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Abstract

The field of natural language understanding
has experienced exponential progress in the
last few years, with impressive results in sev-
eral tasks. This success has motivated re-
searchers to study the underlying knowledge
encoded by these models. Despite this, at-
tempts to understand their semantic capabil-
ities have not been successful, often lead-
ing to non-conclusive, or contradictory con-
clusions among different works. Via a prob-
ing classifier, we extract the underlying knowl-
edge graph of nine of the most influential lan-
guage models of the last years, including word
embeddings, text generators, and context en-
coders. This probe is based on concept relat-
edness, grounded on WordNet. Our results re-
veal that all the models encode this knowledge,
but suffer from several inaccuracies. Further-
more, we show that the different architectures
and training strategies lead to different model
biases. We conduct a systematic evaluation
to discover specific factors that explain why
some concepts are challenging. We hope our
insights will motivate the development of mod-
els that capture concepts more precisely.

1 Introduction

Natural language processing (NLP) encompasses a
wide variety of applications such as summarization
(Kovaleva et al., 2019), information retrieval (Zhan
et al., 2020), and machine translation (Tang et al.,
2018), among others. Currently, the use of pre-
trained language models has become the de facto
starting point to tackle most of these tasks. The
usual pipeline consists of finetuning a pre-trained
language model by using a discriminative learning
objective to adapt the model to the requirements of
each task. As key ingredients, these models are pre-
trained using massive amounts of unlabeled data
that can include millions of documents and billions
of parameters. Massive data and parameters are

supplemented with a suitable learning architecture,
resulting in a highly powerful but also complex
model whose internal operation is hard to analyze.

The success of pre-trained language models has
driven the interest to understand the mechanisms
they use to solve NLP tasks. As an example, in
the case of BERT (Devlin et al., 2019), one of
the most popular pre-trained models based on the
Transformer (Vaswani et al., 2017), several studies
have attempted to access the knowledge encoded in
its layers and attention heads (Tenney et al., 2019b;
Devlin et al., 2019; Hewitt and Manning, 2019). In
particular, Jawahar et al. (2019) shows that BERT
can solve tasks at a syntactic level by using Trans-
former blocks to encode a soft hierarchy of features
at different levels of abstraction. Similarly, Hewitt
and Manning (2019) show that BERT is capable
of encoding structural information from text. In
particular, using a structural probe, they show that
syntax trees are embedded in a linear transforma-
tion of the encodings of BERT.

In general, previous efforts have provided strong
evidence indicating that current pre-trained lan-
guage models encode complex syntactic rules.
However, relevant evidence about their abilities to
capture semantic information remains still elusive.
As an example, Si et al. (2019) attempts to locate
the encoding of semantic information as part of
the top layers of Transformer architectures finding
contradictory evidence. Similarly, Kovaleva et al.
(2019) focuses on studying knowledge encoded
by self-attention weights. Their results provide
evidence for over-parameterization but not about
language understanding capabilities.

In this work, we study to what extent pre-trained
language models encode semantic information. As
a key source of semantic knowledge, we ana-
lyze their ability to encode the concept relations
embedded in the conceptual taxonomy of Word-
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Net1 (Miller, 1995). Understanding, organizing,
and correctly using concepts is one of the most re-
markable capabilities of human intelligence (Lake
et al., 2017). Therefore, quantifying the ability
that a pre-trained language model can exhibit to en-
code the conceptual organization behind WordNet
is highly valuable. This knowledge may provide
useful insights into the inner mechanisms that these
models use to encode semantic information. Fur-
thermore, identifying what they find difficult can
provide relevant insights into how to improve them.

Unlike most previous works, we do not focus on
a particular model but target a large list of the most
popular pre-trained language models. In this sense,
one of our goals is to provide a comparative analy-
sis of the benefits of different approaches. Follow-
ing Hewitt and Manning (2019), we study semantic
performance by defining a probing classifier based
on concept relatedness according to WordNet. Us-
ing this tool, we analyze the different models, en-
lightening how and where semantic knowledge
is encoded. Furthermore, we explore how these
models encode suitable information to recreate the
structure of WordNet. Among our main results,
we show that the different pre-training strategies
and architectures lead to different model biases.
In particular, we show that contextualized word
embeddings, such as BERT, encode high-level con-
cepts and hierarchical relationships among them,
creating a taxonomy. This finding corroborates
previous work results (Reif et al., 2019) that claim
that BERT vectors store sub-spaces that correspond
with semantic knowledge. Our study also shows ev-
idence about the limitations of current pre-trained
language models, demonstrating that they have dif-
ficulties to encode specific concepts. For example,
all the models struggle with concepts related to
“taxonomical groups”. Our results also reveal that
models have distinctive patterns regarding where in
the architecture they encode the semantic informa-
tion. These patterns are dependant on architecture
and not on model sizes.

2 Study methodology

Probing methods consist of using the representa-
tion of a frozen pre-trained model to address a
particular task. If the probing classifier succeeds
in this setting but fails using an alternative model,

1WordNet is a human-generated graph, where each one
of its 117000 nodes (also called synsets) represent a concept.
In this work, we use hyponymy relations, representing if a
concept is a subclass of another.

it means that the source model encodes the knowl-
edge needed to solve the task. Furthermore, the
classifier’s performance can be used to measure
how well the model captures this knowledge (Con-
neau et al., 2018). We use a probing method at
the semantic level applying it to the nine models
presented in Section 2.2. Our study sheds light on
whether the models encode relevant knowledge to
predict concept relatedness in Wordnet.

To study how accurately the models encode se-
mantic information, we measure correctness in
predicted relations among concepts at two levels:
(a) pair-wise-level by studying performance across
sampled pairs of related or unrelated concepts, and
(b) graph-level by using pair-wise predictions to
reconstruct the actual graph. We describe both ap-
proaches in Sections 2.3 and 2.4, respectively.

2.1 WordNet splits and sampling

We partitioned the available WordNet synsets at
70/15/15 for training, validation and test sets re-
spectively. Our experimental setup ensures no over-
lap in concepts among these sets. As an example,
if the concept related to “house” fell in the training
set, then all its lemmas are considered in this par-
tition (e.g. “home”, “residence”, etc.), and neither
this concept nor those lemmas will be present in
the validation or test sets. Our sampling setup also
balances the number of times each concept acts as
hypernym or as a hyponym in the relation, when-
ever possible. Thus the benefit of learning whether
a word is a “prototypical hypernym”, as pointed
out by Levy et al. (2015), is close to zero. Further
details are available in Appendix A.1.

