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Abstract
Unsupervised cross-lingual pretraining has
achieved strong results in neural machine
translation (NMT), by drastically reducing the
need for large parallel data. Most approaches
adapt masked-language modeling (MLM) to
sequence-to-sequence architectures, by mask-
ing parts of the input and reconstructing them
in the decoder. In this work, we systemati-
cally compare masking with alternative objec-
tives that produce inputs resembling real (full)
sentences, by reordering and replacing words
based on their context. We pretrain models
with different methods on English↔German,
English↔Nepali and English↔Sinhala mono-
lingual data, and evaluate them on NMT. In
(semi-) supervised NMT, varying the pretrain-
ing objective leads to surprisingly small differ-
ences in the finetuned performance, whereas
unsupervised NMT is much more sensitive to
it. To understand these results, we thoroughly
study the pretrained models and verify that
they encode and use information in different
ways. We conclude that finetuning on parallel
data is mostly sensitive to few properties that
are shared by most models, such as a strong
decoder, in contrast to unsupervised NMT that
also requires models with strong cross-lingual
abilities.

1 Introduction

Neural machine translation (NMT) is notoriously
data-hungry (Koehn and Knowles, 2017). To learn
a strong model it requires large, high-quality and
in-domain parallel data, which exist only for a
few language-pairs. The most successful approach
for improving low-resource NMT is backtransla-
tion (Sennrich et al., 2016), that exploits abundant
monolingual corpora to augment the parallel with
synthetic data. However, in low-resource settings,
it may fail to improve or even degrade translation
quality if the initial model is not strong enough
(Imankulova et al., 2017; Burlot and Yvon, 2018).

Encoder

a b c d e f

a b d c e z

x x x

shuffling

Decoder

< s > a b c d e

a b c d e f

replacement

Noise Detection Reconstruction

Figure 1: We consider noising methods that produce
inputs which resemble real sentences, unlike masking.

Unsupervised pretraining is a complementary
technique, that has revolutionized many natural
language understanding (NLU) tasks (Wang et al.,
2019). The dominant approach is to train a (large)
model on a lot of unlabeled data using the masked
language modeling (MLM; Devlin et al. (2019))
objective and then finetune it on a downstream task.
Besides improving generalization, good initializa-
tion drastically reduces the need for labelled data.
This paradigm has been applied recently to NMT
yielding impressive results in low-resource settings,
with models such as XLM (Conneau and Lample,
2019), MASS (Song et al., 2019) and BART/m-
BART (Lewis et al., 2020b; Liu et al., 2020), that
adapt MLM to sequence-to-sequence architectures.
Although pretraining alone is not enough to out-
perform backtranslation, it helps the initial model
to produce synthetic data of sufficient quality, and
combining them yields further improvements.

Most prior work in pretraining has focused on op-
timizing the masking strategy (Rogers et al., 2021).
Similarly, MASS and mBART consider slightly
different masking strategies. However, due to dif-
ferences in their experimental setup (i.e., capacity
or training data) and lack of analysis that goes be-
yond evaluation on downstream tasks, it is unclear
if there is a meaningful difference between them,
as far as NMT is concerned. They also suffer from
a pretraining-finetuning discrepancy (Yang et al.,
2019), in which a model is pretrained on masked
inputs, but finetuned on full sentences.
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In this work1, we explore different objectives to
masking for unsupervised cross-lingual pretraining.
We inject noise that creates examples (Fig. 1), simi-
lar to those encountered in finetuning, unlike mask-
ing. This includes, randomly replacing input words
based on their context using a cross-lingual gen-
erator, inspired by Clark et al. (2020), and locally
reordering input words, which prevents the cross-
attention from naively (monotonically) attending
over the source. We also explore auxiliary losses
over the encoder to improve its representations.

First, we pretrain models with different config-
urations, on English-German, English-Nepali and
English-Sinhala monolingual data. Then, we sys-
tematically compare them on the downstream tasks
of supervised, semi-supervised and unsupervised
NMT. In (semi-) supervised NMT, we observe that
models yield surprisingly similar results, although
some methods are better than others. We find that
even pretraining with shuffled inputs leads to signif-
icant improvements over random initialization, sim-
ilar to the concurrent work of Sinha et al. (2021) on
pretrained encoders for NLU. Unsupervised NMT,
however, reveals large (up to 9 BLEU points) dif-
ferences, and against our expectations, masking
achieves the best performance. To understand these
results, unlike prior work, we thoroughly analyze
the pretrained models using a series of probes, and
discover that each objective drives the models to
encode and use information in unique ways.

Based on our findings, we conclude that each
finetuning process is sensitive to specific proper-
ties of pretrained models, similar to Artetxe et al.
(2020). We hypothesize that (semi-) supervised
NMT is mostly sensitive to the LM abilities of
pretrained models, as the source→target mappings
can be learnt from the parallel data. Unsupervised
NMT requires models to also rely on their own
word-translation abilities. Our contributions are:

1. We systematically compare many pretraining
methods, including alternatives to masking, in
three NMT tasks and for three language-pairs.

2. We discover that (semi-) supervised NMT is
not sensitive to the pretraining strategies. Our
ablation (§4.4) suggests that a strong decoder
is the most important factor, while differences
in the encoder (§4.5) don’t affect the results.

3. Unsupervised setting is much more sensitive
to the pretraining objective, and masking meth-
ods are the most effective. We hypothesise that
learning to copy is important here (§5.2) as is

cross-lingual encoding (§4.5).

4. We analyze the pretrained models with a series
of probes (§5.1, §5.2, §5.3), and show notice-
able differences in how they encode and use
information, offering valuable insights.

2 Related Work

Pretraining for NMT Ramachandran et al. (2017)
first explored unsupervised pretraining for NMT us-
ing LMs trained on monolingual data of the source
and target languages to initialize the encoder and
decoder of an RNN-based TM (Bahdanau et al.,
2015). Conneau and Lample (2019) adopt the
same approach, by extending BERT/MLM (De-
vlin et al., 2019) to the cross-lingual setting (XLM).
They randomly mask tokens from input sentences
in many languages, and the model is trained to
predict them. However, the same pretrained XLM
is used to (separately) initialize both the encoder
and decoder of a downstream translation model
(TM), which neglects the interaction between them.
MASS (Song et al., 2019) addresses this limitation,
by extending MLM to sequence-to-sequence pre-
training, which includes the cross-attention mecha-
nism, and achieved further improvements in low-
resource and unsupervised NMT. Liu et al. (2020),
concurrently demonstrated comparable results with
a similar approach (mBART), but on a larger scale.
Both mBART and MASS, consider different strate-
gies for reconstructing masked input spans.

