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Abstract
Learning low-dimensional representations of
networked documents is a crucial task for doc-
uments linked in network structures. Rela-
tional Topic Models (RTMs) have shown their
strengths in modeling both document contents
and relations to discover the latent topic se-
mantic representations. However, higher-order
correlation structure information among doc-
uments is largely ignored in these methods.
Therefore, we propose a novel graph relational
topic model (GRTM) for document network,
to fully explore and mix neighborhood infor-
mation of documents on each order, based
on the Higher-order Graph Attention Network
(HGAT) with the log-normal prior in the
graph attention. The proposed method can ad-
dress the aforementioned issue via the informa-
tion propagation among document-document
based on the HGAT probabilistic encoder, to
learn efficient networked document representa-
tions in the latent topic space, which can fully
reflect document contents, along with docu-
ment connections. Experiments on several
real-world document network datasets show
that, through fully exploring information in
documents and document networks, our model
achieves better performance on unsupervised
representation learning and outperforms ex-
isting competitive methods in various down-
stream tasks.

1 Introduction

Document networks, such as hyperlink networks
of Web pages, citation networks of academic doc-
uments, and user profiles in social networks, have
long been an intensively studied research sub-
ject due to their wide applications. Finding low-
dimensional representations of networked docu-
ments to preserve document contents and connec-
tions among documents simultaneously is a cru-
cial research task. Inspired by the wide applica-
tion of topic models such as latent Dirichlet allo-

cation (LDA) (Blei et al., 2003) on discovering
the latent semantic structure of unconnected docu-
ments, a series of Relational Topic Models (RTMs)
are proposed to explore the latent topic seman-
tic structure of documents and links among them,
based on probabilistic graphical models (Nallapati
et al., 2008; Chang and Blei, 2009; Le and Lauw,
2014; Chen et al., 2014; Yang et al., 2016), deep
generative models (Acharya et al., 2015; Wang
et al., 2017; Bai et al., 2018), auto-encoders (AEs)
(Zhang and Lauw, 2020) and graph auto-encoders
(GAEs) (Wang et al., 2020a).

However, most RTMs consider only the pair-
wise correlation or the first-order neighbor corre-
lation (Zhang and Lauw, 2020) among documents.
Although the recently proposed deep relational
topic model, GPFA (Wang et al., 2020a) based
on graph neural networks (GNNs) can consider
low-order indirect neighborhood information via
stacked graph neural network (GNN) (Kipf and
Welling, 2016b) layers, it still suffers from exploit-
ing the deep interactions (higher-order) between
indirectly connected documents due to the over-
smoothing problem (Li et al., 2018). Such the
higher-order correlation structure has been proved
to be effective on various tasks (Abu-El-Haija et al.,
2019) such as link prediction and recommendation
(Zhang and McAuley, 2020).

To address the aforementioned issue, we pro-
pose the graph relational topic model (GRTM) for
modeling the latent topic structure of document
contents and links, based on the higher-order graph
attention auto-encoders (HGTAEs), aiming to fully
explore and fuse each order proximity (including
the low-order and higher-order) of document net-
work. Specifically, we propose to extract the higher-
order document proximity network (HDPN) from
the adjacent matrix of the document network via
the calculation of the shortest path. The higher-
order graph attention network (HGAT) is presented
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to efficiently model the neighborhood information
propagation on HDPN via introducing the log-
normal prior into the graph attention. We finally
propose our GRTM with the higher-order graph at-
tention auto-encoders (HGTAEs) based on HGAT
and HDPN. The main contributions of our paper
are as follows:

1. We propose a novel unsupervised deep rela-
tional topic model GRTM to fully explore mul-
tiple information: the higher-order document
relations and latent topic semantic among doc-
ument contents and networks.

2. We propose a novel graph attention network
HGAT to efficiently explore each order corre-
lations among networked documents.

3. Experimental results on document network
datasets show that our model outperforms ex-
isting competitive methods on unsupervised
representation learning, through fully explor-
ing multi-granularity information in document
networks.