2.2 Word embedding models

This study considers the most influential language
models from recent years. We consider the es-
sential approaches of three model families: non
contextualized word embeddings (NCE), contex-
tualized word embeddings (CE), and generative
language models (GLM). We consider Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) for the first family of approaches. For the CE
family, we consider ELMo (Peters et al., 2018b),
which is implemented on a bidirectional LSTM ar-
chitecture, XLNet (Yang et al., 2019), and BERT
(Devlin et al., 2019) and its extensions ALBERT
(Lan et al., 2020) and RoBERTa (Liu et al., 2019),
all of them based on the Transformer architecture.
GPT-2 (Radford et al., 2018) and T5 (Raffel et al.,
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Figure 1: Inputs to the edge probing classifier correspond to the model embeddings M(x) and M(y) of concepts
x and y, respectively. M(x) and M(y) are projected into a common lower dimensionality space using a linear
layer. The resulting embeddings x′ and y′ are concatenated and fed into a Multi-Layer Perceptron that is in charge
of predicting if the concept pair is related or not.

2019) are included in the study to incorporate ap-
proaches based on generative language models.

For models in the CE and GLM families, the
embedding is extracted after running the model on
a sentence where the concept is used in context.
Then we discard the context and keep only the first
token that correspond to the specific mention of the
concept. Finally we concatenate the hidden states
of every layer of the model, for the selected token.

2.3 Semantic probing classifier

We define an edge probing classifier that learns to
identify if two concepts are semantically related.
To create the probing classifier, we retrieve all the
glosses from the Princeton WordNet Gloss Corpus2.
This dataset provides WordNet’s synsets gloss sen-
tences with annotations identifying occurrences of
concepts within different sentence contexts. The
annotations provide a mapping of the used words
to their corresponding WordNet node. We sam-
ple hypernym pairs A, B. Then, from an unrelated
section of the taxonomy, we randomly sample a
third synset C, taking care that C is not related
to either A or B. Then, 〈A,B,C〉 forms a triplet
that allows us to create six testing edges for our
classifier. To train the probing classifier, we define
a labeled edge {x, y, L}, with x and y synsets in
{A,B,C}, x 6= y. L ∈ {0, 1} is the target of the
edge. If y is direct or indirect parent of x, L = 1,
while L = 0 in other case. For each synset x, y,
we sample one of its sentences S(x), S(y) from
the dataset. Let M be a model. If M belongs to
the NCE family, x and y are encoded by M(x) and
M(y), respectively. If M belongs to the CE or
GLM families, then x and y are encoded by the
corresponding token of M(S(x)) and M(S(y)),

2https://wordnetcode.princeton.edu/
glosstag.shtml

respectively.
To facilitate the evaluation of embeddings of

different sizes, we first project each concept’s en-
codings x and y into a low dimensionality space
using a linear layer (see Figure 1). These vectors,
denoted as x′ and y′, are concatenated and fed into
a Multi-Layer Perceptron (MLP) classifier. The
linear layer and the MLP are the only trainable pa-
rameters of our setting, as we use the source model
weights without any finetuning. Throughout all
the experiments we used an MLP classifier with a
single hidden layer of 384 hidden units.

We use this MLP to learn the structural relation
between concept pairs, providing the test with a
mechanism that allows the embeddings to be com-
bined in a non-linear way. Tests based on linear
transformations such as the one proposed by He-
witt and Manning (2019) did not allow us to re-
cover the WordNet structure. This indicates that
the sub-spaces where the language models encode
semantics are not linear. The fact that syntactic
information is linearly available suggests that syn-
tax trees might be a critical intermediate result for
the language modeling task. In contrast, semantic
information emerges as an indirect consequence of
accurate language modeling. Still, it might not con-
stitute information that the model relies on for NLP
tasks, as postulated by Ravichander et al. (2020).

To discard the possibility of the MLP being mem-
orizing properties of words and thus giving an unde-
served credit to the analyzed models, we generated
alternative training and validation sets with random
word embeddings of the same size as the real ones.
During training and inference, these vectors were
kept frozen. These tests showed around 50% accu-
racy in the binary classification task, indicating that
the MLP cannot do better than chance in that sce-
nario. Thus, if in a later experiment the same MLP

https://wordnetcode.princeton.edu/glosstag.shtml
https://wordnetcode.princeton.edu/glosstag.shtml
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Figure 2: A reconstructed graph using BERT-large. Vi-
sual inspection reveals that the models capture key cat-
egories but fail to map fine-grained relations.

Family Model
Tree Edit Dist.

TIM MCM Avg.

NCE
Word2Vec 59 59 59
GloVe-42B 56 60 58

GLM
GPT-2 53 57 55
T5 58 55 56

CE

ELMo 52 55 53
BERT 49 48 49
RoBERTa 56 54 55
XLNet 52 48 50
ALBERT 53 50 51

Table 1: Tree Edit Distance against the ground truth
graph (large models used). We display both strategies
for estimating de along with their average score.

succeeds at the task, the merit can be attributed to
the input embedding itself. This result is consistent
with the fact that our experimental setup ensures no
overlap in concepts among training, development,
and testing sets.

2.4 Reconstructing the structure of a
knowledge graph

The probe classifier predicts if a pair of concepts
〈u, v〉 form a valid 〈parent, child〉 relation accord-
ing to WordNet, where h〈u,v〉 ∈ [0, 1] denotes the
corresponding classifier output. It is important to
note that valid 〈parent, child〉 relations include di-
rect relations (e.g. 〈dog, poodle〉), and transitive
relations (e.g. 〈animal, poodle〉), and that the order
of the items matters.

To reconstruct the underlying knowledge graph,
for each valid 〈parent, child〉 relation given by
h〈u,v〉 > threshold, we need an estimation of how
close are the nodes in the graph. We do this by
introducing the concept of “parent closeness” be-
tween a parent node u and a child node v, denoted
by de(u, v). We propose two alternative scores to
estimate de:

i) Model Confidence Metric (MCM): All the
models considered in this study capture close rela-
tions more precisely than distant relations (support-
ing evidence can be found in Appendix D). This
means that a concept like poodle will be matched
with its direct parent node dog with higher con-
fidence than with a more distant parent node (e.g.
animal). Thus, we can define de(u, v) = 1−h〈u,v〉.

ii) Transitive Intersections Metric (TIM): We
explore a metric grounded directly in the tree struc-
ture of a knowledge graph. Note that nodes u and

v that form a parent-child relation have some tran-
sitive connections in common. Specifically, all
descendants of v are also descendants of u, and all
the ancestors of u are also ancestors of v. Then, the
closer the link between u and v in the graph, the
bigger the intersection. Accordingly, for each edge
e = 〈u, v〉, we define de(u, v) as:

−
( ∑
j∈N\{u,v}

h〈u,j〉h〈v,j〉 + h〈j,u〉h〈j,v〉

)
∗ h〈u,v〉,

(1)
where the first term of the sum accounts for the sim-
ilarity within the descendants of nodes u and v, and
the second term accounts for the similarity within
the ancestors of nodes u and v. The term h〈u,v〉 at
the right-hand side accounts for the edge direction,
and N denotes the set of nodes (concepts).