Objectives Yang et al. (2019) point out that
BERT (Devlin et al., 2019) is pretrained with
masked inputs, but then finetuned on full sentences,
which creates a discrepancy. To address this, they
change the self-attention in Transformers (Vaswani
et al., 2017) to predict tokens conditioned on all per-
mutations of other tokens in a sentence and Song
et al. (2020) extend this to sequence-level pretrain-
ing for NLU. MARGE (Lewis et al., 2020a) ex-
plores multi-lingual pretraining for document-level
NMT, by reconstructing texts from a set of retrieved
relevant documents. Clark et al. (2020) propose
the replaced token detection (RTD) objective for
pretraining text encoders. They replace tokens with
samples from a MLM and train the encoder as a dis-
criminator to predict whether each word is real or
fake. Similar ideas have been previously explored
in NMT with contextual data augmentation (Fadaee
et al., 2017; Kobayashi, 2018; Gao et al., 2019).

1Code at github.com/cbaziotis/nmt-pretraining-objectives

https://github.com/cbaziotis/nmt-pretraining-objectives
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3 Pretraining

Our pretraining model is a multilingual denois-
ing sequence autoencoder, based on the Trans-
former (Vaswani et al., 2017).

We assume access to a corpus of unpaired data,
containing text in two languages A, B. Given a
text sequence of N tokens x = 〈x1, x2, ..., xN 〉
we first add noise to it and obtain its corrupted
version x′. An encoder transforms x′ into a se-
quence of contextualized representations h(x′) =
〈h1, h2, ..., hN 〉, which are given as input to the
decoder, that produces a reconstruction of x. The
reconstruction loss is the negative log-likelihood
(NLL) of x:

LR =
1

N

N∑
t=1

− log p(xt|x<t, h(x
′)) (1)

Each batch contains sentences in either A, or B
and to distinguish between them, we add language
id tokens at the end of the source sentences, and
the beginning of the target sentences.

3.1 Pretraining Methods
In this section, we describe the methods that we use
to inject noise into the model. We also explore aux-
iliary losses over the encoder, aiming to improve
the input representations.

Masking Similar to prior work, we replace a ran-
dom subsequence M of the input tokens with a
special [MASK] token and train the model to re-
construct the original input. We consider masking
words as well as spans following mBART.

Masking + eMLM When using masking noise we
also explore the addition of an auxiliary MLM loss
over the encoder to which we will refer as eMLM.
This explicitly trains the encoder to reconstruct the
representations of masked tokens:

LeMLM =
1

|M |
∑
t∈M
− log p(xt|x6∈M )) (2)

Replacing We inject word replacement noise, by
extending Clark et al. (2020) to the cross-lingual
setting. Specifically, we jointly train a separate
cross-lingual (mBERT-like) MLM generator. First,
we mask a random subset M of the input to-
kens2and the generator is trained to predict them:

LG =
1

|M |
∑
t∈M
− log p(xt|x6∈M )) (3)

For each masked token xt, the generator produces
a distribution pG(xt|x6=t). We replace the masked

tokens with samples from pG to obtain x′, and feed
the updated (corrupted) input to the encoder. We
consider two configurations for the generator:
• Untied: The default setting, we use a small gen-

erator, which is half the size (x0.5 parameters)
of the encoder, following Clark et al. (2020).

• Tied: We tie the weights of the encoder and
the generator. This setting implicitly adds an
auxiliary MLM loss over the encoder, and can
be thought as a counterpart of “replace+eMLM”.

Replacement + RTD Motivated by the results
of Clark et al. (2020) in monolingual NLU, we add
a replacement token detection (RTD) head over the
encoder that gives direct supervision to the model
regarding the location of noise. The RTD headD(·)
is a token-level discriminator over the encoder out-
puts h(x′), that predicts if an input token x′

t is
original or replaced. We parameterize D with a
non-linear projection followed by a sigmoid func-
tion: D(x′

t) = sigmoid(u>RELU(WD h(x′
t))).

The RTD loss is defined as the average token-level
binary cross-entropy:

LRTD =
1

N

N∑
t=1

− (x′
t = original) logD(x′

t) (4)

− (x′
t 6= original)(1−D(x′

t))

Shuffling Although pretrained models, such as

MASS or mBART, do pretrain the cross-attention
mechanism, the input words remain in their origi-
nal positions and this biases the models into learn-
ing only naive monotonic alignments. To actively
pretrain the cross-attention, we locally shuffle a
random subset of whole-words in the input, using
the method of (Lample et al., 2018). The length of
reordering is bounded by k (positions). Small k in-
troduce local shuffling, while large k allow words
to be moved farther from their original position,
making the input more like a bag-of-words (BoW).

3.2 Optimization

During pretraining, we minimize a weighted sum
of the reconstruction LR, and depending on the
method, some of the auxiliary LeMLM, LG, LRTD

losses. We assign equal weight (λ = 1) to all
losses, except for LRTD for which we set its weight
λ = 25 following Clark et al. (2020), to account
for the fact that is in a different scale.

