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Abstract

Dialogue generation has been improved
through injecting knowledge into generative
models. However, addition of knowledge
through simple selection of sentences or para-
graphs is likely to introduce noise and dimin-
ish the effectiveness of the generative models.
In this paper, we present a novel Knowledge
Term Weighting Model (KTWM) that in-
corporates term-level de-noising of the se-
lected knowledge. KTWM includes a mod-
ule for generating Simulated Response Vec-
tors (SRVs) and uses SRVs attention distri-
butions with the knowledge embeddings to
determine knowledge term weights. Our
experiments demonstrate that KTWM, com-
bined with various knowledge selection algo-
rithms, consistently achieves statistically sig-
nificant improvements over methods without
term weighting when applied to two publicly
available datasets Wizard of Wikipedia (Wiz)
and Holl-E. The results are particularly im-
proved for the Wiz test data with unseen topics,
demonstrating the robustness of the KTWM
noise-reduction approach.

1 Introduction

Research in dialogue generation has rapidly
evolved from sequence-to-sequence (Sutskever
et al., 2014) and Transformer models (Vaswani
et al., 2017) to approaches with pre-trained models
such as BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019) and T5 (Raffel et al., 2020). More
recently, it included techniques that use knowledge,
in addition to the original posts, to improve the
quality of the generated responses (Ghazvinine-
jad et al. (2018), Moghe et al. (2018), Dinan et al.
(2019), Galley et al. (2019), Lian et al. (2019),
Zheng and Zhou (2019), Zhao et al. (2020a), Zhao
et al. (2020b)).1 This approach is referred to as

1Previous works used a variety of terms to refer to a post
such as ‘question’, ‘utterance’,‘source’ and ‘query’. Similarly

Post: I am a big fan of education. I think people don’t
realise how important it is.
Ground-truth response: Sure, education is important
since it facilitates learning and the acquisition of skills.
Knowledge terms weighted by KTWM:
Education is the process of facilitating learning , or the
acquisition of knowledge , skills , values , beliefs , and
habits

Response generated by KTWM: I agree. Education is a
great way to learn about facilitating learning.

0 0.2 0.4 0.6 0.8 1

Table 1: Example of a post, ground truth response,
injected knowledge and generated response by the
Knowledge Term Weighting Model (KTWM). The
term highlights indicate the predicted probability of a
term being useful.

knowledge-grounded dialogue generation and is
the primary concern of this paper.

In particular, we consider the key issue of effec-
tively incorporating the selected knowledge into
the generation process. For example, Weston et al.
(2018) apply a retrieve and refine method to expand
the post with the retrieved knowledge and then use
it in the generation process. Lian et al. (2019) con-
sider the post and response posterior distributions
and the post prior distribution to train jointly the
model for knowledge selection and response gener-
ation. Kim et al. (2020) view the knowledge selec-
tion as a sequential decision problem, first selecting
the best ranked knowledge using a sequential la-
tent variable model, and then generating a response
based on selected knowledge.

To the best of our knowledge, all prior ap-
proaches focus on the selection and injection of
knowledge at the sentence or paragraph level. How-
ever, that makes it hard to control for potential

for response they used ‘answer’, ‘response’, and ‘target’. In
this paper we call the first role the ‘post’ and the second role
the ‘response’ and we aim to generate the response for the
given post.
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noise, i.e., for inclusion of non-relevant words, and
previous studies (Galley et al. (2019), Zheng et al.
(2020)) have shown that adding noise can decrease
the response generation quality. Therefore, it is
important to investigate whether and how we can
adjust the contributions of terms in the selected
knowledge. Prior research has not considered that
issue systematically.

Our paper fills this gap by introducing a novel
Knowledge Term Weighting Model (KTWM) for
dialogue generation, which effectively estimates
term weights of the injected knowledge and incor-
porates such weights into the response generation.
The response generation thus benefits from such
nuanced term-level knowledge weighting, promot-
ing important knowledge terms rather than treating
equally all the terms in the selected sentences. In
Table 1 we show an example of the KTWM term
weighting and its generated response: the terms
‘education’, ‘is’, ‘facilitating’ and ‘learning’ are
given higher weights correctly as they do appear in
the ground-truth response, while the words ’values’
and ‘beliefs’ are correctly assigned lower scores.

We conducted an extensive range of experiments
with KTWM on two publicly available datasets:
Wiz (with seen and unseen test topics) (Dinan et al.,
2019) and Holl-E (Moghe et al., 2018). KTWM
performs consistently well with different selec-
tions of knowledge, specifically with Post-KS (Lian
et al., 2019), SKT (Sequential Latent-Knowledge
Selection) (Kim et al., 2020) and TED (Trans-
former with Expanded Decoder) (Zheng and Zhou,
2019). Our work achieves both a superior per-
formance in knowledge-grounded dialogue gen-
eration and new insights into the impact of the
knowledge term weighting on that performance.
The code of our method is publicly available at
https://github.com/tonywenuon/acl2021 ktwm and
enables reproducibility of our results.