2 Related Work

In this section, we briefly review existing Re-
lational Topic Models (RTMs), Graph Auto-
Encoders (GAEs), and Graph Topic Models.

RTMs generally extended LDA based topic mod-
els to further model the links between documents
in networks. Chang and Blei (2009) first pro-
posed to introduce additional binary conditional
variables in the generation to model the document
links. (Chen et al., 2014) (2014) proposed discrim-
inative relational topic models (DRTMs) to learn
discriminative latent representations of document
networks. Le and Lauw (2014) proposed PLANE
which can jointly extract topics and visualization
coordinates. To apply the neural network based
inference approach to RTMs, Bai et al. (2018) uti-
lized Stacked Variational Auto-Encoder(SVAE) to
derive more representative documents in topic dis-
tributions. However, these models only consider
pair-wise document correlations, fail to model the
full structural information (low-order and higher-
order) embedded in the document network.

To model the block correlation structure of the
document network, Yang et al. (2016) incorpo-
rated weighted stochastic block model into rela-
tional topic models. Most recently, Zhang and
Lauw (2020) proposed AdjEnc to reconstruct both

documents and their neighborhoods in the network.
However, it can only capture the first-order correla-
tion structure with the adjacent-encoder. Wang et al.
(2020a) proposed the deep relational topic model
GPFA based GNNs to explore hierarchical relation-
ships of interconnected documents. However, still,
it can only capture the low-order hierarchical rela-
tionships of interconnected documents due to the
well-known smoothing problem of GNNs, while
long-range relations among documents are also
critical for learning latent representations in doc-
ument networks. To address this issue, we calcu-
late the higher-order proximity network that allows
considering the long-range topological information
among documents, rather than merely pairwise or
few-order relations.

Recently, GAEs has attracted a lot of attention,
which incorporates GNNs into auto-encoder to un-
supervised graph embedding learning, motivated
by the successful applications of GNNs in mod-
eling graph topological structure. The earliest at-
tempt VGAE (Kipf and Welling, 2016a) extended
variational auto-encoder (VAE) onto graph struc-
ture data for learning network embedding. Inspired
by the advantage of GNNs, some works have ex-
plored VGAE for topic modeling, including the
deep relational topic model GPFA mentioned be-
fore, and GraphBTM (Zhu et al., 2018) which im-
proved the biterm topic model (Yan et al., 2013)
with word co-occurrence graph encoded by GCNs.
Except studies based on VGAE, there are also
works combining topic models with graph neu-
ral networks in a different manner, such as the
graph attention topic network (GATON) (Yang
et al., 2020) proposed for unconnected documents,
the dynamic hierarchical topic graph model DHTG
(Wang et al., 2020b) used for unconnected docu-
ment classification, the topic variational graph auto-
encoder (TVGAE) (Xie et al., 2021b) for document
classification and the graph topic neural network
(GTNN) (Xie et al., 2021a) proposed for represen-
tation learning of both connected and unconnected
documents. Different from them, we target con-
nected documents. Moreover, to fully explore the
deep topological structure of document networks,
we propose the novel higher-order graph attention
network, and then introduce it into the relational
topic modelling based on variational graph auto-
encoders.
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3 Method

In this section, we present our graph relational topic
model (GRTM) for the document network. We first
introduce the construction of the higher-order prox-
imity networks: HDPN from document adjacency
matrices, then we present the novel graph attention
network HGAT to fuse the information of HDPN.
We end this section by introducing the variational
graph auto-encoder structure for building GRTM.

3.1 Higher-order Proximity Network
Formally, we define a given document network as
G = (D,A,X). D = {d1, ..., dn} is the set of doc-
ument nodes with n documents and a vocabulary V
with m words. Relations between documents are
represented as a 0-1 adjacency matrix A 2 Rn⇥n,
and X 2 Rn⇥m is the documen-word index matrix,
in which Xij represents the weight (e.g. TF-IDF)
of word j in document i. For the given document
sets D, Based on the given adjacency matrices A
of document network, the key problem is to dis-
cover and preserve arbitrary-order neighborhood
relations beyond first-order or few-order (including
other higher-order). Intuitively, two nodes have
a proximity correlation if and only if we can find
at least one path between them (Liu et al., 2019).
Thus, we can calculate the order of proximity corre-
lation between two nodes according to the length of
the shortest path between them based on the adja-
cency matrix, and directly preserve arbitrary-order
information in the same matrix. Denoting the ad-
jacency matrices of HDPN as Â 2 Rn⇥n, the link
of proximity correlation between two documents
(di, dj) is defined as:

Âi,j =

(
k, existing a k-length shortest path

1, i = j

1, no path

(1)

According to the above definition, Â can be calcu-
lated during the data pre-processing step in advance.
The length of the shortest path of two nodes is cal-
culated using classical search algorithms such as
Dijkstra’s algorithm or Bellman-Ford algorithm on
the machine learning framework 1. Compared with
existing methods that calculate the higher-order
proximity with the power of adjacency matrix or
steps in a probabilistic transition process (Abu-El-
Haija et al., 2019; Liu et al., 2019), our calculation

1https://networkx.github.io/documentation/networkx-
1.10/overview.html

is more suitable for explicitly calculating the length
of the shortest path. Because the k-power of ad-
jacency matrix has proximity information overlap
on other power matrices before it, while the calcu-
lation of k-walk may lead to nodes return to their
neighbors less than k-order rather than reach to
their k order neighbor (Zhang and Xu, 2020).

3.2 Higher-order Graph Attention Network

In this section, we focus on how to better fuse in-
formation of neighbors at different orders on an
HDPN to efficiently learn node representations.
Intuitively, for a given node representation, the
contributions of its neighbors vary according to
their distances. However, directly utilizing GNNs
such as graph convolutional networks (GCNs) and
graph attention networks (GATs) on the HDPN will
treat neighbors of nodes at different orders equally.
Therefore, we present the higher-order graph at-
tention network (HGAT) to solve the problem via
introducing the log-normal prior into the graph at-
tention.

Instead of utilizing uniform prior in GATs, we
exploit the log-normal distribution to model the im-
portance decaying of neighbors of the current node
on different orders. For simplicity sake, we use
the log-normal distribution with zero-mean value,
and calculate the attention coefficient between two
nodes i, j:

h̃i
l
, h̃j

l
= W lhli + bl,W lhlj + bl

eij = ⇢(��(pij)(h̃i
l · (h̃j

l
)T)

↵i,j = softmax(ei,j) =
exp(eij)P

o2N (i) exp(eio)

(2)

where �(p) = exp�(ln p)2/�2

p�
p
2⇡

is the probability den-
sity function of the log-normal distribution, � is the
variance of the log-normal prior, pij is the length
of the shortest path between nodes i, j in a HPN,
hli, h

l
j are representations of node i, j in the l-th

layer, ⇢ is the activation function, � is the parame-
ter to control the influence of the log-normal prior,
N (i) is neighbors of node i in a HPN, W l, bl are
the weight matrix and bias of the l-th layer. The
attention mechanism based on the log-normal prior
allow nodes to select their neighbors at arbitrary-
order with different importance. Calculated atten-
tion coefficients are further exploited to propagate
information of neighbors of each node at arbitrary-
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Figure 1: The example of the log-normal distribution
with µ = 0,� = 1.

order:
hl+1
i = ⇢(

X

j2N (i)

↵ijh
l
j) (3)

Although there are other distributions, such as
the normal distribution used in the Gaussian trans-
former (Guo et al., 2019), the log-normal is more
suitable for model the importance calculation in
our case. This is because the density function �(p)
of the log-normal prior with zero-mean value has
always a real value larger than 0 rather than that of
the normal distribution with the negative value or
Poisson distribution with an integer value. More-
over, �(d) always decreases monotonically after
exp��2

< 1, while the path length in our HDPN
is always greater or equal to 1. Therefore, the
log-normal prior can naturally model the decay of
importance weight by increasing the path length
between two nodes, as shown in Figure 1. When
conducting the HGAT on the vanilla adjacency ma-
trix (only with first-order proximity), the HGAT
will be degenerated into the GAT method due to
there are only 1 or 1-length of the shortest path in
the vanilla adjacency matrix.