2We use whole-word masking, that masks all the (subword)
tokens of a word, instead of independent token masking.
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Method en→de de→en en→ne ne→en en→si si→en
wmt18 wmt19 wmt18 wmt19

random 26.2±0.1 25.3±0.1 27.6±0.1 19.1±0.3 3.3±0.1 6.5±0.1 2.5±0.1 6.5±0.1

mask=35% 33.3±0.1 30.7±0.2 33.2±0.0 25.4±0.0 5.1±0.1 10.2±0.1 3.7±0.0 10.0±0.1

mask=35% +eMLM 33.4±0.0 30.6±0.1 33.5±0.1 25.2±0.2 5.3±0.0 10.8±0.1 4.0±0.0 10.4±0.1

mask=35% (span) 33.3±0.1 30.5±0.1 33.4±0.0 25.2±0.0 5.1±0.1 10.1±0.1 3.9±0.1 9.9±0.1

shuffle=5 31.6±0.1 28.7±0.0 31.7±0.0 23.9±0.1 4.9±0.0 9.9±0.1 3.4±0.0 10.1±0.1

replace=35% 33.9±0.0 30.3±0.2 33.5±0.1 25.4±0.1 5.1±0.1 9.9±0.1 3.7±0.0 9.8±0.0

replace=35% +RTD 32.9±0.1 30.0±0.0 32.5±0.0 24.4±0.1 5.0±0.0 9.9±0.1 3.4±0.1 9.7±0.2

replace=35% +tied 34.2±0.0 30.8±0.1 33.7±0.1 25.3±0.2 5.3±0.0 10.6±0.1 3.7±0.0 10.5±0.1

+ shuffle=3 34.0±0.0 31.1±0.1 33.4±0.1 25.1±0.2 5.5±0.0 11.0±0.0 4.0±0.0 10.8±0.1

Table 1: Supervised NMT results. We report the average of 3 runs and the standard error of the mean (SEM).

4 Experiments

Datasets We focus on low-resource translation
and consider three diverse language-pairs: English-
German, English-Nepali and English-Sinhala. For
English-German, we use the low-resource WMT
News Commentary v13 (Bojar et al., 2018) 3 par-
allel dataset, which contains approximately 275K
sentences. For pretraining, we use as monolingual
data the WMT News Crawl articles (Bojar et al.,
2018) from the year 2007 to 2017, which comprise
190M and 270M sentences for English and Ger-
man, respectively. For English-Nepali and English-
Sinhala, we use the same data as in Guzmán et al.
(2019). The (pretraining) monolingual data contain
5M sentences from Common Crawl and Wikipedia
per language, while the parallel data are approxi-
mately 600K sentences from the Bible, Open Sub-
titles, GNOME/KDE/Ubuntu, and Paracrawl.

Pre-processing For Nepali and Sinhala, we use
the preprocessing scripts4 provided by Guzmán
et al. (2019), whereas for English and German, we
use directly the raw data without any preprocessing.
We use sentencepiece (SPM; Kudo and Richard-
son (2018)) with the “unigram” model, to train a
subword-unit tokenization model on the concatena-
tion of the monolingual data of each language-pair.
We learn a joint vocabulary of 60K symbols for the
English-German models, and 20K symbols for the
English-Nepali and English-Sinhala models.

Evaluation For English-German, we use the
WMT newstest2017 as dev-set and the new-
stest2018 and newstest2019 as test-sets. For
English-Nepali and English-Sinhala, we use the
evaluation datasets provided by Guzmán et al.
(2019), which are drawn from Wikipedia articles.
We evaluate models using BLEU (Papineni et al.,
2002) computed with SacreBLEU (Post, 2018). We

3http://www.statmt.org/wmt18/translation-task.html
4https://github.com/facebookresearch/flores

report detokenized BLEU when translating into Ger-
man and English, and tokenized BLEU when trans-
lating into Nepali and Sinhala, following Guzmán
et al. (2019). At test time, we decode with beam
search, using beams of size 5.

Model and Training Our models are based on
the Transformer architecture (Vaswani et al., 2017).
We use the Transformer-base configuration to re-
duce the computational cost and be able to explore
more methods. We describe in detail the model ar-
chitecture and hyperparameters, as well as the pre-
training and finetuning processes, in Appendix §A.
Our code is based on the official mBART imple-
mentation in Fairseq (Ott et al., 2019).

4.1 Supervised Translation

In our first experiment (Table 1), we evaluate each
pretrained model on supervised NMT by finetuning
it on the parallel data. As a baseline we use a ran-
domly initialized TM with identical configuration
and vocabulary to that of the pretrained models,
denoted as “random”. We also pretrain a model
equivalent to mBART denoted as “mask (span)”.

Results All pretraining methods yield large im-
provements over random initialization, in all di-
rections and language pairs. The differences be-
tween each method are more pronounced in en↔de,
whereas in en↔ne and en↔si, all models reach
much lower scores, especially in en→X, probably
because of low-quality training data, and a domain
mismatch between the parallel and test data.

When we compare each type of input noise in
isolation, we observe that masking and replace-
ment achieve similar results, and both are better
than shuffling. However, pretraining with shuffling
noise alone still yields surprisingly strong results.
It improves over random initialization in all experi-
ments, and it even reaches similar BLEU scores to
masking and replacements in en↔ne and en↔si.
Note that, the common denominator in all pretrain-

http://www.statmt.org/wmt18/translation-task.html
https://github.com/facebookresearch/flores
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ing methods is the decoder, which is trained as a
conditional LM with teacher forcing and the only
difference is the input conditioning context. This
implies that one key factor in pretraining for NMT
is improving the LM capabilities of the decoder.

Auxiliary Losses The best results are obtained by
“mask+eMLM” and “replace+tied”, both of which
benefit from an encoder MLM loss. We observe,
that eMLM and tying are more effective in the
X→en than en→X direction, especially for en↔ne
and en↔si. This makes intuitive sense because
eMLM improves the representations of the encoder,
which is more important for languages with limited
or low-quality data. Specifically, we observe that
adding eMLM improves BLEU by +0.7 for ne→en,
+0.4 for si→en and tying the generator with the
encoder yields +0.7 BLEU for ne→en, +0.7 BLEU

for si→en. Wang et al. (2020) make a similar ob-
servation in experiments in multilingual NMT.

Incorporating RTD, however, has a negative ef-
fect in most experiments. This is unexpected, given
that Clark et al. (2020) showed that pretraining text
encoders with RTD outperformed MLM in NLU
tasks. This warns us that methods which produce
strong encoders for NLU might not necessarily im-
prove encoders for NMT. Note that, Siddhant et al.
(2020); Wang et al. (2020) have discovered similar
surprising results in cross-lingual NLU tasks.

Noise Combination We also consider a combi-
nation of the best replacement-based variant “re-
place+tied” with shuffling. Shuffling is applied
after the replacements are sampled and we limit the
length of reordering to k = 3 to prevent extreme
corruption of the input. We observe that this com-
bination yields small gains in most experiments.
We also explored more pretraining methods and
configurations, including the injection of noise into
the decoder, but they didn’t produce significant
differences in terms of BLEU (see Appendix D).