2 Related Work

The knowledge-grounded dialogue generation can
be tackled by decomposing it into two sub-
problems: (1) selecting knowledge from a large
pool of candidates (knowledge selection), and (2)
generating a response from the selected knowledge
and context (knowledge-grounded response gener-
ation).
Knowledge-grounded Response Generation
Ever since the knowledge-based dialogue gen-
eration task was released by DSTC-7 (Galley

et al., 2019), research interest in the topic has
been steadily growing. Ghazvininejad et al.
(2018) proposed a multi-task learning approach to
produce responses. The posts and knowledge are
used in the encoders and share the same decoder
parameters. Luan et al. (2017) expanded the
scope and introduced personality information
into the model. They assumed that the trainable
parameters can potentially capture persona from
the non-conversational data (Tweets). Yavuz et al.
(2019) adopted pointer-generator networks within
a hierarchical framework that enabled them to
include external knowledge in addition to the
context. Ye et al. (2020) proposed a latent variable
based generative model, which contains a joint
attention mechanism conditioned on both context
and external knowledge. Li et al. (2019) applied
a deliberation network to create a two-stage
generative model that combines both context and
knowledge and, in the second generation stage,
makes use of the outputs from the first stage.
Zheng and Zhou (2019) proposed Transformer
with Expanded Decoder (TED) architecture that
assigns different weights to different knowledge
sources and incorporates them into the generation
process.

While the above approaches and models focus on
incorporating knowledge and context to generate
responses, they do that at the sentence or paragraph
level. Our work deals with the quality of the incor-
porated knowledge at the term level, weighing all
the individual knowledge terms when generating
the responses.

Knowledge Selection Considering the mecha-
nisms for response generation, Weston et al. (2018)
proposed to retrieve candidate content from a
knowledge set and use it to expand the post.
The result is a truncated sequence that represents
a refined post. (Lian et al., 2019) select the
knowledge by approximating the prior distribu-
tion (i.e., p(knowledge|post)) with the posterior-
distribution (i.e., p(knowledge|post, response))
and then inject it into the decoder. Kim et al. (2020)
trained a knowledge selection module and a re-
sponse generation module jointly, but treated the
knowledge selection as a sequential decision prob-
lem, using input and knowledge from the previous
turns to select the knowledge in the subsequent
turns. Zheng et al. (2020) separated the knowledge
selection process from the generation process so
that all the downstream generation tasks can use
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the selected knowledge. They mapped posts to the
best knowledge representations in both the training
and the testing phase, and used the learned models
to rank new post-knowledge pairs.

In this context, KTWM can be viewed as an op-
timization step following the knowledge selection.
It is focused on learning knowledge term weights
to distinguish between relevant and non-relevant
terms and weighing higher those that are useful for
the response generation.

3 Method

In this section we introduce the basic concepts
and describe in detail our method KTWM for
term-weighting of the injected knowledge. We
assume that for a collection of posts P and re-
sponses R, we have a collection {Kpr} of knowl-
edge sets with sentences relevant to the specific
post-response pair (p, r). For a given pair (p, r)
we consider a knowledge injection process that in-
volves three stages: (1) knowledge selection, (2)
knowledge term-weighting, and (3) decoding with
the weighted knowledge terms. Our primary fo-
cus is on (2), i.e., the effectiveness of the term-
weighting for the knowledge incorporated in the
KTWM. Thus we provide a detailed description of
the term-weighting model (Figure 1) and the use of
the KTWM decoder (Figure 2).

3.1 Knowledge Selection and Representation

We represent each post p, response r, and a knowl-
edge sentence k as a vector of terms. The set Kpr

typically contains multiple knowledge sentences
and we use BM25 retrieval method to rank the sen-
tences by their relevance to the post (in the test
phase) or response (in the training phase). For
knowledge injection we take the top ranked sen-
tence. When the knowledge injection requires a
specific number of terms to be used, we include
additional sentences from the ranked list to meet
that requirement (used in §4.4.3).

When a knowledge sentence k is retrieved based
on a response r as a query, we define a ground
truth vector GTknow for the knowledge k with the
weight of 1 assigned to the knowledge terms that
are present in r and the weight of 0 assigned to
those that are not, i.e., GTknow = (e1, e2, . . . , el),
where ei ∈ {0, 1}, i = 1, . . . , l.
Encoders. We adopt Transformer (Vaswani et al.,
2017) as the backbone framework for the training
and testing of KTWM. Transformer encoder con-

sists of a self-attention layer and a transition layer
involving the layer normalisation and residual net-
work. Formally, the attention is defined as

Attention(Q,K, V ) = softmax

(
QKT

√
dm

)
V,

(1)
where Q, K, and V are embedding matrices and dm
is the embedding dimension of the model. First we
compute the dot similarity of the Q and K and then
apply the weighted summation with V. The repre-
sentation of Q is updated with the information from
K and V. If Q, K, V originate from the same source,
e.g., an input post, the attention is referred to as
self-attention. Otherwise, if they originate from
different sources, e.g., Q relates to the decoding
token and K and V are from a post, the attention
turns to be a mutual-attention operation.