3.3 Graph Relational Topic Modelling

To fully explore the long-range document relations
to model the latent topic semantic among docu-
ment contents and networks, we present the GRTM
model with the higher-order graph attention auto-
encoders (HGTAEs). Let’s assume K is the topic
number, ✓ is the document topic proportion, and �
is the topics, namely the topic word proportion.

Firstly, we present the generative process of
GRTM as in Algorithm 1. Similar to previous
RTMs, we assume the document topic proportion
is generated from the Dirichlet prior. However, the
Dirichlet prior makes it difficult to make the neural
variational inference for GRTM, due to the chal-
lenge of reparameterizing the Dirichlet prior. Thus,
to simplify the inference process, we approximate
the Dirichlet distribution with its Laplace approx-
imation: the logistic normal distribution follow-

Algorithm 1: Generative Process of
GRTM

for each document d 2 D do
Generate the mean vector:
µ0
d ⇠ HGATµ(Xd, Âd).

Generate the diagonal covariance:
�0
d ⇠ diag(HGAT�(Xd, Âd)).

Draw the noise variable ✏d ⇠ N (0, I).
Draw the document topic proportion: ✓d ⇠
LN(µ0

d,�
0
d) = softmax(µd + (�0

d)
1
2 ✏d).

for each word wdv 2 V do
Draw the word wdv|✓d,� ⇠ Mult(✓d�).

for each pair of document d, d0 2 D do
Draw the observed link
Ad,d0 |✓d, ✓d0 ⇠ Bernoulli(fy(✓d, ✓d0))

ing many previous works (Srivastava and Sutton,
2017).

To incorporate the higher-order relations among
documents, we generate the document topic propor-
tion with logistic normal distribution parameterized
by HGAT probabilistic encoder. Specifically, for
each document d, we draw the mean and covari-
ance of a multinomial distribution variable and then
transform it with the softmax function:

µ0
d = HGATµ(Xd, Âd)

�0
d = diag(HGAT�(Xd, Âd))

✓d = softmax(µ0
d + (�0

d)
1
2 ✏d)

(4)

where HGAT is the message passing process as in
Equation 3, ✏d is the noise variable. For HGAT
encoders of mean and covariance, the input feature
h0d is set to the normalized document-word index
feature Xd following previous methods (Kipf and
Welling, 2016a). The message passing based on
HGAT makes latent topic proportions of each docu-
ment influenced by its neighbors at different orders
with different importance.

In the decoding process, the word is generated
from the multinomial distribution based on the
topic proportion of the document it belongs to and
its topic proportion: p(wd|✓d,�) = Mult([✓d�]).
The links between two documents are modeled
as Bernoulli binary variables, which are condi-
tionally generated based on the latent topic pro-
portions of these documents: p(Ad,d0 |✓d, ✓d0) =
sigmoid(fy(✓d, ✓d0), where fy is the multi-layer
perception.

Following the auto-encoding variational Bayes
inference method (Kingma and Welling, 2014), we
can yield the evidence lower bound (ELBO) to
the marginal log-likelihood according to the above
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generative process:

L(⇥) =�DKL[q(✓|w, Â)||p(✓|↵)]
+ Eq(✓|w,Â)logp(w|✓,�)

+ Eq(✓|w,Â)logp(A|✓)
(5)

where ⇥ is the parameter set of the whole process,
q(✓|w, Â) is the approximate Dirichlet variational
posterior as parameterized in Equation 3, p(✓|↵) is
assumed the true Dirichlet posterior and ↵ is the
prior parameter. We still approximate it with its
Laplacian approximation: the softmax variable on
the multivariate normal with mean and covariance
matrix as follows:

µ1
d = log↵� 1

k

X

i

↵i

�1
d =

1

↵
(1� 2

K
) +

1

k2

X

i

(
1

↵i
) (6)

We seek to minimize the KL divergence between
the variational posterior and the true posterior in
the first term. The second and third terms aim to
reconstruct the document contents and links.