4.1.1 Parameter Sensitivity Analysis
We also explore how changing key parameters of
each pretraining method affects performance in
supervised NMT. We report the results in Table 2.
We observe there is a “sweet-spot” for the amount
of noise used in each method. Shuffling shows
larger variability and we find that by making the
token swaps less local (i.e., increasing k that makes
the input more BoW), yields better results.

Generator Size Next, we focus on why tying the
encoder and generator yields better results. Either

Method en→de de→en
wmt18 wmt19 wmt18 wmt19

mask=15% 32.7±0.1 30.4±0.1 32.9±0.0 25.1±0.1

mask=35% 33.3±0.1 30.7±0.2 33.2±0.0 25.4±0.0

mask=50% 33.2±0.0 30.4±0.0 33.1±0.1 25.2±0.1

shuffle=3 30.3±0.1 27.9±0.0 30.5±0.0 22.9±0.1

shuffle=5 31.6±0.1 28.7±0.0 31.7±0.0 23.9±0.1

replace=15% 33.8±0.1 30.4±0.1 33.1±0.1 25.3±0.2

replace=35% 33.9±0.0 30.3±0.2 33.5±0.1 25.4±0.1

replace=50% 33.3±0.0 30.3±0.1 32.8±0.0 24.7±0.2

replace=35% (1.0x) 33.7±0.1 30.6±0.0 33.3±0.0 25.0±0.1

replace=35% +nucleus 33.9±0.0 30.9±0.1 33.6±0.0 25.3±0.0

replace=35% +RTD=4 33.2±0.0 29.8±0.1 32.4±0.1 24.5±0.0

replace=35% +RTD=6 32.9±0.1 30.0±0.0 32.5±0.0 24.4±0.1

Table 2: Supervised NMT results (mean and SEM of 3
runs), for different configurations of pretrained models.

the encoder benefits from the implicit MLM loss,
or tying improves the generator and consequently
its samples. We train an untied model with equal
capacity to the encoder “replace=35% (x1.0)”, and
a similar model, but we sample replacements with
nucleus sampling5 (Holtzman et al., 2020) with
top-p=0.9, to avoid low-probability tokens. Neither
of those variants yields any measurable difference
with “replace=35%”, which suggests that MLM is
responsible for the improvements.

RTD Position We also explore if the position of
the RTD head is responsible for its negative effects
in NMT, as it might force the encoder to preserve
information irrelevant for NMT to its outputs. To
test this, we train a model with RTD over its fourth
(RTD=4) instead of last/top (RTD=6) layer. We
find that this change has a marginal effect on BLEU.

4.2 Semi-supervised Translation
In Table 3 we report results for semi-supervised
NMT, using backtranslation. Both the forward
and backward TM are initialized from the same
model. We generate the backtranslations from the
same monolingual data that we used for pretraining
with greedy-sampling, which is preferable for weak
TMs (Edunov et al., 2018), and upsample the real
data to maintain a 1:1 ratio with the synthetic data.

Results Backtranslation yields significant gains
in all experiments, and the initialization from pre-
trained models boosts performance even more. The
relevant performance between methods is consis-
tent with the supervised NMT, but their differences
shrink further. We suspect that adding more data
narrows the room for improvement of pretraining.

One exception is the initialization from “shuf-
fle=5”, which yields marginal gains in en↔de and
even fails to reach the randomly initialized model
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Method en→de de→en en→ne ne→en en→si si→en
wmt18 wmt19 wmt18 wmt19

random 34.8 29.2 37.4 24.8 5.8 13.9 6.5 12.9
mask=35% 38.3 31.5 38.8 27.7 6.3 14.9 6.5 13.5
mask=35% +eMLM 38.4 31.8 39.0 27.4 6.6 15.0 7.3 14.2
mask=35% (span) 38.3 31.6 39.0 27.5 6.4 14.4 6.3 13.4
shuffle=5 36.2 30.8 36.9 26.1 6.4 13.5 6.3 11.9
replace=35% 38.2 31.2 38.6 27.5 6.4 14.7 6.0 13.1
replace=35% +RTD 37.7 31.3 38.2 27.5 6.1 14.2 5.9 12.8
replace=35% +tied 38.5 31.7 38.8 27.8 6.4 15.1 6.6 13.7

+shuffle=3 38.2 31.6 38.6 27.0 6.5 15.4 7.4 14.2

Table 3: Finetuning results to semisupervised NMT. Each TM is trained on the concatenation of real and back-
translated sentences, obtained by a backward TM initialized from the same pretrained model.

Method en→de de→en
wmt18 wmt19 wmt18 wmt19

mask=35% 25.6 19.1 29.3 20.3
mask=35% +eMLM 25.2 18.7 28.9 19.8
mask=35% (span) 24.7 18.1 28.3 19.7
shuffle=5 17.1 13.1 20.5 15.6
replace=35% 23.3 17.5 27.4 19.4
replace=35% +RTD 22.8 16.8 26.5 18.5
replace=35% +tied 24.1 17.8 27.8 19.3

Table 4: Finetuning results to unsupervised NMT.

in si↔en and ne↔en. Note that, one of the advan-
tages of backtranslation is improving the LM ca-
pabilities of the decoder with the addition of more
clean target data. We hypothesize that shuffling
noise mainly pretrains the decoder as a LM, and its
benefits are largely neutralized by backtranslation.

4.3 Unsupervised Translation
In Table 4 we evaluate the pretrained models on
unsupervised NMT (Artetxe et al., 2018; Lample
et al., 2018), using only the monolingual data. In
this experiment we focus on en↔de, because un-
supervised NMT in en↔ne and en↔si yields very
low BLEU scores (Guzmán et al., 2019; Liu et al.,
2020). In each batch, we generate backtranslations
on-the-fly in the target language and the model
is optimized to reconstruct the original sentences
(i.e., en→de′→ên), following the same finetuning
process as mBART (see Appendix B for details).