Figure 1 shows transformer encoders (encoders
for short) used for the post, knowledge, and re-
sponse representations and processing. We use w
to designate an original term and ŵ to designate the
term’s representation. In Figure 1, n, m, and l are
three pre-defined hyper-parameters which refer to
the length of the post (p), response (r), and knowl-
edge (k), respectively (e.g. wpi means the i-th term
of the post). Any sequence that is longer or shorter
than the given length will be truncated or padded
to the given length. By applying the encoder

Vpost = Encoder(wi)(i ∈ [1, n]) (2)

we obtain the post terms representations Vpost,
comprising ŵp1, ŵp2, . . . , ŵpn (in Figure 1), from
the original terms wp1, wp2, . . . , wpn. Similarly to
Vpost in Eq. (2), we obtain Vknow and Vresp as term
representations of the corresponding knowledge
and the response, respectively.

3.2 Knowledge Term Weighting

The fundamental premise of our approach is that
knowledge terms related to or present in the re-
sponse should be more effective in improving di-
alogue generation. Thus, it can be beneficial to
use methods such as attention distribution of re-
sponse and knowledge embeddings to determine
the weights of individual knowledge terms. How-
ever, in the real setting and during the test phase,
we can only use terms and knowledge related to
the post. Furthermore, the post embeddings can
significantly differ from the response ones. Thus,
assigning weights to the knowledge terms based on



2975

Figure 1: Architecture of the Knowledge Term Weighting Model (KTWM) showing the operations in the training
and test phase. ⊗ designates matrix multiplication; � designates element-wise multiplication.

their similarity to post embeddings is unlikely to
be sufficient (Xing et al., 2018).

For that reason, we aim to learn how to transform
the post embeddings to be effective in knowledge
term weighting. We achieve that by training a Post
Embeddings Adapter that can, for a new post, gen-
erate Simulated Response Vectors (SRVs) and use
them in place of the response vectors to score post
related knowledge terms.

To that effect, we introduce a set of Multi-Layer
Perceptrons (MLPs):

MLP =
n∑

i=1

ŵpiWi + b (3)

ŵsj = MLPj(ŵp1, ŵp2, . . . , ŵpn)(j ∈ [1,m])
(4)

where Wi and b are trainable parameters for each
term pi of the post p; ŵsj is the representation
of the j-th term of the simulated response vector
(SRV). The number of MLPs is the same as the
number of terms in a given response.

During the training phase, MLPs learn the trans-
formation of the post embeddings into SRVs that
captures the ground truth response representation

for a given post p. SRVs are then used to assign
appropriate weights to the knowledge terms when
response information is not available.
SRVs Approximation and Training. The train-
ing phase begins with Vpost, Vknow, Vresp and ran-
domly initiated parameters of MLPs to produce the
initial set of VSRVs for a given post. Each iteration
then involves comparison of (a) the response em-
beddings Vresp and knowledge embeddings Vknow,
and (b) SRVs with the knowledge embeddings
Vknow. More precisely, we compute the term-wise
attention distributions Ark and Ask:

Ark = sigmoid(VrespV
T
know) (5)

Ask = sigmoid(VSRVsV
T
know) (6)

where Ark ∈ Rm×l and Ask ∈ Rm×l; m and l are
hyper-parameters that are the maximum length of
the response and knowledge sentence.
Ark reflects the relationship between the re-

sponse terms and the knowledge terms: for each
response term, Ark includes attention scores with
all knowledge terms. Similarly, Ask includes at-
tention scores between SRVs and the knowledge
representations. The knowledge terms with larger
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response-knowledge attention scores are expected
to produce output closer to the true response. In
the training phase, that is guided by the filtering
loss for Ark:

Lfilter = BCE(GTknow,Mean(Ark)) (7)

where GTknow is the knowledge ground truth vec-
tor which indicates whether the knowledge terms
appear in the corresponding response or not and
BCE is the Binary Cross Entropy loss function.
Mean(·) computes the mean values for knowledge
terms (in the matrix columns) across response
terms (Mean(·) ∈ Rl).

At the same time we aim to train MLPs to create
SRVs similar to the response representations Vresp.
In each iteration we compute and compare Ask to
Ark and apply the approximation loss function:

Lapprox = MSE(Mean(Ark),Mean(Ask)) (8)

where MSE(·) is the Mean Squared Error function.
Mean(·) of Ark and Ask produces l-length knowl-
edge term vectors whose values are used to charac-
terise the importance of each knowledge term. We
use these weights to update the knowledge vector:

Ṽknow = Mean(Ak)� Vknow (9)

where � denotes element-wise multiplication and
Ak corresponds to Ark in the training phase and
to Ask in the test phase. Vpost and the weighted
knowledge vector Ṽknow become input for the
KTWM decoder.

3.3 KTWM Decoder
In order to incorporate multiple sources of input,
we adopt a decoder design that is similar to the TED
model by Zheng and Zhou (2019). Figure 2 shows
the architecture of our KTWM decoder. The blue
frames are the standard Transformer decoder set-up

Figure 2: Knowledge Term Weighting Model Decoder.

with a self-attention layer and a mutual-attention
layer (for the post), followed by a feed-forward
layer.