A strategy to find a tree that comprises each
node’s closest parents is the minimum-spanning-
arborescence (MSA) of the graph defined using de.
The MSA is analogous to the minimum-spanning-
tree (MST) objective used by Hewitt and Manning
(2019), but for directed graphs. The formulation
of the MSA optimization problem applied to our
proposal is provided in the Appendix A.3.

3 How accurate is this knowledge?

3.1 Semantic edge probing classifier results

Table 2 shows the results obtained using the edge
probing classifier. Results show that regardless of
model sizes, performance is homogeneous within
each family of models. Additionally, results show
that NCE and GLM methods obtain a worse per-
formance when all the layers are used than those
achieved by CE methods. When single layers are
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Emb. Size Best F1-score F1-score
Family Model All/Best Layer Layer All Layers Best Layer

NCE Word2Vec (Mikolov et al., 2013) 300 / - - .7683 ± .0135 -
GloVe-42B (Pennington et al., 2014) 300 / - - .7877 ± .0084 -

GLM

GPT-2 (Radford et al., 2018) 9984 / 768 6 .7862 ± .0132 .7921 ± .0108

T5-small (Raffel et al., 2019) 7168 / 512 4 .8156 ± .0098 .8199 ± .0081

GPT2-xl (Radford et al., 2018) 78400 / 1600 13 .7946 ± .0151 .8029 ± .0118

T5-large (Raffel et al., 2019) 51200 / 1024 17 .8148 ± .0119 .8331 ± .0102

CE

ELMo-small (Peters et al., 2018b) 768 / 256 2 .7986 ± .0126 .7880 ± .0119

BERT-base (Devlin et al., 2019) 9984 / 768 10 .8240 ± .0123 .8185 ± .0104

RoBERTa-base (Liu et al., 2019) 9984 / 768 5 .8392 ± .0100 .8266 ± .0083

XLNet-base (Yang et al., 2019) 9984 / 768 4 .8306 ± .0113 .8293 ± .0116

ALBERT-base (Lan et al., 2020) 9984 / 768 12 .8184 ± .0222 .8073 ± .0102

ELMo-large (Peters et al., 2018b) 3072 / 1024 2 .8311 ± .0090 .8330 ± .0083

BERT-large (Devlin et al., 2019) 25600 / 1024 14 .8178 ± .0152 .8185 ± .0113

RoBERTa-large (Liu et al., 2019) 25600 / 1024 13 .8219 ± .0159 .8314 ± .0082

XLNet-large (Yang et al., 2019) 25600 / 1024 6 .8211 ± .0142 .8244 ± .0080

ALBERT-xxlarge (Lan et al., 2020) 53248 / 4096 4 .8233 ± .0107 .8194 ± .0097

Table 2: Results obtained using the edge probing classifier. We study the performance in many model variants,
considering small and large versions of several models. Results are grouped by method families.

used, GLM shows improved performance, suggest-
ing that these models capture semantics earlier
in the architecture, keeping their last layers for
generative-specific purposes. In contrast, CE mod-
els degrade or maintain their performance when
single layers are used.

Note that Table 2 shows pair-wise metrics not
graph metrics. As we are dealing with graphs, pre-
dicted edges are built upon related edges. Thus,
drifts in small regions of the graph may cause large
drifts in downstream connections. Furthermore,
our setup balances positive and negative samples.
However, the proportion of negative samples can
be considerably larger in a real reconstruction sce-
nario. As a consequence, we emphasize that these
numbers must be considered together with the re-
sults reported in sections 3.2 and 4.

3.2 Extracting the Knowledge Graph

Predicting a knowledge graph has a complexity
of at least O(N2) in the number of analyzed con-
cepts. In our case, this imposes a highly demanding
computational obstacle because WordNet has over
82000 noun synsets. To accelerate experimentation
and facilitate our analysis and visualizations, we
focus on extracting a WordNet sub-graph compris-
ing 46 nodes not seen during training or validation.
These nodes are picked to include easily recog-
nizable relations. We use the tree-edit-distance to
evaluate how close are the reconstructed graphs to

the target graph extracted from WordNet. Table 1
shows our results.

Table 1 shows that graphs retrieved using CE
models are closer to the target than graphs pro-
vided by NCE and GLM models. In particular, the
best results are achieved by BERT, ALBERT, and
XLNet, indicating that these models encode more
accurate semantic information than the alternative
models. These results are consistent with those ob-
tained in Section 3.1. The graphs for all the models
can be found in Appendix C.

4 What is easy or hard? What are these
models learning?

Section 3 shows that different model families differ
in their errors. Furthermore, it shows that within
the same family, models have similar biases. In
this section, we elucidate which semantic factors
impact the performance of these models and which
ones do not affect their F1-score.

Figure 3-a shows that most models decrease their
F1-score as concepts get more specific. We hy-
pothesize that higher-level concepts (e.g., Animal)
appear more frequently and in more diverse con-
texts, as they are also seen as instances of their
sub-classes (e.g., Dog, Cat, Chihuahua), allowing
the models to learn more precise representations
for them. In contrast, lower-level concepts will
only appear in specific contexts (e.g., texts about
Apple-Head-Chihuahua). Figure 3-b corroborates



2989

Figure 3: Semantic factors with a high (top charts) or low (bottom charts) impact on F1-score, along with their 90%
confidence intervals. Charts only display ranges where at least 100 samples existed. Appendix D shows additional
factors along with the specific implementation details.

this intuition, as concepts with a higher number
of sub-classes have higher F1-scores. Figure 3-c
shows that models degrade their F1-score when
concepts are too frequent. In particular, NCE and
GLM models are more sensitive to this factor.

Another finding is that CE and GLM models are
almost unaffected by the number of senses that a
certain word has, neither to their sense ranking or
their number of sibling concepts, displaying almost
flat charts (see Figures 3-d-e-f). This result sug-
gests that these models pay more attention to the
context than to the target word. This behavior is
opposed to what NCE models exhibit according to
Yaghoobzadeh et al. (2019), as NCE models tend
to focus more on frequent senses.