Results Unlike the experiments on parallel data
(§4.1, §4.2), unsupervised NMT reveals large dif-
ferences between pretrained models. Strikingly,
“shuffle=5” yields the lowest BLEU scores by a large
margin. This further supports the hypothesis that
its primary strength is its decoder. We hypothe-
size that all pretraining methods produce strong
decoders, but not encoders. Since in supervised
NMT the models can learn source-to-target map-
pings from the parallel data, models with better
cross-lingual abilities have a small edge. However,

in the unsupervised setting having a fluent decoder
alone is not enough as the models have to rely on
their own word-translation capabilities (§4.5) to be
able to produce sufficient backtranslations.

Another unexpected result is that pretraining
with masked inputs outperforms replacements.
Replacement-based models should intuitively be
favoured, because the mistakes injected by the gen-
erator during pretraining resemble those produced
by backtranslation. Masking-based models, how-
ever, are exposed to very different inputs without
any signal from parallel data to help them transition
to the new training regime, unlike supervised NMT.

In our analysis (§5.2), we find that masking
biases models towards copying from the input,
whereas replacements make models more “cau-
tious” because some input words are fake. We
hypothesize that the ability of mask-based models
to copy words, such as dates or named entities, is
critical to kickstart the backtranslation process.

4.4 Supervised Translation Ablations
To estimate how important of each part of the pre-
trained model is for NMT, we conduct an ablation
experiment. First, we transfer all the weights of a
pretrained model to a downstream model, except
the weights of the ablated component. Next, we
freeze the pretrained weights for all components
except for the ablated one, which we reinitialise
randomly. Finally we finetune only the ablated
component, to isolate the effects on the final score
to the component and prevent the other components
from compensating (details in Appendix B.1).

We divide the model into four parts: (1) the
embedding matrix, which is used for both the en-
coder and decoder embeddings and the vocabulary
(output) projection, (2) the encoder layers, (3) the
decoder layers and (4) the cross-attention layers,
which link the decoder with the encoder. We re-
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Figure 2: Ablation results for supervised NMT on
de→en (wmt19). We reset each main component in-
dividually (left) and with the cross-attention (right).

port the de→en supervised NMT ablation results
in Figure 2. Higher BLEU scores show that a model
can better recover after an ablation, which we in-
terpret as an indication that the ablated parameters
are less important. We ablate each component both
individually and combined with cross-attention, to
allow the model to better learn to connect source
and target representations. We find in both settings,
that all models recover better after resetting their
encoders than their decoders, implying that the pre-
trained decoder parameters are more important.

4.5 Cross-lingual Sentence Retrieval
To study the cross-lingual abilities of the encoder
of each pretrained model, we evaluate them on
parallel sentence retrieval. In Figure 3, we report
the (per layer) accuracy of each encoder, on the
de→en Tatoeba test set (Tiedemann, 2020)6.

The results indicate that different objectives do
affect the encoder’s cross-lingual abilities. The
fact that this is not reflected in the BLEU scores
of the finetuned models further supports that even
a small parallel data-set is enough to align them
to similar degrees. As hypothesized, shuffling in-
duces the least effective cross-lingual representa-
tions. The RTD loss inhibits cross-linguality, as
accuracy decreases for each layer closer to the RTD
loss (L6). The “mask” model exhibits an unex-
pected behaviour, where its accuracy drops in its
middle layers before rising up again in its output
layer. We do not have a satisfying explanation
for this and we leave it for future work. However,
adding an MLM loss over the encoder completely
changes this behaviour, and both “mask+eMLM”
and “replace+tied” yield the best results.

We also notice an interesting result in the accu-
racy of the embeddings. Shuffling noise induces
poor alignment, unlike the other methods that have
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Figure 3: Parallel sentence retrieval accuracy (de→en).

much better aligned embeddings. We believe that
this result is connected to the unsupervised NMT
results. Note that, the quality of embeddings affect
the decoder as well, as their embeddings are tied.

5 Analysis

Finetuning on parallel data drives models towards
similar destinations (BLEU), but the results in un-
supervised NMT hinted that their starting points
are different, which implies that the finetuning pro-
cess itself is critical. We shift our focus to the
pretrained models themselves and using a series of
probes we study how pretraining methods affect
their behaviour and the knowledge that they en-
code. For clarity, here we discuss only the en↔de
results. The en↔ne and en↔si results are included
in Appendix C and are consistent with this analysis.

5.1 Encoder Denoising Capabilities
In this section, we study how well the encoders
of the pretrained models are able to denoise the
input. For each model, first, we corrupt its inputs
using the corresponding noising method and then
train a linear classifier over its encoder outputs,
using the identity of the original input token as the
label, similar to Brunner et al. (2019). In Figure 4
we report the perplexity (PPL ↓) of each classifier
evaluated on the wmt18 en↔de devset. We report
separately the scores for real and corrupted tokens.
We observe that, as expected, in all models the
PPL over non-corrupted tokens is almost perfect
(PPL ≈ 1), indicating that the encoders perfectly
preserve the input in their outputs. However, the
results vary significantly for corrupted tokens.

6We follow Libovický et al. (2020) and obtain the encoder
sentence representations for each layer with mean pooling,
followed by zero-centering per language (separately). Then,
for each source sentence we retrieve its nearest neighbor from
the target sentences based on cosine distance.
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Figure 4: Perplexity (PPL ↓) of the token prediction
probe for the en↔de pretrained models.

Masking The representations of masked tokens
yield the lowest PPL, which implies that token re-
construction happens partially in the encoder. How-
ever, the eMLM loss over the encoder makes the
outputs much more predictive of the original tokens.
This shows that the reconstruction loss does not
push the encoder to denoise the input well enough,
unlike the similar7 but explicit signal from eMLM.

Shuffling The PPL for original tokens is very low,
whereas for shuffled tokens extremely high. This
shows that the encoder does not fix the word order
but simply relays the input to the output. This is
in line with Xu et al. (2021) who showed that in
Transformer-based NMT word-reordering happens
in the decoder, instead of the encoder.

Replacement We observe a huge gap in how pre-
dictive the representations of real and replaced to-
kens are. We suspect that the encoder is “misled”
by the replacements and relays their information to
its outputs. Both tying and RTD help the encoder
to generate representations that are more predictive
of the true input. RTD, however, interferes slightly
with the representations of real tokens.