KTWM includes an additional knowledge-
mutual-attention layer which applies the same pro-
cess to the knowledge, i.e., replicates the post-
mutual-attention layer for the knowledge. How-
ever, while TED focuses on assigning different
weights to different sources, KTWM is already
provided with scored knowledge terms. We use
VPMA to denote the post-mutual attention, VKMA

for knowledge-mutual attention and Vdec for the
decoding tokens representation matrix. With the
attention defined by Eq. (1), we can express:

VPMA = Attention(Vdec, Vpost, Vpost) (10)

VKMA = Attention(Vdec, Ṽknow, Ṽknow). (11)

The final mutual attention VMA in the decoder is
then calculated from VPMA and VKMA:

VMA = VPMA ⊕ VKMA (12)

where⊕means element-wise summation. The feed
forward layer is a standard Transformer transition
layer (Vaswani et al. (2017)).

Finally, we adopt Negative Log Likelihood
(NLL) to train the model:

LNLL = −
m∑
t=1

logP (yt|y<t, p, k). (13)

Given a post (p), knowledge (k), and the previ-
ously predicted terms (y<t), LNLL maximises the
probability of the currently predicted term. Dur-
ing the training phase, P (yt|y<t, p, k) is replaced
with P (rt|r<t, p, k), i.e., we use the ground truth
response as the input instead of the model output
from the previous steps (Goyal et al., 2016).

We assume that all three loss functions are
equally important and create the final loss func-
tion as a sum:

L = Lfilter + Lapprox + LNLL (14)

KTWM thus provides a flexible learning frame-
work, enabling injection of knowledge based on
different selection criteria. We compare KTWM
effectiveness when used with Post-KS, SKT and
TED model by incorporating the knowledge that
each of these methods selects.
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4 Experiments

We conduct empirical evaluation of KTWM com-
pared to state-of-the-art baselines.

4.1 Datasets
In our experiments we use two publicly available
datasets: Wizard of Wikipedia (Dinan et al., 2019)
and Holl-E (Moghe et al., 2018). Both are purpose-
fully created by humans editors to support dialogue
generation research.
Wizard of Wikipedia (Wiz). Dinan et al. (2019)
employed Amazon Mechanical Turk (MTurk)
workers to generate the datasets. The workers can
assume two different roles: a wizard (a teacher)
and an apprentice (a student). An apprentice asks a
question according to a given topic and a wizard an-
swers the question based on the provided question-
related information (retrieved from Wikipedia).
The response can quote the retrieved knowledge
or can be generated entirely by the wizard with-
out considering the knowledge. Thus, for each
question-response pair there is related knowledge
that can be used for knowledge-grounded dialogue
generation research.

The Wiz dataset consists of 22,311 dialogues
with 201,999 dialogue turns divided into a training
dataset and two test datasets referred to as seen test
set and unseen test set. The seen test set includes
topics that have already been seen in the training
set. In the unseen dataset, there are topics that may
not have been included in the training dataset.
Holl-E Moghe et al. (2018) also made use of
MTurk workers to create an annotated dataset that
focuses on movies as two workers talk with each
other about a chosen movie. When answering an-
other worker’s question, one is provided with four
sources: movie plots, reviews, comments, and fact
tables related to the movies. These sources can be
considered as background knowledge. The final re-
sponse is produced by copying from the sources or
by modifying the sources. The Holl-E dataset pro-
vides training set and test test and contains 9,071
conversations, covering 921 movies.

4.2 Metrics, Setup and Baselines
Metrics. For performance evaluation, we adopted
standard lexical-based metrics: BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007)
and embedding-based metric: BOW Embedding
(Liu et al., 2016). BLEU 1-4 metrics measure co-
occurrence of n-gram terms in two given sequences,

e.g., the generated responses and the ground truth
responses. METEOR is an adaptation of BLEU
that considers the presence of synonyms and com-
mon word stems. BOW Embedding measures the
similarity of two sentences from the semantic per-
spective. Specifically, it computes the average
metric, greedy metric and extrema metric based
on word embeddings of compared sentences. The
average metric considers cosine distance between
pairs of sentence-level representations (e.g., the
predicted response and ground truth response) by
averaging the representations of their constituent
words and calculates the average across all pairs.
The greedy metric considers the maximum cosine
scores along rows and columns in the similarity
matrix. The extrema metric of two sentences first
creates a sentence vector with the highest word-
embedding values (along the dimension) and then
computes the similarity score. BLEU, METEOR2

and BOW Embedding3 are calculated using NLG
evaluation sources.