In most cases, the same family models have sim-
ilar behaviors, especially within the NCE or CE
families. Also, different families show different
patterns. Table 3 shows some salient examples.
Surprisingly, all models struggle in the category
“taxonomic groups”. Manual inspection of sen-
tences makes us believe that the context confuses
CE and GLM models in these cases. In many sen-
tences, the corresponding concept could be nicely
replaced by another, conveying a modified but still
valid message. This phenomenon does not occur
in other categories such as “social group” or “at-
tribute”, even though these concepts are closely
related to “taxonomic groups”.

5 Where is this knowledge located?

As mentioned in Section 7, prior work has not
shown consensus about where is semantic infor-
mation encoded inside these architectures. Our
experiments shed light on this subject. Figure 4
shows how each layer contributes to the F1-score.

Figures 4-a and 4-b show the performance across
layers for the CE-based models. They reveal that
while BERT and RoBERTa use their top-layers
to encode semantic information, XLNet and AL-
BERT use the first layers. Figure 4-c shows that
while GPT-2 uses all its layers to encode semantics,
T5 shows an M shape related to its encoder-decoder
architecture. The chart shows that T5 uses its en-
coder to hold most of the semantic information. We
also note that small models show similar patterns
as their larger counterparts.

6 Further discussion and implications

Table 4 summarizes our main findings. Findings
(1), (2), and (3) indicate that, to a different extent,
all models encode relevant knowledge about the
hierarchical semantic relations included in Word-
Net. However, as we mention in Section 4, we
observe that the ability to learn about a concept
depends on its frequency in the training corpus
and the specificity of its meaning. Furthermore,
some concept categories seem to be hard for every
model family, while some are particularly difficult



2990

artifact attribute living matter person relation part social taxonomic
Family Model thing group group

NCE Word2Vec .7120 .7044 .7295 .7402 .7208 .7264 .7532 .7497 .6920
GloVe-42B .7389 .7213 .7421 .7633 .7351 .7567 .7759 .7579 .6648

GLM GPT-2 .7903 .7730 .7300 .7582 .7207 .7612 .7540 .8155 .3030
T5 .7868 .7649 .7862 .8002 .7735 .7963 .8051 .7868 .6944

CE

ELMo .8308 .8093 .8187 .7756 .8022 .7679 .7580 .8312 .6011
BERT .8249 .8094 .7593 .7645 .7379 .7662 .7499 .8516 .4804
RoBERTa .8315 .8167 .7823 .7614 .7585 .7649 .7441 .8552 .4921
XLNet .8319 .8064 .7907 .7636 .7779 .7659 .7526 .8422 .5371
ALBERT .8231 .8050 .7758 .7685 .7826 .7727 .7610 .8556 .4277

Table 3: Average F1-score for some semantic categories revealing models strengths and weaknesses. Several other
categories are reported in Appendix E along with their standard deviations.

Figure 4: F1-score for hypernym prediction across each model layer.

for contextual models such as CE. We hypothe-
size that stronger inductive biases are required to
capture low-frequency concepts. Furthermore, we
believe that new learning approaches are needed to
discriminate accurate meaning for high-frequency
concepts. As expected, our findings indicate that
model families have different biases leading to dif-
ferent behaviors. Thus, our results can illuminate
further research to improve semantic capabilities by
combining each family of models’ strengths. For
example, one could combine them as ensembles,
each one equipped with a different loss function
(i.e., one generative approach resembling GLM-
based methods and another discriminative resem-
bling CE-based methods).

Findings (4), (5), and (6) suggest that instead
of a standard finetuning of all layers of BERT ac-
cording to a given downstream task, to improve
semantic capabilities, one could perform a task pro-
filing to decide the best architecture for the task
and also how to take advantage of it. Using only
a limited number of layers or choosing a different
learning rate for each layer, one could exploit the
semantic knowledge that the pre-trained model car-
ries, avoiding the degradation of this information
present at the top layers, especially when using

T5, XLNet, or ALBERT-large. Accordingly, recent
work on adaptive strategies to output predictions us-
ing a limited number of layers (Xin et al., 2020; Liu
et al., 2020; Hou et al., 2020; Schwartz et al., 2020;
Fan et al., 2020; Bapna et al., 2020) would benefit
from using architectures that encode knowledge
in the first layers. To the best of our knowledge,
these works have only used BERT and RoBERTa,
achieving a good trade-off between accuracy and
efficiency. Only Zhou et al. (2020) has explored
ALBERT, reporting improved accuracy by stop-
ping earlier. Our findings explain this behavior and
suggest that T5 or XLNet may boot their results
even further as these architectures have sharper and
higher information peaks in their first layers.

Findings (7) and (8) suggest that recent success
in semantic NLP tasks might be due more to the use
of larger models than large corpora for pretraining.
This also suggests that to improve model perfor-
mance in semantic tasks, one could train larger
models even without increasing the corpus size. A
similar claim has been proposed by (Li et al., 2020)
leading to empirical performance improvements.

Finally, finding (9) is important because it sug-
gests that contextual models pay as much attention
to the context as to the target word and are probably
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Supporting
Finding Evidence Involved Models

(1) All models encode a relevant amount of knowledge about semantic
relations in WordNet, but this knowledge contains imprecisions.

All All

(2) The ability to learn concept relations depends on how frequent and
specific the concepts are. Some model families are more affected.

Fig. 3a-c NCE and GLM

(3) Concept difficulty is usually homogeneous within each model fam-
ily. Some semantic categories challenge all models.

Table 3 All

(4) Some models encode stronger semantic knowledge than others,
usually according to their family.

Tables 2, 1, 3 ELMo, BERT, RoBERTa,
ALBERT, XLNet, T5

(5) Some models focus their encoding of semantic knowledge in spe-
cific layers, and not distributed across all layers.

Table 2, Fig. 4 GLM

(6) Models have distinctive patterns as to where they encode semantic
knowledge. Patterns are model-specific and not size-specific.

Table 2, Fig. 4 All

(7) Model size has an impact in the quality of the captured semantic
knowledge, as seen in our layer-level probe tests.

Table 2, Fig. 4 ELMo, RoBERTa, AL-
BERT, GPT-2, T5

(8) Semantic knowledge does not depend on pre-training corpus size. Tables 2, B-5 -

(9) Contextual models are unaffected by multi-sense words. Fig. 3d-f CE and GLM

Table 4: Summary of our main findings and their corresponding supporting evidence.

biased in favor of contextual information, even if
they are not based on the Masked-Language-Model
strategy. We believe that this inductive bias could
be exploited even further in the design of the under-
lying architecture. Thus this finding might eluci-
date a design direction to encourage more effective
learning of semantic knowledge.