5.2 Decoder Uncertainty
Next, we focus on the decoder and study how its
token-level uncertainty varies while it reconstructs
original and corrupted tokens. For each model,
first, we corrupt its inputs using the corresponding
noising method and then measure the entropy of
the decoder’s distributions for each target token.
Low entropy values indicate that the decoder pre-
dicts the target tokens with certainty, by exploiting
the encoder representations. Figure 5 shows the
average entropy for original and corrupted tokens.

Masking When the decoder is presented with
masked inputs, it directly copies the unmasked to-
kens (exactly zero entropy). By contrast, predicting
masked tokens is naturally harder, and the decoder

7The eMLM and reconstruction losses are similar, but are
applied in different places (encoder vs. decoder). The signal
from reconstruction reaches the encoder through the decoder.

Figure 5: Entropy of decoder’s distributions during the
reconstruction of original and corrupted tokens.

becomes very uncertain. Adding eMLM over the
encoder does not change this behaviour.

Shuffling The decoder of “shuffle=5” predicts all
tokens with extreme certainty. Note that, in every
step, the decoder has to choose the correct token out
of N input tokens, instead of the full vocabulary,
and combined with the constraints imposed by the
ground-truth prefix, it is very easy for the model
to find which input word to copy next. Therefore,
we hypothesize that during pretraining the model
mainly relies on the LM capabilities of the decoder.

Replacement We observe that the decoder is un-
certain not only for fake but to a small extent, for
real words as well. If a replacement is coherent and
complies with the grammar of a given language,
the decoder can be misled, which makes it “ques-
tion” the identity of all words. RTD or tying with
the generator show no clear effects.

5.3 Decoder Sensitivity to Encoder Outputs
This analysis aims to estimate the reliance of the
decoder on the outputs (i.e., representations) of
the encoder. First, we feed to the encoder a cor-
rupted sentence x = 〈x1, x′2, x′3, . . . , xN 〉, where
x′i denotes a corrupted token, and obtain its outputs
h = 〈h1, h′2, h′3, . . . , hN 〉. Then, we block the in-
formation of h′i and measure how much it affects
the reconstruction loss. We consider two blocking
methods: (1) zeroing, in which we replace h′i with a
zero vector, and (2) mixing, in which we replace h′i
with random representations from other sentences
in a batch. The amount by which the reconstruction
loss increases implies how useful is the information
in h′i, and how sensitive the decoder is to them.

In Figure 6 we report the differences with and
without blocking, in terms of the reconstruction
loss (NLL). The models trained with shuffling orig-
inally yield the best reconstruction, which shows
that it is comparatively the easiest noise for the de-
coder. Replacement is slightly harder than masking
noise, because with masked inputs the decoder can
easily tell when to copy and when to predict, while
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Figure 6: Change in reconstruction loss (NLL ↓) after
blocking the representations of corrupting tokens.

replacements can be misleading (recall §5.2).

Masking “mask” and “mask+eMLM” reconstruct
the input equally well, but when the representations
of masked tokens are zeroed, “mask+eMLM” is
affected more. eMLM forces the reconstruction to
partially happen in the encoder (recall §5.1), so the
decoder relies more on it. Mixing increases NLL
even more, as we inject misleading information.

Replacement RTD leads to worse reconstruction
error, which suggests that it is interfering even in
the pretraining phase. Surprisingly, blocking the
representations of replaced words not only does not
increase the reconstruction loss but even slightly
decreases it. This implies that during pretraining,
the models learn to ignore the replaced words.

Shuffling Zeroing the representations of mis-
placed tokens is destructive and replacing them
with random representations, increases the loss
even further. The decoder focuses so heavily on
putting words in the right order and has no “doubts”
about their identity. Therefore, when presented
with missing or misleading information, instead of
“falling back” into an unconditional LM, that uses
only on the target prefix, it completely fails8.

5.4 Visualization of Encoder Representations
In Figure 7, we visualize the encoder token repre-
sentations using t-SNE (van der Maaten and Hin-
ton, 2008) and color code them based on whether
the belong to original or corrupted tokens (see Ap-
pendix C.1 for details and more visualizations).
Masking induces separated representation between
masked and unmasked tokens, which enables the
decoder to copy with certainty (see §5.2), while
eMLM, that pushes the encoder to reconstruct the
corrupted tokens, makes them more similar to the
original ones (see §5.1). Although the representa-
tions of original and reordered tokens have a large
overlap, we observe some separated clusters of
original and misplaced tokens, implying that the

8NLL after zeroing is 8.4. It equals to PPL of exp(8.4) =
4447, which is very high even for a weak unconditional LM.

mask mask+eMLM shuffle replace replace+RTD

corrupted real

Figure 7: Visualization of encoder representations

encoder is partially aware of shuffling noise. As
expected, adding RTD over the “replace” models
enables allows it to identify more corrupted tokens,
as shown by the size of the corresponding clusters.

6 Conclusions

In this work, we explore new unsupervised pre-
training methods for NMT. We consider alternative
objectives to masking, such as reordering or replac-
ing input words, that produce training examples
similar to real sentences.

We discover that (semi-)supervised NMT is not
very sensitive to the pretraining objective. While
some methods are better than others, most mod-
els converge to similar BLEU scores (§4.1, §4.2).
Surprisingly, even pretraining with shuffled inputs
yields competitive results with the other methods.
Our ablation experiments (§4.4) imply that pretrain-
ing benefits more the decoder than the encoder.

In unsupervised NMT, however, the results vary
significantly (§4.3). Shuffling noise leads to sig-
nificantly worse performance, whereas masking
noise, unexpectedly, yields the highest BLEU. Ex-
periments on parallel sentence retrieval (§4.5) show
that different objectives do affect the encoder cross-
lingual abilities, and are reflected on the unsuper-
vised NMT results. Through further and extensive
analysis of pretrained models (§5), we find that
they encode and use information in different ways.

We conclude that finetuning to each downstream
NMT task is sensitive to different properties of pre-
trained models. (Semi-) Supervised NMT benefits
from strong and fluent decoders, because the signal
from the parallel data compensates for encoders
with poor cross-lingual representations. Unsuper-
vised NMT finetuning, however, requires models
with good source-target mappings, and is also sen-
sitive to certain model biases, such as the tendency
to copy (§5.2) induced by mask-based pretraining.
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A Model Configuration & Training

We use 6 Transformer layers in both the encoder
and the decoder, with embedding/hidden size of
512, feed-forward filter size of 2048, 8 attention
heads and we apply 0.1 dropout to all layers. We
optimize our models using Adam (Kingma and Ba,
2015) with β1 = 0.9, β1 = 0.999, and ε = 10−6.
All models use sinusoidal positional embeddings.