Based on the gradient variational Bayes (SGVB)
estimator (Kingma and Welling, 2014), we can
further yield the detailed formulation of each term:

DKL =
1

2
{tr(�0(�1)�1)

+ (µ1 � µ0)T (�1)�1(µ1 � µ0)

� k + log(
|�1|
|�0|)}

(7)

logp(w|✓,�) =
nX

d=1

�Xdlog(X̃d)

� (1�Xd)log(1� X̃d)

logp(A|✓) =
nX

d=1

�Adlog(Ãd)

� (1�Ad)log(1� Ãd)

(8)

where X̃ = (✓�) is the reconstructed document
contents, Ã = sigmoid(fy(✓)) is the recon-
structed document links. Based on these, we can
optimize the ELBO with stochastic gradient de-
scent to infer the whole model end to end.

Table 1: Statistics of the document network
datasets (Zhang and Lauw, 2020)

.
Datasets Classes Documents Edges Vocabulary

DS 9 570 1336 3,085
HA 6 223 515 2,073
ML 7 1,980 5,748 4,431
PL 9 1,553 4,851 4,105

4 Experiments

We conduct experiments in several real-world doc-
ument network datasets. The statistics are reported
in Table 1. Four datasets are subsets extracted from
Cora: Data Structure (DS), Hardware and Archi-
tecture (HA), Machine Learning (ML), and Pro-
gramming Language (PL) as in (Zhang and Lauw,
2020), in which Cora is the scientific article cita-
tion dataset collected from scholar websites. To
evaluate the unsupervised representation learning
capability of our method, we infer the latent topic
portions of documents ✓ with our model, and then
use it for three types of downstream tasks, namely
document classification, document clustering, link
prediction. We compare our method against base-
lines from the following three categories:

• Auto-Encoders: including variants of auto-
encoders such as AE, DAE (Vincent et al.,
2010), CAE (Rifai et al., 2011), VAE (Kingma
and Welling, 2014), KSAE (Makhzani and
Frey, 2014), KATE (Chen and Zaki, 2017)
use Auto-Encoder to encode texts;

• Relational Topic Models: including gen-
erative models based on relational topic
model such as RTM (Chang and Blei, 2009),
PLANE (Le and Lauw, 2014), NRTM (Bai
et al., 2018), ProdLDA (Srivastava and Sutton,
2017), and also a relational topic model based
on the auto-encoder method: ADE (Zhang
and Lauw, 2020);

• Graph Embedding: including graph embed-
ding method based on GCN - VGAE (Kipf
and Welling, 2016a).

We follow the settings for all baselines as in
(Zhang and Lauw, 2020) and also compare methods
in both transductive and inductive learning settings.
For inductive learning, we randomly select a subset
of 70% documents as the training set, a subset of
10% of documents as the validation set, and use the
remaining 20% documents as the testing set. For
transductive learning, all documents are involved
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in the training process. All experimental results
are averaged over the results of 10 independent
runs. Following (Zhang and Lauw, 2020), we set
the topic number K as 64, the layer number L of
message passing in HGAT as 1. The hidden size
of weight matrices in HGAT is equal to the topic
number of 64. For the log-normal prior in HGAT,
we set the the parameter � =

p
⇡, the variance � =

1p
2
. We use the tanh activation function in HGAT.

We use the Dirichlet distribution with parameter
↵ = 1

K for the logistic normal approximation. The
learning rate on all datasets is 0.065, the maximum
training epochs with Adam is 40000, the early stop
epoch is 500. The parameter setting in all baseline
models is the same as in (Zhang and Lauw, 2020).