7 Related work

The success of deep learning architectures in
various NLP tasks has fueled a growing interest
to improve understanding of what these models
encode. Studies like Tenney et al. (2019b) claim
that success in a specific task helps understand
what type of information the model encodes.

Evidence of syntactic information: Using
probing classifiers, Clark et al. (2019) claims
that some specific BERT’s attention heads show
correspondence with syntactic tasks. Goldberg
(2019) illustrates the capabilities that BERT has
to solve syntactic tasks, such as subject-verb
agreement. Hewitt and Manning (2019) proposes a
structural probe that evaluates whether syntax trees
are encoded in a linear transformation of BERT
embeddings. The study provides evidence that
syntax trees are implicitly embedded in BERT’s
vector geometry. Reif et al. (2019) has found
evidence of syntactic representation in BERT’s
attention matrices, with specific directions in space
representing particular dependency relations.

Evidence of semantic information: Reif et al.
(2019) suggests that BERT’s internal geometry may
be broken into multiple linear subspaces, with sep-
arate spaces for different syntactic and semantic
information. Despite this result, previous work has
not yet reached a consensus about this topic. While
some studies show satisfactory results in tasks such
as entity types (Tenney et al., 2019a), semantic
roles (Rogers et al., 2020), and sentence comple-
tion (Ettinger, 2020), other studies show less favor-
able results in coreference (Tenney et al., 2019b),
Multiple-Choice Reading Comprehension (Si et al.,
2019) and Lexical Relation Inference (Levy et al.,
2015), claiming that BERT’s performance may not
reflect the model’s true ability of language under-
standing and reasoning. Tenney et al. (2019b) pro-
poses a set of edge probing tasks to test the en-
coded sentential structure of contextualized word
embeddings. The study shows evidence that the
improvements that BERT and GPT-2 offer over non
contextualized embeddings as GloVe is only signifi-
cant in syntactic-level tasks. Regarding static word
embeddings, Yaghoobzadeh et al. (2019) shows
that senses are well represented in single-vector
embeddings if they are frequent and that this does
not harm NLP tasks whose performance depends
on frequent senses.

Layer-wise or head-wise information: Tenney
et al. (2019a) shows that the first layers of BERT
focus on encoding short dependency relationships
at the syntactic level (e.g., subject-verb agreement).
In contrast, top layers focus on encoding long-
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range dependencies (e.g., subject-object dependen-
cies). Peters et al. (2018a) supports similar declara-
tions for Convolutional, LSTM, and self-attention
architectures. While these studies also support that
the top layers appear to encode semantic informa-
tion, the evidence to support this claim is not con-
clusive or contradictory with other works. For ex-
ample, Jawahar et al. (2019) could only identify
one SentEval semantic task that topped at the last
layer. In terms of information flow, Voita et al.
(2019a) reports that information about the past in
left-to-right language models gets vanished as the
information flows from bottom to top BERT’s lay-
ers. Hao et al. (2019) shows that the lower layers
of BERT change less during finetuning, suggesting
that layers close to inputs learn more transferable
language representations. Press et al. (2020) shows
that increasing self-attention at the bottom layers
improves language modeling performance based on
BERT. Other studies focus on understanding how
self-attention heads contribute to solving specific
tasks (Vig, 2019). Kovaleva et al. (2019) shows
a set of attention patterns repeated across differ-
ent heads when trying to solve GLUE tasks (Wang
et al., 2018). Furthermore, Michel et al. (2019) and
Voita et al. (2019b) show that several heads can be
removed without harming downstream tasks.

Automated extraction of concept relations:
Although the main focus of our work is not to
master the probing task of extracting knowledge
from WordNet, but to use it as an instrument
to verify and compare the abilities of current
families of language models to encode this kind
of knowledge, for completitude we include a
brief mention of previous literature regarding this
subject. Relation extraction is an active research
topic. Early works are either feature-based,
usually relying on SVMs, Maximum Entropy,
or on a set of manually defined rules (Hearst,
1998; Kambhatla, 2004; Dashtipour et al., 2017;
Minard et al., 2011; Weeds et al., 2014; Chen
et al., 2015). Other methods rely on manually
defined distance metrics to estimate the relatedness
of two semantic instances (Dandan et al., 2012;
Panyam et al., 2016). Following works have
used different types of neural networks or LSTM
modules for this task (Liu et al., 2013; Zeng et al.,
2014, 2015; Zhang and Wang, 2015; Song et al.,
2018), or attention-based and transformer-based
mechanisms with outstanding results (Zhou et al.,
2016; Baldini Soares et al., 2019; Huang et al.,

2020; Qin et al., 2021; Zhong and Chen, 2021).

Alternative approaches: Several alternative ap-
proaches have been used in previous works. Some
are dataset-focused (Miller et al., 1994; Levy et al.,
2015; Wang et al., 2018; Wiedemann et al., 2019),
usually relying on annotated corpora that challenge
semantic abilities. These approaches have provided
useful insights, but usually suffer from low avail-
ability of data as they usually cover a small frac-
tion of the WordNet ontology. As an example,
BLESS (Baroni and Lenci, 2011) includes gold-
standard annotations for only 200 concepts. Other
approaches have tested semantic ability by using
prompt-engineering and inspecting the predictions
of the models (Petroni et al., 2019; Ettinger, 2020;
Talmor et al., 2020), but other works have also
shown a high variability in the results depending on
the prompt design (Balasubramanian et al., 2020;
Reynolds and McDonell, 2021; Zhao et al., 2021).

8 Conclusions

In this work, we exploit the semantic conceptual
taxonomy behind WordNet to test the ability of
current families of pre-trained language models to
learn semantic knowledge from massive sources of
unlabeled data. Our main conclusion is that, indeed,
to a significant extent, these models learn relevant
knowledge about the organization of concepts in
WordNet, but also contain several imprecisions. We
also notice that different families of models present
dissimilar behavior, suggesting the encoding of
different biases.

We hope our study helps to inspire new ideas to
improve the semantic learning abilities of current
pre-trained language models.
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Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Ofir Press, Noah A. Smith, and Omer Levy. 2020. Im-
proving transformer models by reordering their sub-
layers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, pages 2996–3005.

