yan-
feng Wang, and Qi Tian. 2019. Data augmentation
revisited: Rethinking the distribution gap between
clean and augmented data.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceed-
ings of the First International Conference on Human
Language Technology Research.

Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong
Kim, Heungseok Park, Soeun Park, Hyunwoo Jo,
KyungHyun Kim, Youngil Yang, Youngkwan Kim,
et al. 2018. Nsml: Meet the mlaas platform
with a real-world case study. arXiv preprint
arXiv:1810.09957.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song.
2020. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Con-
ference on Machine Learning, pages 5275–5285.
PMLR.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691, San Diego, California. As-
sociation for Computational Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi.
2020. Ssmba: Self-supervised manifold based data
augmentation for improving out-of-domain robust-
ness. arXiv preprint arXiv:2009.10195.

Yixin Nie, Adina Williams, Emily Dinan, Jason Bansal,
Mohitand Weston, and Douwe Kiela. 2020. Adver-
sarial nli: A new benchmark for natural language
understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

Jungsoo Park, Gyuwan Kim, and Jaewoo Kang. 2021.
Consistency training with virtual adversarial discrete
perturbation. arXiv preprint arXiv:2104.07284.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang,
Jingwoong Kim, Leonard Lausen, Youngkwan Kim,
Gayoung Lee, Donghyun Kwak, Jung-Woo Ha, et al.
2017. Nsml: A machine learning platform that en-
ables you to focus on your models. arXiv preprint
arXiv:1712.05902.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A
Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
2019. On mixup training: Improved calibration and
predictive uncertainty for deep neural networks. In
Advances in Neural Information Processing Systems,
pages 13888–13899.

A F M Shahab Uddin, Mst. Sirazam Monira, Whee-
myung Shin, TaeChoong Chung, and Sung-Ho Bae.
2021. Saliencymix: A saliency guided data augmen-
tation strategy for better regularization. In Interna-
tional Conference on Learning Representations.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In In-
ternational Conference on Machine Learning, pages
6438–6447. PMLR.

https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
http://arxiv.org/abs/1909.09148
http://arxiv.org/abs/1909.09148
http://arxiv.org/abs/1909.09148
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://openreview.net/forum?id=-M0QkvBGTTq
https://openreview.net/forum?id=-M0QkvBGTTq

3231

Devesh Walawalkar, Zhiqiang Shen, Zechun Liu, and
Marios Savvides. 2020. Attentive cutmix: An en-
hanced data augmentation approach for deep learn-
ing based image classification.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Jason Wei and Kai Zou. 2019. Eda: Easy
data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint
arXiv:1901.11196.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
2019. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 6023–6032.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin,
and David Lopez-Paz. 2018. mixup: Beyond empir-
ical risk minimization. In International Conference
on Learning Representations.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2019. Freelb: Enhanced ad-
versarial training for natural language understanding.
arXiv preprint arXiv:1909.11764.

http://arxiv.org/abs/2003.13048
http://arxiv.org/abs/2003.13048
http://arxiv.org/abs/2003.13048
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

3232

A Accuracy Variance

Model
GLUE TREC ANLI

SST-2 QQP MNLI QNLI RTE MRPC Coarse Fine R1 R2 R3

No mixup 0.04 0.04 0.12 0.05 3.89 1.73 0.17 2.21
1.21 0.16 0.73
0.24 1.26 0.84

EmbedMix 0.02 0.03 0.14 0.04 3.89 1.39 0.09 0.31
1.38 0.46 0.75
0.24 1.18 0.84

TMix 0.04 0.04 0.09 0.03 1.85 1.55 0.05 0.63
1.44 0.33 0.73
0.25 0.75 1.28

SSMix 0.03 0.07 0.07 0.03 2.57 1.15 0.03 0.49
1.56 0.27 0.73
0.25 0.46 0.84

SSMix - saliency 0.02 0.04 0.11 0.04 2.06 1.55 0.09 0.69
1.33 0.18 0.62
0.24 1.99 0.80

SSMix - saliency - span 0.00 0.04 0.09 0.03 1.86 1.73 0.08 0.14
2.01 0.11 0.68
0.28 0.45 0.84

Table A.1: Standard deviation results, corresponding with the average of our experiments. The deviation is con-
ducted by 5 runs with different seeds.