We infer document topic representations with
trained GRTM model for both train and test doc-
uments, which are then used in three downstream
tasks to evaluate the effectiveness: 1) Document
classification: we adopt K-Nearest Neighbors
to predict each document’s label based on the
Euclidean distance of generated representations.
We use the classification accuracy as the metric.
2) Document clustering: We also compare our
method with baselines in clustering documents via
K-means, to investigate whether our method can
generate similar representations for documents in
the same category. In this case, the ground truth
labels are only utilized to calculate normalized mu-
tual information (NMI) in evaluation. 3) Link Pre-
diction: The generated representations are used to
predict the links between documents in this exper-
iment. We use Mean Average Precision (MAP)
as the evaluation metric following the previous
method (Zhang and Lauw, 2020). To better un-
derstand the semantic information our method cap-
tured in generated representations, we also con-
duct experiments to present a detailed analysis
of our generated topics in inductive learning: 1)
Topic Coherence: As in previous work (Zhang
and Lauw, 2020), we adopt PMI - PMI(wi, wj) =

log p(wi,wj)
p(wi)p(wj)

to evaluate topic coherence. We cal-
culate the average pairwise PMI of the top 10 words
in each topic. Better topics should produce higher
PMI.

2) Visualization: We apply t-SNE to project text
representations generated by different models into
a 2-dimensional space.

4.1 Overall Results

As shown in Table 2 and 3, our method achieves the
best performance in all tasks on the four datasets on
both inductive and transductive settings. Compared
with auto-encoder based methods (AE, DAE, CAE,
VAE, KSAE, and KATE), which only consider doc-
ument contents without document networks. ADE,
relational topic model methods (ProdLDA, RTM,
PLANE, NRTM), and our method achieve better
performance due to considering the links among
documents, which benefits the downstream tasks of
document classification/clustering and link predic-
tion. Compared with relational topic model meth-
ods (ProdLDA, RTM, PLANE, NRTM), we found
that the graph embedding method VGAE and the
adjacent auto-encoder method ADE perform better
than other baselines, which demonstrates the ad-
vantage of using high-order proximity information.
But they are still inferior to our proposed GRTM,
which proves the benefits of fully exploring infor-
mation of various orders in document networks. A
similar performance among these methods can also
be observed in the results of topic coherence in
Table 4.

There is no mean standard deviation evaluation
by the previous methods (Zhang and Lauw, 2020;
Chen and Zaki, 2017), so we only report the results
of our method in Table 5 to illustrate the statistical
effectiveness of our model. These results are ob-
tained in both transductive and inductive settings
through repeating each 10 times.

4.2 Effect of Topic Number

To investigate the sensitivity of our method to topic
numbers, we present the classification accuracy of
our model on different topic numbers in the induc-
tive setting. As shown in Figure 2, the test accu-
racy on four datasets generally improves with the
increase of the number of topics and reaches the
peak when the topic number is around 64. From
these curves, we can find that the performance of
our model is not too sensitive to the topic number,
and also the topic number does not seem to be so
related to the ground truth number of classes of
datasets. In figure 3, we further show transductive
test classification accuracy of different models un-
der different topic numbers. We can see that our
model consistently outperforms all baselines under
different topic numbers on four datasets.
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Table 2: Transductive learning results on document classification, document clustering, and link prediction.

Model Document Classification Document Clustering Link Prediction
DS HA ML PL DS HA ML PL DS HA ML PL

AE 0.558 0.688 0.739 0.616 0.250 0.315 0.368 0.230 0.144 0.195 0.107 0.102
DAE 0.656 0.799 0.790 0.694 0.372 0.409 0.441 0.278 0.204 0.296 0.121 0.147
CAE 0.558 0.685 0.741 0.620 0.261 0.309 0.371 0.228 0.145 0.188 0.108 0.103
VAE 0.652 0.789 0.796 0.679 0.356 0.394 0.447 0.286 0.193 0.283 0.122 0.135

KSAE 0.537 0.672 0.710 0.581 0.245 0.295 0.345 0.222 0.136 0.182 0.092 0.088
KATE 0.628 0.808 0.762 0.651 0.325 0.378 0.342 0.267 0.174 0.267 0.095 0.114

ProdLDA 0.637 0.780 0.764 0.631 0.374 0.460 0.423 0.289 0.162 0.324 0.080 0.095
RTM 0.543 0.637 0.663 0.574 0.082 0.094 0.126 0.127 0.117 0.194 0.072 0.075

PLANE 0.690 0.799 0.750 0.648 0.417 0.406 0.439 0.288 0.284 0.226 0.107 0.160
NRTM 0.591 0.816 0.549 0.503 0.313 0.404 0.137 0.190 0.149 0.221 0.036 0.049
VGAE 0.671 0.827 0.807 0.718 0.335 0.362 0.495 0.308 0.285 0.265 0.132 0.171
ADE 0.744 0.846 0.857 0.780 0.445 0.548 0.571 0.392 0.374 0.326 0.251 0.271

DGTAE 0.753 0.860 0.869 0.792 0.501 0.562 0.592 0.416 0.402 0.340 0.270 0.294

Table 3: Inductive learning results on document classification, document clustering, and link prediction.