Yongbin Qin, Weizhe Yang, Kai Wang, Ruizhang
Huang, Feng Tian, Shaolin Ao, and Yanping Chen.
2021. Entity relation extraction based on entity indi-
cators. Symmetry, 13(4).

https://doi.org/10.3115/v1/N15-1098
https://doi.org/10.3115/v1/N15-1098
https://doi.org/10.1007/978-3-642-53917-6_21
https://doi.org/10.1007/978-3-642-53917-6_21
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://www.aclweb.org/anthology/H94-1046
https://www.aclweb.org/anthology/H94-1046
https://www.aclweb.org/anthology/R11-1086
https://www.aclweb.org/anthology/R11-1086
https://www.aclweb.org/anthology/U16-1007
https://www.aclweb.org/anthology/U16-1007
https://www.aclweb.org/anthology/U16-1007
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.3390/sym13040539
https://doi.org/10.3390/sym13040539


2995

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Abhilasha Ravichander, Yonatan Belinkov, and
E. Hovy. 2020. Probing the probing paradigm:
Does probing accuracy entail task relevance? ArXiv,
abs/2005.00719.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B.
Viégas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
BERT. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019,
pages 8592–8600.

Laria Reynolds and Kyle McDonell. 2021. Prompt Pro-
gramming for Large Language Models: Beyond the
Few-Shot Paradigm. Association for Computing Ma-
chinery, New York, NY, USA.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. CoRR abs/2002.12327.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proc. of ACL.

Chenglei Si, Shuohang Wang, Min-Yen Kan, and Jing
Jiang. 2019. What does BERT learn from multiple-
choice reading comprehension datasets? CoRR,
abs/1910.12391.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. N-ary relation extraction using graph-
state LSTM. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2226–2235, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Gongbo Tang, Rico Sennrich, and Joakim Nivre. 2018.
An analysis of attention mechanisms: The case of
word sense disambiguation in neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation, WMT 2018, pages 26–35.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
pages 4593–4601.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019b. What do you
learn from context? probing for sentence structure
in contextualized word representations. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems NIPS 2017, pages
5998–6008.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, pages 37–42.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 4395–4405.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019b. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Conference of the Association for Computa-
tional Linguistics, ACL 2019, pages 5797–5808.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2018. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understand-
ing. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, pages 353–355.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259, Dublin, Ireland. Dublin City University
and Association for Computational Linguistics.

Gregor Wiedemann, Steffen Remus, Avi Chawla, and
Chris Biemann. 2019. Does BERT make any sense?
interpretable word sense disambiguation with con-
textualized embeddings.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, On-
line. Association for Computational Linguistics.

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2005.00719
https://arxiv.org/abs/2005.00719
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.18653/v1/D18-1246
https://doi.org/10.18653/v1/D18-1246
https://doi.org/10.1162/tacl_a_00342
https://doi.org/10.1162/tacl_a_00342
https://www.aclweb.org/anthology/C14-1212
https://www.aclweb.org/anthology/C14-1212
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204


2996

Yadollah Yaghoobzadeh, Katharina Kann, Timothy J.
Hazen, Eneko Agirre, and Hinrich Schütze. 2019.
Probing for semantic classes: Diagnosing the mean-
ing content of word embeddings. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
5740–5753. Association for Computational Linguis-
tics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G.
Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019. XLNet: Generalized autoregressive pretrain-
ing for language understanding. In Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, pages 5754–5764.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1753–
1762, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland. Dublin City Uni-
versity and Association for Computational Linguis-
tics.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2020. An analysis of BERT in doc-
ument ranking. In Proceedings of the 43rd Interna-
tional ACM SIGIR conference on research and devel-
opment in Information Retrieval, SIGIR 2020, pages
1941–1944.

Dongxu Zhang and Dong Wang. 2015. Relation classi-
fication via recurrent neural network.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein,
and Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
arXiv preprint arXiv:2102.09690.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
207–212, Berlin, Germany. Association for Compu-
tational Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.

https://doi.org/10.18653/v1/p19-1574
https://doi.org/10.18653/v1/p19-1574
https://doi.org/10.18653/v1/D15-1203
https://doi.org/10.18653/v1/D15-1203
https://www.aclweb.org/anthology/C14-1220
https://www.aclweb.org/anthology/C14-1220
http://arxiv.org/abs/1508.01006
http://arxiv.org/abs/1508.01006
https://www.aclweb.org/anthology/2021.naacl-main.5
https://www.aclweb.org/anthology/2021.naacl-main.5
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
http://arxiv.org/abs/2006.04152
http://arxiv.org/abs/2006.04152


2997

A Implementation details

A.1 Edge probing classifier details
To study the extent to which these Language Mod-
els deal with semantic knowledge, we extend the
methodology introduced by Tenney et al. (2019b).
In that study, the authors defined a probing clas-
sifier at the sentence level, training a supervised
classifier with a task-specific label. The probing
classifier’s motivation consists of verifying when
the sentence’s encoding help to solve a specific task,
quantifying these results for different word embed-
dings models. We cast this methodology to deal
with semantic knowledge extracted from WordNet.
Rather than working at the sentence level, we de-
fine an edge probing classifier that learns to identify
if two concepts are semantically related.

To create the probing classifier, we retrieve all
the glosses from the Princeton WordNet Gloss
Corpus. The dataset provides WordNet’s synsets
gloss with manually matched words identifying the
context-appropriate sense.

As a reference of size, the selected annotations
in the corpus accounted for 41502 lemmas, corre-
sponding to 34371 WordNet synsets. This resulted
in 230215 valid WordNet relations.

In WordNet, each sense is coded as one of
the synsets related to the concept (e.g., sense ten-
dency.n.03 for the word tendency). Using a synset
A and its specific sense provided by the tagged
gloss, we retrieve from WordNet one of its direct
or indirect hypernyms, denoted as B (see Figure
5). If WordNet defines two or more hypernyms
for A, we choose one of them at random. We sam-
ple a third synset C, at random from an unrelated
section of the taxonomy, taking care that C is not
related to either A or B (e.g., animal.n.01). Then,
〈A,B,C〉 form a triplet that allows us to create six
testing edges for our classifier: 〈A,B〉, which is
compounded by a pair of related words through the
semantic relation hypernym of, and five pairs of
unrelated words (〈A,C〉, 〈B,C〉, 〈B,A〉, 〈C,A〉,
〈C,B〉). We associate a label to each of these pairs
that show whether the pair is related or not (see Fig-
ure 5). Note that we define directed edges, meaning
that the pair 〈A,B〉 is related, but 〈B,A〉 is unre-
lated to the relationship hypernym of. Accordingly,
the edge probing classifier will need to identify
the pair’s components and the order in which the
concepts were declared in the pair.