We tie the weights of the embedding and out-
put (projection) layers of all sub-networks (Press
and Wolf, 2017; Inan et al., 2017), which involves
the encoder, decoder and MLM generator. For
pretraining, we use a learning rate of 5e−4 with
a linear warm-up of 16K steps, followed by in-
verted squared decay. We train each model for
300K steps with mini-batches of 24K tokens on 8
Nvidia V100 GPUs, which requires approximately
4-5 days. The maximum sentence length is set to
256 tokens. For the finetuning experiments, we use
a learning rate of 3e−5 with a linear warm-up of
2.5K steps and mini-batches of 12K tokens. We
finetune each model for 60K in the supervised set-
ting and 120K steps in the semi-supervised setting.
We also use increased the dropout to 0.3 and set
label smoothing (Szegedy et al., 2016) to 0.1, to
avoid over-fitting on the limited parallel data.

B Unsupervised NMT

Instead of adding input noise, like Artetxe et al.
(2018); Lample et al. (2018), we follow the fine-
tuning process of mBART (Liu et al., 2020). To
prevent models from copying the source during
backtranslation and force the transition to the trans-
lation task, we allow only the most frequent tokens
in the target languageto be generated for the first 2K
steps. Specifically, we mask tokens with frequency
less than 10−3, as measure in the monolingual data.
For model selection, we use a small subset of 200
sentences from the wmt18 devset.

B.1 Supervised Translation Ablations
In Figure 8, we visualize the experimental protocol
for our ablation experiment. To test (i.e., ablate) a
component, the process is the following:

1. We transfer all the weights of a pretrained
model to a downstream model, except the
weights of the ablated component.

we assume a shared multi-lingual vocabulary

Embedding

Decoder

Embedding

Vocabulary
ProjectionCross-Attention

Encoder

Random and Finetuned (ablated)
Transferred and Frozenxattemb

enc

dec

Downstream Model Parameters

Figure 8: Visualization of the ablation experiment, us-
ing the ablation of the encoder as example. The figure
shows the high-level architecture of a model and the
colors correspond to the parameter set. The input em-
beddings of the encoder, the decoder and the vocabu-
lary projection have the same color as they share the
same parameters. During finetuning, we update only
the weights of the ablated component, and all the other
(pretrained) weights are frozen.
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Figure 9: Ablation results for supervised NMT on
en→de (wmt19). We reset each main component in-
dividually (left) and with the cross-attention (right).

2. We freeze the pretrained weights and finetune
only the ablated (i.e., randomly initialized)
component.

We decided to follow this protocol, in order to
isolate the effects on the final BLEU score on the ab-
lated component, and to also prevent the other com-
ponents from compensating. In concurrent work,
Gheini et al. (2021) have considered a similar ex-
perimental protocol, but to study a different but
related phenomenon. In Figure 8, we show the
ablation results for the en→de direction.

C Analysis Results in Other Languages

In Figures 10, 11, 12, 13, 14, 15, we report
the analysis results 5 on the en↔ne and↔ne pre-
trained models, evaluated on their NMT dev sets.
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We observe that the results are very consistent with
those for en↔de.

Training Details of Probing Classifier For the
analysis in Sec. 5.1, each classifier is trained on
the monolingual data for 50K steps, and optimized
with Adam using a learning rate of 0.0001. Only
the parameters of the classifier are updated and the
rest of the model remains fixed.

Figure 10: Perplexity (PPL↓) of the token prediction
probe for the en↔ne pretrained models.

Figure 11: Perplexity (PPL↓) of the token prediction
probe for the en↔si pretrained models.

Figure 12: Decoder entropy for the reconstruction of
real/corrupted tokens, for the en↔si pretrained models.

Figure 13: Decoder entropy for the reconstruction of re-
al/corrupted tokens, for the en↔ne pretrained models.

Figure 14: Reconstruction loss (NLL ↓) with/without
blocking the outputs of corrupted tokens (en↔si).

Figure 15: Reconstruction loss (NLL ↓) with/without
blocking the outputs of corrupted tokens (en↔ne).

C.1 Visualization of Encoder Representations
In this section, we visually inspect the input token
representations. We compare each method based
on how the representations evolve through the lay-
ers of the encoder, by focusing on two aspects of
each token, (1) its language and (2) whether it has
been corrupted or not. The goal is to inspect how
each model encodes these two types of information
about the input tokens.

Methodology We sample 5K sentences from the
English-German monolingual data and pass them
through the encoder of each model using corre-
sponding noising method. For each token, we keep
its representations from every layer and label them
by language and noise. We keep only the represen-
tations of the 2K most frequent tokens and exclude
the representations of special tokens, such as the
[BOS], [EOS], and language IDs, which signif-
icantly skew the results. The final dataset con-
tains approximately 100K token representations
per layer (600K in total). For the visualization,
we project to 2D with t-SNE (van der Maaten and
Hinton, 2008). For each model, we visualize the
representations of its encoder per layer (L1 to L6),
which we colour-code by language (top-row) and
the identity (bottom-row) of each token. L1 refers
to the outputs of the first Transformer layer, there-
fore the tokens have been contextualized once.
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L1 L2 L3 L4 L5 L6

de en

corrupted real

Figure 16: Visualization of encoder representations
from the “mask=35%” model.

Masking In Fig. 16 we visualize the encoder
of the “mask=35%” pretrained model. Real and
masked tokens occupy different regions, whereas
the tokens from each language are much closer to
each other. All models trained with masking noise
exhibit similar behaviour. In the first layer, the
masked tokens are organized into multiple small
clusters, but the encoder progressively groups them
into larger structures. We visually verify that the
encoder keeps the masked tokens separated even
in the last layer. This aligns with our findings in
Sec. 5.1, which suggest that the reconstruction loss
does not incentivize the encoder to denoise the rep-
resentations of masked tokens. Also, it enables the
model to easily identify the real tokens and can
copy them, as discussed in Sec. 5.2.

L1 L2 L3 L4 L5 L6

de en

corrupted real

Figure 17: Visualization of encoder representations
from the “mask=35%+eMLM” model.