Model Document Classification Document Clustering Link Prediction
DS HA ML PL DS HA ML PL DS HA ML PL

AE 0.405 0.580 0.632 0.509 0.213 0.337 0.340 0.248 0.185 0.233 0.181 0.129
DAE 0.516 0.749 0.732 0.595 0.375 0.436 0.415 0.299 0.347 0.286 0.259 0.198
CAE 0.400 0.573 0.644 0.519 0.212 0.279 0.362 0.253 0.192 0.232 0.185 0.132
VAE 0.491 0.785 0.738 0.594 0.373 0.361 0.404 0.300 0.391 0.346 0.243 0.192

KSAE 0.390 0.569 0.614 0.491 0.269 0.319 0.334 0.232 0.188 0.238 0.148 0.111
KATE 0.484 0.800 0.712 0.573 0.321 0.440 0.354 0.290 0.277 0.336 0.205 0.178

ProdLDA 0.202 0.401 0.184 0.158 0.302 0.292 0.399 0.306 0.220 0.297 0.192 0.140
RTM 0.327 0.498 0.652 0.564 0.000 0.046 0.091 0.048 0.260 0.276 0.210 0.149

PLANE 0.282 0.544 0.275 0.218 0.162 0.192 0.000 0.000 0.306 0.345 0.176 0.134
NRTM 0.456 0.811 0.482 0.408 0.339 0.398 0.167 0.207 0.076 0.097 0.020 0.049
VGAE 0.509 0.748 0.736 0.607 0.280 0.185 0.442 0.291 0.315 0.309 0.237 0.274
ADE 0.640 0.845 0.836 0.724 0.416 0.489 0.522 0.363 0.400 0.427 0.363 0.322

GRTM 0.687 0.867 0.841 0.731 0.466 0.564 0.535 0.394 0.432 0.449 0.538 0.358

Table 4: Topic Coherence

Model PMI
DS HA ML PL

AE 0.294 0.446 0.665 0.969
DAE 1.170 1.125 1.203 1.553
CAE 0.348 0.558 0.526 0.684
VAE 0.685 0.793 1.831 1.132

KSAE 0.547 0.285 0.770 0.759
KATE 1.312 1.755 1.619 2.003

ProdLDA 1.638 1.315 1.837 2.088
RTM 1.279 1.678 1.199 1.615

PLANE 1.585 1.847 1.756 2.099
NRTM 1.533 2.041 1.328 1.632
ADE 1.872 1.887 2.337 2.321

GRTM 2.073 2.361 2.512 2.610
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Figure 2: The test classification accuracy of our model
vary different topic numbers

4.3 Effect of Log-normal Prior
We vary the variance � of the log-normal prior to
explore the impact of the log-normal prior in HGAT.
We present results of our model under the value of
� 2 {1

2 ,
1p
2
, 1}, and the results are shown in Table

7. The larger value of � makes the slower decay of
the importance on higher-order proximity informa-
tion otherwise the faster decay. From the table, we
can see that our model generally achieves the best
performance at � = 1p

2
. We suspect that too much

noisy higher-order information is introduced when
� is set too large, while insufficient higher-order
information can be used when too small. Hence it
yields poor performance in both cases.

4.4 Different layer numbers
Although one layer message passing process of
HGAT is able to capture arbitrary-order proximity
information among document networks, we can
still report the results of our model under the dif-
ferent layers of HGAT in Table 6. We can see that
our model with one layer HGAT achieves the best
performance under both settings. When the layer
number of HGAT is set to 0, the HGAT encoder of
our model degenerates to the feed-forward neural
network. With two-layer HGAT, document repre-
sentations may be disturbed by the information of
their noisy neighbors.
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Table 5: Mean ± standard deviation results of our model on document classification, document clustering.