We also report accuracy variance among the five seeds for each experiment (Table. A.1).

B Ablation

Fig. 3 and Fig. 4 shows the illustration of different variants of SSMix and random UNK replacement with
λ = 0.2. Fig. 5 shows the illustration of getting the augmented output with lambda calculation by SSMix
for paired sentence tasks. The saliency maps are visualized where darker concentration of colors mean
higher contribution to corresponding label.

B.1 Variants of SSMix

(a) Normal training without mixup

(b) SSMix - saliency (c) SSMix - saliency - span

Figure 3: Illustration of normal training and variants of SSMix

Here, we describe in detail how we implement SSMix without saliency (Figure. 3 (b)) and SSMix
without saliency and span restriction (Figure. 3 (c)).

3233

Model
GLUE TREC ANLI

SST-2 QQP MNLI QNLI RTE MRPC coarse fine R1 R2 R3

No mixup 92.96 91.32 84.27 91.28 65.56 86.37 97.08 86.68
56.40 47.10 47.62
57.16 47.36 48.00

Random UNK replacement 93.10 91.33 84.46 91.45 66.86 86.62 97.44 89.24
56.98 47.86 47.98
57.26 48.36 48.32

SSMix 93.10 91.43 84.54 91.54 67.22 86.57 97.60 90.24 57.26 48.36 47.78
57.34 48.06 48.00

SSMix - saliency 93.12 91.32 84.48 91.29 67.00 86.42 97.44 89.56
57.04 48.22 47.95
57.16 47.94 48.07

SSMix - saliency - span 93.14 91.32 84.54 91.45 66.93 86.37 97.40 89.20
56.74 47.52 47.77
57.20 47.90 48.00

Table B.1: Accuracy (%) comparison with simple data augmentation method(random UNK replacement) and input
mixup methods. The results are average of five runs with different seeds. Results show that our input level mixup
methods are generally competitive with simple word dropout methods.

At normal training, only two real data samples (xA and xB) are used to train the model. For Figure. 3
(b), we randomly select each span from xA and xB . Then, we replace xB to xA to make a new data x̃.
For Figure. 3 (c), input level mixup is conducted on a per-token basis. After calculaton of l given the prior
mixup ratio, we randomly sample tokens from xA. The tokens need not be a contiguous span. Then, we
replace tokens accordingly with the position of the token be preserved, meaning that the second token
from xA is replaced with second token from xB , the sixth token from xA is replaced with sixth token
from xB (by the illustration example), and so on.

B.2 Comparison with other simple augmentation methods

(a) Random [UNK] replacement (b) SSMix

Figure 4: Comparison of our methods with word dropout

We also compare SSMix with simple word dropout methods, which may seem similar in the perspective
that they create noisy sentences. The difference is whether label mixup is performed. Illustration of the
implementation of random [UNK] replacement is available at Fig. 4. Random UNK replacement is similar
to word dropout. We don’t use xB when making synthetic samples (l = 0). Instead, we randomly sample a
set of tokens from xA and replace each token in that span with [UNK]. The process is similar to Figure. 3
(c), except that the selected tokens at xA are replaced into [UNK]. Another difference is that the output
label (ỹ) completely follow the origin (yA) and no label mixup is performed. The illustration is available
at 3.

We evaluate the random [UNK] replacement method on all dataset with SSMix and variants of SSMix at
ablation study. By the experiment results at Table B.1, we show that input level mixup methods generally
outperform simple regularization methods. This means that datasets synthesized from SSMix and the
according target vectors have more gain on the generalization ability than word dropout.

3234

Figure 5: Illustration of applying SSMix to make x̃ for paired sentence, in particular NLI tasks, which classifies
whether the relation of sentence pairs is entailment, neutral, or contradiction. Mixup is conducted individually,
sentence by sentence.

B.3 Illustration of SSMix on paired sentence tasks
Fig. 5 shows the illustration of example for paired sentence. Here, "Fun for only children." and "Fun for
adults and children." correspond to pA and qA, "Problems in data synthesis." and "Issues in data synthesis."
correspond to pB and qB , and "Problems for only children.", "Fun for issues and children." correspond to
p and q, respectively. λ is calculated as : λ = (|pS |+ |qS |)/(|p̃|+ |q̃|) = (1+1)/(5+6) = 2/11 ≈ 0.18.