We create training and testing partitions ensur-
ing that each partition has the same proportion of

leaves versus internal nodes. The latter is essential
to identify related pairs. During training, we guar-
antee that each training synset is seen at least once
by the probing classifier. To guarantee the above,
we sample each synset in the training set and sam-
ple some of its hypernyms at random. Then. we
randomly sample some unrelated synset for each
related pair that has no relation to any of the words
in the related pair. We create three partitions from
this data on 70/15/15 for training, development,
and testing foldings, respectively.

We train the MLP classifier using a weighted
binary cross-entropy loss function. Since we have
one positive and five negative examples per triplet,
we use a weighted loss function with weights 5
and 1 for the positive and negative class, respec-
tively. Accordingly, positive and negative examples
have the same relevance during training. We im-
plemented the linear layer and the MLP classifier
using a feed forward network with 384 hidden units.
The MLP was trained using dropout at 0.425 and a
L2 regularizer to avoid overfitting.

To create the vector representations for each of
the word embeddings models considered in this
study, we concatenate the hidden state vectors of
all the layers for each tagged synset. For both CE
and GLM-based models, each gloss was used as a
context to build specific contextual word embed-
dings. If the gloss has more than one tagged token,
we take only the first of them for the analysis.

A.2 WordNet metrics: distance
Lets say that we name “Case-1” if y is ancestor of
x, and “Case-2” otherwise. Let dW (x, y) be the
Wordnet distance between two synsets x, y, defined
by:

dW (x, y) =

{
dpath(x, y) Case-1,

dpath(x, z) + dpath(y, z) Case-2,
(2)

where dpath(x, y) is the length of the shortest path
between x and y in WordNet, measured in number
of hops, and z is the closest common ancestor of x
and y in the case that y is not an ancestor of x.

A.3 Minimum-Spanning-Arborescence
optimization problem

Given a graphG with nodesN and unknown edges
E, we define an auxiliary graph G′ with nodes N
and edges E′, comprised of all possible directed
edges. For each edge e ∈ E′, we obtain a pre-
diction he that estimates the probability of that
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concept pairs labels

Figure 5: Each triplet is used to create related and unrelated pairs of words according to the relationship hypernym
of. We create six edge probing pairs, and therefore, the edge probing classifier will need to identify the pair’s
components and the order in which the words were declared in the pair.

edge representing a valid hypernymy relation, and
a distance de that estimates the “parent closeness”3

between the nodes in G.
We define δ(v) to be the set of edges {〈u, v〉 :

u ∈ N, u 6= v} where edge 〈u, v〉 represents a
〈parent, child〉 relation. We also define γ(S) to be
the set of edges {〈u, v〉 ∈ E′ : u /∈ S, v ∈ S}.
We estimate the graph topology of G defined by
E ⊂ E′ by solving the following optimization
problem:

max
r∈N

∑
e∈E′

xehe s.t. xe ∈ X∗ (3)

X∗ = argmin
∑
e∈E′

xede (4)

s.t.


xe ∈ {0, 1} e ∈ E′∑

e∈δ(v) xe = 1 ∀v ∈ N \ {r}∑
e∈γ(S) xe ≥ 1 ∀S ⊂ N \ {r}

(5)

Objective function (3) is used to find the best
root node r; and the nested optimization problem
(5) is the minimum spanning arborescence problem
applied to the dense graph G′. The final binary val-
ues of xe estimate E by indicating if every possible
edge e exist in the graph or not. To solve this opti-
mization problem, we need estimates of he and de
for each edge e. We use the output of the probing
classifier as an estimate of the probability of he,
and use TIM and MCM scores as estimates for de
(See Section 2.4).

3The value of this distance will be small if the hypernym
relation is close, or large if it is distant or not valid.

B Pre-Training corpus comparison

Family Model Corpus Size
Tokens Size

NCE
Word2Vec 33B 150GB*
GloVe-42B 42B 175GB*

GLM
GPT-2 10B* 40GB
T5 180B* 750GB

CE

ELMo 0.8B 4GB*
BERT 3.9B 16GB
RoBERTa 38.7B* 160GB
XLNet 32.9B 140GB*
ALBERT 3.9B 16GB

Table 5: Pre-Training corpus sizes used for each one of
the studied models. The official sources report corpus
sizes in terms of number of tokens or uncompressed
size in GB. The symbol * denotes values estimated by
us based on official available information. Sizes repre-
sents uncompressed corpus sizes.

C Additional Reconstructed Graphs4
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Figure 6: Ground Truth Knowledge Graph

4Due to space restrictions, the graphs corresponding to
Word2Vec, ELMo, T5, BERT will only be included in an
extended version of this paper, uploaded to ArXiv
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Figure 7: GloVe-42B reconstruction using TIM

tur
tle

fel
ine ide

nti
ty

ap
pro

xim
ati
on

tig
ersal

am
an
de
rpa

lmpri
ma

tesam
en
ess

on
en
ess

sim
ila
rity

eq
ua
lity

en
tity

like
ne
ss

let
tuc

espi
na
chwo
od
y_p

lan
t

he
rb

roc
k

cal
cu
lus

cry
sta

l

qu
ali
ty

ob
jec

t

ab
str
ac
tio
n

na
tur

al_
ob
jec

t

an
im
al

att
rib
ute

pla
nt

bir
d

rep
tilecro

cod
ile

can
ary

cat

all
iga

tor
pa
rro

t

pin
ech

ick
en

mo
no
tre

me

pla
typ

us

am
ph
ibi
an

sna
ke

mo
nk
ey
fro
g

ho
mo

_sa
pie

ns

ma
mm

al

livi
ng
_th

ing

Figure 8: GPT-2-XL reconstruction using TIM
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Figure 9: RoBERTa-large reconstruction using TIM
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Figure 10: XLNet-large reconstruction using TIM
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Figure 11: ALBERT-large reconstruction using TIM

D Further information about the impact
of semantic factors.5

Relative depth in the WordNet graph: (Figure
3-a). For each synset, we compared F1 with depth
score (0 % for the root and 100 % for leaves) mea-
suring differences between higher/lower level con-
cepts.

Concept frequency: In Figure 3-c we evalu-
ate if frequent concepts are easier or harder to
capture for these models. The frequency was
computed by counting occurrences in the 38 GB
of OpenWebText Corpus (http://Skylion007.
github.io/OpenWebTextCorpus).