Model Document Classification Document Clustering
DS HA ML PL DS HA ML PL

Trans 0.753 ± 0.021 0.86 ± 0.032 0.869 ± 0.016 0.792 ± 0.030 0.501±0.009 0.562 ±0.011 0.592 ±0.0014 0.416 ±0.008
Induc 0.687 ± 0.018 0.867 ± 0.024 0.841 ± 0.020 0.731 ± 0.021 0.466 ± 0.011 0.564 ± 0.012 0.535 ± 0.015 0.394 ± 0.009

Table 6: Transductive results of our model on document classification, document clustering, and link prediction
under different layer numbers of HGAT.

Layer Number Document Classification Document Clustering Link Prediction
DS HA ML PL DS HA ML PL DS HA ML PL

0 0.731 0.852 0.850 0.784 0.486 0.553 0.572 0.401 0.382 0.324 0.247 0.269
1 0.753 0.860 0.869 0.792 0.501 0.562 0.592 0.416 0.402 0.340 0.270 0.294
2 0.742 0.849 0.855 0.780 0.488 0.546 0.568 0.406 0.390 0.327 0.255 0.271

4.5 Ablation Study
We also perform an ablation study on our method
to verify the effectiveness of each module in the
inductive setting. We compare our model with
its variants by removing one of the components
HDPN and HGAT respectively, as shown in Ta-
ble 8. From which we can see that each compo-
nent makes a certain contribution to the overall
performance. In the case of removing the HDPN
(W/HDPN) module, our model directly takes the
document adjacency matrix as input, in which it
degenerates into the relational topic model based
on graph attention auto encoder without consid-
ering the higher-order proximity. As in the case
of removing the HGAT (W/HGAT), although our
model takes the higher-order information into con-
sideration, it doesn’t make the important selection
for different order correlation information. We can
also see that missing the higher-order proximity
has a more significant negative influence than miss-
ing the HGAT based encoder module, illustrating
the relative effectiveness of the higher-order infor-
mation in improving the discrimination of latent
representations.

4.6 Visualization
Finally, to intuitively demonstrate the effectiveness
of our model, we visualize the learned represen-
tations of the test documents on the ML dataset
in Figure 4. It shows that documents are better
grouped by our model than ADE (with first-order
correlations) and VGAE (with few-order correla-
tions ), due to the incorporation of the in-direct
correlation information among documents.

5 Conclusion

In this paper, we propose a novel graph relational
topic model GTM for document networks to fully
explore each order of relations among document
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Figure 3: The test classification accuracy of different
models vary different topic numbers

Table 7: Results of our model based on vary values of
� on document classification, document clustering, and
link prediction.

� Document Classification Document Clustering Link Prediction
DS HA DS HA DS HA

1 0.739 0.861 0.52 0.556 0.389 0.332
1p
2

0.753 0.861 0.501 0.562 0.402 0.340
1
2 0.736 0.85 0.498 0.599 0.396 0.338

Table 8: Ablation Study

Module document classification document clustering
DS HA ML PL DS HA ML PL

All 0.687 0.867 0.841 0.731 0.466 0.564 0.535 0.394
W/HDPN 0.631 0.833 0.814 0.705 0.427 0.533 0.510 0.366
W/HGAT 0.651 0.852 0.827 0.710 0.450 0.557 0.524 0.390

networks, which is efficiently fused by a proposed
novel graph attention network HGAT equipped
with log-normal attention prior. Experimental re-
sults show that full consideration of each order
proximity information on the document-document
graph is beneficial for improving the learned doc-
ument representations. In future work, we would
like to explore the better-suited method and more
elegant prior distributions for discovering and fus-
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(a) DGTAE (b) ADE (c) VGAE

Figure 4: The t-SNE visualization of document repre-
sentation learned by different models in ML under the
inductive setting. (Each color denotes one categorical
label of documents)

ing higher-order proximity in document networks.
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