Experiment Setup. For the sake of comparison,
we fixed a set of parameters across all the experi-
ments. The number of dimensions in embeddings
is set to 100. The vocabulary size is 30,000. The
vocabulary is obtained by ranking terms by word
frequency in the training set. The minimum se-
quence length is set to 8 and the maximum length is
30. We train using mini-batches of size 64. We use
Adam optimiser (Kingma and Ba, 2015) for optimi-
sation. The initial learning rate is set to 0.001 and
halved when the loss score does not decrease for
two epochs. In the training phase we use response-
retrieved knowledge, i.e., the sentences retrieved
by BM25 algorithm using responses as queries (see
Figure 1). The top 1 ranked knowledge sentence
is injected into KTWM. In the test phase, we re-
trieve knowledge using BM25 algorithm and posts
as queries. All the experiments are conducted on a
single TITAN V GPU. For Wiz dataset, an experi-
ment requires about 6 hours to complete, while for
Holl-E about 2.5 hours.
Baselines. We compare KTWM with three strong
baselines:

Post-KS (Lian et al., 2019) uses an elaborate
knowledge selection module and injects the se-
lected knowledge into a generative model by ap-
proximating prior-distribution (i.e., p(k|p)) with
posterior-distribution (i.e., p(k|p, r)).

2https://github.com/Maluuba/nlg-eval
3https://github.com/neural-dialogue-metrics/EmbeddingBased.
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SKT (Kim et al., 2020) considers knowledge
selection as a sequential problem. It jointly trains
a knowledge selection and a generative model by
taking into account inputs and knowledge from
previous turns.

TED (Zheng and Zhou, 2019) uses a knowledge-
grounded generative model that assigns different
weights to different sources when generating re-
sponses. It applies knowledge ranking using BM25,
which is the same as in our setting.

4.3 Experiment Design
Our experiments focus on term weighting of the
selected knowledge rather than the knowledge se-
lection itself. Since the baseline models (Post-KS4,
SKT5 and TED6) incorporate knowledge selections,
we conduct a comparative evaluation of KTWM
by incorporating knowledge specific to each base-
line method. Furthermore, since all three baselines
inject knowledge at the sentence level, by select-
ing the top ranked sentence, we do the same with
KTWM.

4.4 Experiment Results
4.4.1 Performance of Generating Response
We summarize KTWM experiments with the Wiz
and the Holl-E datasets in Table 2. Results for
the Wiz seen and unseen test sets are in Table 2,
sections (a) and (b), respectively. Results for the
Holl-E dataset are in Table 2, section (c). Since
METEOR extends BLEU metrics by considering
word stems and synonyms, we take it as the main
metric for discussing the experiment results. We
observe that:

(1) For all of three datasets, KTWM outperforms
each baseline method across all lexical and embed-
dings based metrics with a statistically significant
difference.

(2) KTWM with Post-KS knowledge achieves
the largest relative improvement considering the
METEOR score: increase of 45.3%, 54.5% and
40.0% for the three test sets, respectively.

(3) For the Holl-E dataset, KTWM with TED
knowledge outperforms other two baseline models.
TED knowledge comprises top sentences retrieved
using BM25 algorithm.

(4) On the Wiz datasets, KTWM achieves a re-
markable performance in terms of BLEU-1 and

4https://github.com/bzantium/Posterior-Knowledge-Selection
5https://github.com/bckim92/sequential-knowledge-transformer
6https://github.com/tonywenuon/Transformer ED

Figure 3: Effects of the increased number of knowledge
terms on the KTWM performance (Wiz seen test set).

METEOR scores. A consistent and strong perfor-
mance in the Wiz unseen test data indicates the
robustness and generalization of KTWM.

4.4.2 Results of Knowledge Term Weighting
The loss function (Eq. (7)) controls KTWM ability
to distinguish between relevant and non-relevant
knowledge terms, similar to a binary classifier. We
set a threshold of 0.5 for a knowledge term’s pre-
dicted score and consider the overlap between the
predicted and the truth useful knowledge terms.
This leads to precision/recall evaluation of the pos-
itive and the negative class prediction. Table 3
shows results from the Wiz seen test set. They
are representative of the results for the other two
datasets.

We observe that the precision of predicting use-
ful terms is 50% and noisy terms is over 91% (with
a high F-1 score, 94%). Thus KTWM term weight-
ing is effective in detecting noisy terms while only
half of the predicted useful terms overlap with the
ground truth terms. Since noisy terms are assigned
lower term weights, KTWM is effective improving
the dialogue generation performance. Appendix A
shows illustrations of the KTWM noise reduction.

4.4.3 Analysis of Input Sequence Length
We analyze the effects of knowledge de-noising
by considering the useful terms proportion (UTP)
as we increase the number of injected knowledge
terms: UTP = Num of distinct useful terms