Masking+eMLM In Fig. 17 we visualize the
“mask=35%+MLM” model. Adding eMLM makes
the masked and real tokens are indistinguishable
from each other. Intuitively, to minimize the MLM
loss the encoder must generate representations that
are predictive of the true identity of the masked to-
kens, therefore similar to real tokens. We observe a
small overlap between English and German tokens,
as there are more language-specific clusters. We
believe that is because the eMLM loss pushes the
representation to better encode the grammar and

semantics of each token.

L1 L2 L3 L4 L5 L6

de en

corrupted real

Figure 18: Layer-wise visualization of encoder repre-
sentations from the “replace=35%” model.

Replacement In Fig. 18 we visualize the “re-
place=35%” model. There is a moderate sepa-
ration between languages, slightly less than the
“mask=35%+MLM” model. However, we ob-
serve that the representations of real and fake to-
kens generally overlap with each other, unlike the
“mask=35%” model, especially in the lower layers.
This is because the model is always given as in-
put embeddings of actual words and not [MASK],
which unless contextualized all of them are treated
the same. Only in the last layer, we can see the for-
mation of a fake-only cluster. This suggests that the
pretraining objective (i.e., reconstruction) creates a
bias towards discriminating between real and fake
token. However, the separation is not as extreme as
in the masked-based models but is not obvious if
the encoder can’t or is not biased to more clearly
separate them.

L1 L2 L3 L4 L5 L6

de en

corrupted real

Figure 19: Visualization of representations from the
“replace=35%+RTD=4” model, that is trained with an
RTD head over the 4th layer of the encoder.

Replacement Token Detection In Fig. 19 we vi-
sualize the “replace=35%+RTD=4” model, that
is trained with an RTD head over the 4th layer
of the encoder. The only difference with the “re-
place=35%+RTD=6” is that the effects of RTD start
to show earlier. Compared to the “replace=35” the
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Method en→de de→en en→ne ne→en en→si si→en
wmt18 wmt19 wmt18 wmt19

random 26.2±0.1 25.3±0.1 27.6±0.1 19.1±0.3 3.3±0.1 6.5±0.1 2.5±0.1 6.5±0.1

mask=35% 33.3±0.1 30.7±0.2 33.2±0.0 25.4±0.0 5.1±0.1 10.2±0.1 3.7±0.0 10.0±0.1

mask=35% +eMLM 33.4±0.0 30.6±0.1 33.5±0.1 25.2±0.2 5.3±0.0 10.8±0.1 4.0±0.0 10.4±0.1

mask=35% (span) 33.3±0.1 30.5±0.1 33.4±0.0 25.2±0.0 5.1±0.1 10.1±0.1 3.9±0.1 9.9±0.1

shuffle=5 31.6±0.1 28.7±0.0 31.7±0.0 23.9±0.1 4.9±0.0 9.9±0.1 3.4±0.0 10.1±0.1

replace=35% 33.9±0.0 30.3±0.2 33.5±0.1 25.4±0.1 5.1±0.1 9.9±0.1 3.7±0.0 9.8±0.0

replace=35% +RTD 32.9±0.1 30.0±0.0 32.5±0.0 24.4±0.1 5.0±0.0 9.9±0.1 3.4±0.1 9.7±0.2

replace=35% +tied 34.2±0.0 30.8±0.1 33.7±0.1 25.3±0.2 5.3±0.0 10.6±0.1 3.7±0.0 10.5±0.1

+ shuffle=3 34.0±0.0 31.1±0.1 33.4±0.1 25.1±0.2 5.5±0.0 11.0±0.0 4.0±0.0 10.8±0.1

+ dec: mask=15% 33.9±0.1 30.9±0.0 33.6±0.1 25.3±0.2 5.5±0.0 10.5±0.0 3.9±0.0 10.4±0.0

+ dec: replace=15% 34.5±0.1 30.7±0.1 33.4±0.0 25.6±0.1 5.6±0.0 10.5±0.1 3.9±0.0 10.7±0.1

Table 5: Finetuning results to supervised NMT. “dec:X” denotes method that add noise to the the decoder. We
report the average of 3 runs and the standard error of the mean.

representations are more clustered and less spread-
out, even in the lower layers. The real and fake
tokens are much better separated, and the separa-
tion peaks at layer 4, which visually verifies the
bias introduced by RTD, but the separation is not
as extreme as for masking noise. Although this
suggests that separating masked/original words is
harder than real/fake, it also depends on the weight
used for the RTD loss during pretraining, which is
not something we have explored. Also, the visual-
ization suggests that the separation remains approx-
imately constant in the remaining layers. There
is no perceptible difference with “replace=35” in
terms of language.

L1 L2 L3 L4 L5 L6

de en

corrupted real

Figure 20: Visualization of representations from the
“shuffle=5” model.

Shuffling In Fig. 20 we visualize the “shuffle=5”
model. We observe a strong separation between
languages, that slightly decreases in the upper lay-
ers. The language clusters are relatively large, un-
like the much smaller and local language-specific
clusters seen in the other models. As for noise,
initially all tokens are represented similarly, but
as the encoder re-contextualizes the input, it puts
more misplaced tokens in separate clusters. This
shows that the model becomes progressively more
“aware” about the misplaced tokens in the input.

After manual inspection of the clusters with cor-
rupted tokens, we found that the majority of them
contain punctuation marks. This makes intuitive
sense, as it should be easy for the model to identify
punctuation marks that has been misplaced.

D Additional NMT Experiments

In Table 5 we report some additional results for
supervised NMT 4.1 omitted from the main pa-
per. Besides combining shuffling and word re-
placements in the input, we also introduce noise
in the decoder side, by randomly replacing 15%
words of the decoder’s input with the [MASK]
token (“dec:mask=15%”) or with samples from
the generator (“dec:replace=15%”). Note that, we
reduce the amount of noise in this case to avoid
disrupting training. Overall, we observe that both
methods increase performance in some language
pairs, but the improvements are marginal.

We also experimented with RTD over shuffled
inputs, by training the model to explicitly detect if
words were misplaced or not, but this configuration
lead to poor results.

Bowman et al. (2016) reported that masking more than
20% of words in the decoder hurts its LM capabilities.