Number of Senses and Sense Ranking: (Fig-
ure 3-d-e) We studied if models are impacted by
multi-sense concepts such as “period”, and by their
sense ranking (how frequent or rare those senses
are). Surprisingly contextualized models, and spe-
cially CE models have no significant impact by
this factor, suggesting that these models are very
effective at deducing the correct sense based on
their context. These charts also suggest that these
models may be considering context even more than
the words themselves. This is intuitive for Masked-
Language-Models such as BERT, but not for others,
such as GPT-2. Non-contextualized models are im-
pacted by this factor, as expected.

2 4 6 8 10 12 14 16 18
WordNet Distance Between the Concepts

0.0

0.2
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GPT2-XL
T5-large
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RoBERTa-large
XLNet-large
ALBERT-xxlarge

Figure 12: Graph distance between concepts: We
measured the impact of the number of “hops” that sep-
arate two tested concepts on pair-wise F1 score. This
chart reveals a strong correlation of all the models in
this aspect. As an example of this phenomenon, closer
relations such as 〈chihuahua, dog〉 are, in general, con-
siderably easier to capture than distant relations such as
〈chihuahua, entity〉. For details on how we implement
the distance in WordNet, check Appendix A.2.

5Due to space restrictions, other factors and graphs will
only be included in an extended version of this paper, uploaded
to ArXiv

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
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E F1-scores of additional categories

Category W2V GloVe GPT-2 T5 ELMo BERT RoBERTa XLNet ALBERT

abstraction
.7142 .7296 .7224 .7662 .7808 .7718 .7759 .7712 .7635
± .1277 ± .1194 ± .1897 ± .0942 ± .1203 ± .1582 ± .1537 ± .1404 ± .1732

attribute
.7044 .7213 .7730 .7649 .8093 .8094 .8167 .8064 .8050
± .1310 ± .1237 ± .0911 ± .0863 ± .0886 ± .0998 ± .0926 ± .0891 ± .0998

communication
.6974 .7251 .7826 .7587 .8049 .8246 .8249 .8066 .8093
± .1330 ± .1224 ± .0967 ± .1083 ± .0925 ± .0979 ± .0983 ± .0987 ± .1023

group
.7068 .6929 .4972 .7262 .6821 .6173 .6256 .6491 .5858
± .1320 ± .1339 ± .2955 ± .1179 ± .1711 ± .2399 ± .2305 ± .2139 ± .2745

social group
.7497 .7579 .8155 .7868 .8312 .8516 .8552 .8422 .8556
± .1058 ± .1046 ± .0883 ± .0867 ± .0707 ± .0742 ± .0698 ± .0724 ± .0819

taxonomic group
.6920 .6648 .3030 .6944 .6011 .4804 .4921 .5371 .4277
± .1306 ± .1330 ± .2025 ± .1208 ± .1583 ± .2025 ± .1903 ± .1944 ± .2305

family
.7412 .7213 .3131 .6691 .5461 .5626 .5379 .5733 .5437
± .1363 ± .1244 ± .2003 ± .1276 ± .1630 ± .1537 ± .1502 ± .1626 ± .1705

genus
.6267 .6040 .2567 .7156 .6167 .3696 .4201 .4555 .2862
± .0989 ± .1127 ± .1582 ± .1001 ± .1301 ± .1857 ± .1855 ± .1853 ± .1945

psychological feature
.7256 .7478 .7829 .7795 .8163 .8181 .8229 .8077 .8208
± .1122 ± .1016 ± .0904 ± .0778 ± .0851 ± .0954 ± .0930 ± .0931 ± .0915

relation
.7264 .7567 .7612 .7963 .7679 .7662 .7649 .7659 .7727
± .1304 ± .1042 ± .0809 ± .0688 ± .0878 ± .0995 ± .0982 ± .0908 ± .0929

artifact
.7120 .7389 .7903 .7868 .8308 .8249 .8315 .8319 .8231
± .1194 ± .1068 ± .0736 ± .0676 ± .0693 ± .0742 ± .0700 ± .0702 ± .0761

covering
.7230 .7510 .7903 .7878 .8398 .8392 .8363 .8393 .8322
± .1097 ± .0970 ± .0713 ± .0606 ± .0599 ± .0706 ± .0571 ± .0576 ± .0621

instrumentality
.7064 .7378 .7930 .7902 .8308 .8134 .8337 .8313 .8233
± .1219 ± .1052 ± .0728 ± .0648 ± .0676 ± .0748 ± .0691 ± .0711 ± .0763

device
.7097 .7435 .7956 .7899 .8311 .8198 .8358 .8326 .8230
± .1200 ± .1009 ± .0713 ± .0667 ± .0689 ± .0701 ± .0640 ± .0675 ± .0743

causal agent
.7240 .7398 .7253 .7751 .8022 .7453 .7631 .7788 .7826
± .1137 ± .1101 ± .1105 ± .0757 ± .0884 ± .1093 ± .1056 ± .1035 ± .0934

person
.7208 .7351 .7207 .7735 .8022 .7379 .7585 .7779 .7826
± .1135 ± .1113 ± .1132 ± .0746 ± .0854 ± .1101 ± .1054 ± .1053 ± .0937

living thing
.7295 .7421 .7300 .7862 .8187 .7593 .7823 .7907 .7758
± .1112 ± .1078 ± .1004 ± .0749 ± .0850 ± .0997 ± .0922 ± .0928 ± .0909

animal
.7349 .7391 .7515 .7837 .8389 .7914 .8179 .8135 .7781
± .1049 ± .1028 ± .0829 ± .0714 ± .0785 ± .0801 ± .0701 ± .0737 ± .0857

plant
.7445 .7608 .7288 .8168 .8404 .7679 .7962 .7986 .7645
± .1044 ± .0989 ± .0842 ± .0653 ± .0692 ± .0830 ± .0688 ± .0746 ± .0861

matter .7402 .7633 .7582 .8002 .7756 .7645 .7614 .7636 .7685
± .1117 ± .1009 ± .0834 ± .0662 ± .0886 ± .0959 ± .0941 ± .0908 ± .0938

part .7532 .7759 .7540 .8051 .7580 .7499 .7441 .7526 .7610
± .1000 ± .0852 ± .0772 ± .0595 ± .0844 ± .0977 ± .0947 ± .0880 ± .0907

substance .7560 .7791 .7508 .8073 .7542 .7436 .7370 .7477 .7580
± .0967 ± .0809 ± .0755 ± .0567 ± .0828 ± .0952 ± .0919 ± .0862 ± .0889

Table 6: Each value represents the mean F1-score and standard deviation of all the concepts that belong to each
analyzed category. Only the larger version of each model is reported. This is not an extensive list and categories
are somewhat imbalanced. Categories were selected based on the number of sub-categories they contained.