Num ofall injected terms . We
use UTPK for UTP when the number of injected
knowledge terms is K (e.g., UTP30 for 30 knowl-
edge terms). Our analysis shows that UTP30 is
12.23% and UTP gradually decreases with addi-
tionally injected knowledge leading to UTP300 of
only 3.35%. Figure 3 shows a gradual decline of
the KTWM performance with the increased length
of injected knowledge, as the proportion of noisy
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Generation Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR Average Greedy Extrema
(a) Wiz seen test data
Post-KS 17.56 6.35 2.68 1.35 5.96 0.611 0.364 0.334
KTWM w Post-KS knowledge 21.98* 10.03* 5.56* 3.44* 8.66* 0.684* 0.394* 0.376*
SKT 16.45 7.97 4.75 3.14 7.29 0.639 0.385 0.366
KTWM w SKT knowledge 22.00* 10.0* 5.47* 3.35 8.59* 0.681* 0.398* 0.370
TED 20.26 9.43 5.32 3.35 8.45 0.658 0.385 0.366
KTWM w TED knowledge 21.86 10.02 5.51 3.35 8.66* 0.682* 0.394* 0.374*
(b) Wiz unseen test data
Post-KS 17.25 5.58 2.03 0.81 5.5 0.598 0.352 0.305
KTWM w Post-KS knowledge 21.66* 8.98* 4.41* 2.41* 8.5* 0.681* 0.388* 0.361*
SKT 14.09 5.72 2.89 1.72 5.8 0.591 0.36 0.304
KTWM w SKT knowledge 20.46* 8.07* 3.85* 2.03* 7.77* 0.664* 0.38* 0.337*
TED 19.28 7.83 3.83 2.09 7.02 0.634 0.363 0.327
KTWM w TED knowledge 20.46* 8.32* 4.03* 2.17* 7.92* 0.668* 0.379* 0.342*
(c) Holl-E dataset
Post-KS 14.07 7.07 4.96 3.81 5.98 0.639 0.382 0.333
KTWM w Post-KS knowledge 19.91* 11.0* 8.02* 6.42* 8.37* 0.675* 0.387* 0.350*
SKT 21.54 13.81 10.94 9.17 8.48 0.637 0.391 0.333
KTWM w SKT knowledge 23.05* 13.96* 10.66 8.71 9.73* 0.673* 0.389 0.362*
TED 21.62 13.71 10.83 9.17 9.13 0.685 0.414 0.366
KTWM w TED knowledge 22.42* 14.01* 10.98 9.28 10.2* 0.688* 0.402* 0.366

Table 2: KTWM performance on the Wiz seen and unseen test data and Holl-E dataset with different knowledge
sources. Comparison with Post-KS, SKT and TED models. ‘*’ indicates statistical significance (p < 0.05). Bold
indicates the best performance for a given metric. ‘w’ denotes ‘with’, i.e., injecting the knowledge source that is
used in a specific baseline model.

Name Prec Rec F-1
Useful Term Prediction 0.50 0.32 0.39
Noisy Term Prediction 0.92 0.96 0.94

Table 3: Precision, Recall, and F-1 scores for the useful
and noisy term predictions on the Wiz seen test set.

terms increases.

We also investigate the effects of the loss func-
tions Lfilter and Lapprox on the KTWM perfor-
mance by running experiments with and without
them. In Table 4 we show the results on the Wiz
seen test set using BM25 to select knowledge.
We note that, after removing Lfilter loss func-
tion, BLEU-1 and Average scores decrease, while
BLEU-4 and METEOR scores increase. Since
Lfilter aims to ensure that relevant response terms
are promoted, it is not surprising that the metrics fo-
cused on unigrams are most affected. However, this
impact on KTWM is less notable than the removal
of the Lapprox. Without Lapprox, the KTWM
loses the ability to align simulated response vectors
SRVs with the response embeddings to capture the
attention distribution between the knowledge and
the response embeddings that is needed to score
knowledge terms. This increases the noise ratio
and reduces the KTWM performance scores across
all metrics.

Name BLEU-1 BLEU-4 METEOR Average
KTWM 21.86 3.35 8.66 0.682
- w/o LFilter 20.69 3.67 8.77 0.661
- w/o LApprox 7.49 1.59 5.42 0.598

Table 4: Ablation study of the multi-component loss
function on the Wiz seen test set. w/o means ‘without’.

5 Conclusions

Current knowledge-grounded dialogue models se-
lect and inject knowledge either through traditional
(unsupervised) retrieval technique, such as BM25,
or by incorporating knowledge selection within the
dialogue generation model. Most of them incorpo-
rate knowledge as sentences or paragraphs. Past
research provided evidence (Galley et al. (2019),
Zheng et al. (2020)) that inserting useful terms can
increase the response generation performance but it
is necessary to control for negative effects of noisy
terms.

In our work, we introduce a novel Knowledge
Term Weighting Model (KTWM) that performs
knowledge term-level weighting and de-noising of
injected knowledge. We demonstrate that KTWM
effectively estimates weights of knowledge terms
and yields better response generation performance
than state-of-the-art baseline models when evalu-
ated on two broadly used datasets. Besides the su-
perior response generation outcomes, our research
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provides important insights into the importance
of the knowledge term weighting. As part of our
future work we intend to (1) extend the KTWM
models to incorporate multiple sources of evidence,
such as balancing between selected knowledge and
dialogue contexts (i.e., previous dialogue turns)
and (2) take into account inter-dependencies among
terms when weighting the selected knowledge.
Acknowledgements This work is partly sup-
ported by Engineering and Physical Sciences Re-
search Council (EPSRC Grant No. EP/S515528/1,
2102871). The Titan V used for this research was
donated by the NVIDIA Corporation. All content
represents the opinion of the authors, which is not
necessarily shared or endorsed by their respective
employers and/or sponsors.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations (ICLR).

Michel Galley, Chris Brockett, Xiang Gao, Jianfeng
Gao, and Bill Dolan. 2019. Grounded response gen-
eration task at dstc7. In AAAI Dialog System Tech-
nology Challenges Workshop.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng
Zhang, Aaron Courville, and Yoshua Bengio. 2016.
Professor forcing: a new algorithm for training re-
current networks. In Proceedings of the 30th Inter-
national Conference on Neural Information Process-
ing Systems, pages 4608–4616.

Byeongchang Kim, Jaewoo Ahn, and Gunhee Kim.
2020. Sequential Latent Knowledge Selection for
Knowledge-Grounded Dialogue. In International
Conference on Learning Representations (ICLR).

Diederick P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 228–231.

Zekang Li, Cheng Niu, Fandong Meng, Yang Feng,
Qian Li, and Jie Zhou. 2019. Incremental trans-
former with deliberation decoder for document
grounded conversations. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 12–21.

Rongzhong Lian, Min Xie, Fan Wang, Jinhua Peng,
and Hua Wu. 2019. Learning to select knowledge
for response generation in dialog systems. In IJCAI
International Joint Conference on Artificial Intelli-
gence, page 5081.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2122–2132.

Yi Luan, Chris Brockett, William B Dolan, Jianfeng
Gao, and Michel Galley. 2017. Multi-task learning
for speaker-role adaptation in neural conversation
models. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 605–614.

Nikita Moghe, Siddhartha Arora, Suman Banerjee, and
Mitesh M Khapra. 2018. Towards exploiting back-
ground knowledge for building conversation sys-
tems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2322–2332.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


2981

Jason Weston, Emily Dinan, and Alexander Miller.
2018. Retrieve and refine: Improved sequence gen-
eration models for dialogue. In Proceedings of the
2018 EMNLP Workshop SCAI: The 2nd Interna-
tional Workshop on Search-Oriented Conversational
AI, pages 87–92.

Chen Xing, Yu Wu, Wei Wu, Yalou Huang, and Ming
Zhou. 2018. Hierarchical recurrent attention net-
work for response generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Semih Yavuz, Abhinav Rastogi, Guan-Lin Chao, and
Dilek Hakkani-Tur. 2019. Deepcopy: Grounded
response generation with hierarchical pointer net-
works. In Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue, pages 122–
132.

Hao-Tong Ye, Kai-Lin Lo, Shang-Yu Su, and Yun-
Nung Chen. 2020. Knowledge-grounded response
generation with deep attentional latent-variable
model. Computer Speech & Language, 63:101069.

Xueliang Zhao, Wei Wu, Chongyang Tao, Can Xu,
Dongyan Zhao, and Rui Yan. 2020a. Low-resource
knowledge-grounded dialogue generation. In Inter-
national Conference on Learning Representations
(ICLR).

Xueliang Zhao, Wei Wu, Can Xu, Chongyang Tao,
Dongyan Zhao, and Rui Yan. 2020b. Knowledge-
grounded dialogue generation with pre-trained lan-
guage models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3377–3390.

Wen Zheng, Natasa Milic-Frayling, and Ke Zhou. 2020.
Approximation of response knowledge retrieval in
knowledge-grounded dialogue generation. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: Findings,
pages 3581–3591.

Wen Zheng and Ke Zhou. 2019. Enhancing con-
versational dialogue models with grounded knowl-
edge. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Manage-
ment, pages 709–718.

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf


2982

Appendix

A Examples of Knowledge Term Weights
and KTWM Generated Responses

In Table 5 and 6 we present examples of
post/response pairs and selected knowledge with
terms weighted by KTWM.

As explained in §4.4.2, we use a threshold of
0.5 on term scores to classify terms into useful and
noisy ones and study the effect of this selection on
the overall performance of KTWM. In the exam-
ples, we visually show the weights of each terms.
Terms are highlighted in different shades of blue
colour according to the weight (note the colour
legend at the bottom of the tables). All the exam-
ples are extracted from the Wiz seen test set. They
are sorted by the number of words that exceed the
threshold.

In Table 5 we see that the key words are tagged
with dark blue, indicating that KTWM has assigned
high weights to them. From the KTWM generated
responses, we can see that if the words appear in
the post and ground-truth response simultaneously,
the KTWM works effectively, i.e., can correctly
incorporate injected knowledge into the generated
response.

On the other hand, the negative examples in Ta-
ble 6 show that the term scoring can be ineffective
if there is no good overlap with the ground truth
response. We observe in these examples that most
of the words with relatively high scores do not ex-
ist in both post and response. At the same time,
if the injected knowledge does not contain useful
terms, the produced responses might be irrelevant.
In Table 6, most of terms have light blue colour,
indicating that KTWM detected a relatively low
importance of these terms correctly.

The examples in these two tables also confirm
statistical results shown and discussed in §4.4.3.
KTWM term weights still induce noise, especially
when the injected knowledge does not contain use-
ful terms (i.e. terms that present in the ground truth
response), resulting in a worse response generation
performance.

We note that the both sets of examples include
highlighted punctuation (e.g., ‘,’) and language
structural terms (e.g., ‘the’, ‘is’) which obtain high
KTWM weights. We assume that such terms are
widely distributed in post and response sets and
therefore detected as important.

Post: I love avengers!! Have you watched the Infinity War
movie? I think it was really good and I can’t wait till the
next movie to find out what happens.
Response: The Avengers Infinity War was so good. What
a cliff hanger. Blows my mind that the Avengers made their
comic debut way back in 1963.
Knowledge Terms Weighted by KTWM:
In ” Avengers : Infinity War ” , the Avengers join forces
with the guardians of the galaxy to confront Thanos , who
is trying to collect the infinity stones

Response generated by KTWM: I love the Avengers.
the Avengers was the Avengers, Infinity War. He is such a
great show.
Post: I have never actually been to a horse race in Kentucky,
where is the Derby held at anyways?
Response: Louisville Kentucky, it ends the Kentucky
Derby festival usually.
Knowledge Terms Weighted by KTWM:
The Kentucky Derby presented by Woodford reserve is a
horse race that is held annually in Louisville , Kentucky ,
United States , on the first Saturday in may .

Response generated by KTWM: I’m not sure but I know
that it is located in Kentucky race in the United States and
Canada.
Post: New York city is quite impressive.
Response: Yeah they say that New York and LA are the
two largest markets in our country.
Knowledge Terms Weighted by KTWM:
The city of New York , often called New York City or
simply New York , is the most populous city in the United
States

Response generated by KTWM: Yes, it is. The city of
New York is the most populous city in the United States.
Post: Hi there! I drive a Honda Civic. Do you have a car?
Response: I have a VW golf, but was looking to change
to a Honda Civic. I heard that the Civic has got larger
throughout the years.
Knowledge Terms Weighted by KTWM:
The Honda Civic type R is the highest performance version
of the Honda Civic made by Honda Motor company of
Japan

Response generated by KTWM: I have a Honda Civic.
They are the second most commonly used in the US in
Japan.
Post: Well that’s interesting, but seems like it could get
confusing! I bet humans have been hiking ever since we
could walk though!
Response: Yeah hiking has been around for ever, the term
bush walking is endemic to Australia.
Knowledge Terms Weighted by KTWM:
Hiking is the preferred term , in canada and the united
states , for a long , vigorous walk , usually on trails (
footpaths ) , in the countryside

Response generated by KTWM: Well, hiking is a long
term hiking is used in the United States, and the
countryside on trails.

0 0.2 0.4 0.6 0.8 1

Table 5: Positive cases that the injected knowledge is
properly weighted by the proposed KTWM model. The
background colour stands for the probability of being a
useful term.
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Post: Yes, indeed. What cultural meanings come to mind
when you think of dance?
Response: Some of its many functions that come to mind
are social, ceremonial, and competitive in meaning.
Knowledge Terms Weighted by KTWM:
One open question regarding the nature of the mind is the
mind body problem , which investigates the relation of the
mind to the physical brain and nervous system
Response generated by KTWM: I’m not sure but I do
know that the spiritual core is associated with mind and
mind.
Post: I have written a few historical fiction novels that i
am currently trying to get published.
Response: That’s really cool, historical fiction is such a
fun genre to read.
Knowledge Terms Weighted by KTWM:
Historical romance ( also historical novel ) is a broad
category of fiction in which the plot takes place in a setting
located in the past
Response generated by KTWM: That’s great. I love
romance novels. It’s a broad category of historical fiction,
and fantasy.
Post: I would have to say Snooki still, she is such a ball of
fire.
Response: Since you like Snooki so much, did you hap-
pen to see the Spinoff of Jersey shore called ”Snooki and
Jwoww”?
Knowledge Terms Weighted by KTWM:
She attended Columbia high school , in east greenbush ,
New York , and New York Institute of Technology
Response generated by KTWM: I don’t know much
about Vietnamese style, but i know it has been around
since 1700
Post: Are they popular in other areas of the world like
Europe or Asia ?
Response: Similarly! In the European Union vehicles in
this size are known as large good vehicles.
Knowledge Terms Weighted by KTWM:
Western civilisation traces its roots back to western Europe
and the western Mediterranean
Response generated by KTWM: I’m not sure, but I
do know that they are native to the Mediterranean
Mediterranean cuisine.
Post: Wow that’s interesting. The food world has really
diversified.
Response: Yeah or you can cook without heat. Like in
south America they make Ceviche, which is fish that is
cooked in lemon or lime juice and the acid cooks the fish.
Knowledge Terms Weighted by KTWM:
Bow Wow Wow are an English 1980s new wave band ,
created by Malcolm Mclaren
Response generated by KTWM: Yes, it is! It’s the
world’s most popular foods in the world.

0 0.2 0.4 0.6 0.8 1

Table 6: Negative cases that the injected knowledge is
not properly weighted by the proposed KTWM model.
The background colour stands for the probability of be-
ing a useful term.


