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Abstract
Relation extraction is an important task in in-
formation extraction and retrieval that aims to
extract relations among the given entities from
running texts. To achieve a good performance
for this task, previous studies have shown that
a good modeling of the contextual informa-
tion is required, where the dependency tree of
the input sentence can be a beneficial source
among different types of contextual informa-
tion. However, most of these studies focus
on the dependency connections between words
with limited attention paid to exploiting depen-
dency types. In addition, they often treat dif-
ferent dependency connections equally in mod-
eling so that suffer from the noise (inaccurate
dependency parses) in the auto-generated de-
pendency tree. In this paper, we propose a
neural approach for relation extraction, with
type-aware map memories (TaMM) for encod-
ing dependency types obtained from an off-the-
shelf dependency parser for the input sentence.
Specifically, for each word in an entity, TaMM
maps all associated words along with the de-
pendencies among them to memory slots and
then assigns a weight to each slot according to
its contribution to relation extraction. Our ap-
proach not only leverages dependency connec-
tions and types between words, but also distin-
guishes reliable dependency information from
noisy ones and appropriately model them. The
effectiveness of our approach is demonstrated
by the experiments on two English benchmark
datasets, where our approach achieves state-of-
the-art performance on both datasets.1

1 Introduction

Relation extraction is an important natural lan-
guage processing (NLP) task that facilitates in-
formation extraction, whose results is beneficial

*Equal contribution.
†Corresponding author.
1The code and models involved in this paper are released

at https://github.com/cuhksz-nlp/RE-TaMM.

Figure 1: An illustration of an example sentence (in-
cluding the entity terms “bone marrow” and “stem
cells”) with its dependency parsing result.

to downstream tasks such as schema induction
(Nimishakavi et al., 2016), knowledge graph con-
struction (Yu et al., 2017), and question answer-
ing (Xu et al., 2016). Normally, relation extrac-
tion aims to predict the relation between each pair
of entities in a given sentence. For example, in
the sentence “the [bone marrow]e1 produces [stem
cells]e2” with the entity terms “bone marrow” and
“stem cells”, the relation between the two entities
is “Product-Producer“. Therefore, the ability of
modeling the context from the input is of great im-
portance to guarantee the performance of relation
extraction. To this end, approaches based on neural
networks have achieved promising success for the
task in the past decade (Socher et al., 2012; Zeng
et al., 2014; Zhang and Wang, 2015; Xu et al., 2015;
dos Santos et al., 2015; Zhang et al., 2015; Wang
et al., 2016; Zhou et al., 2016; Zhang et al., 2017;
Wu and He, 2019; Soares et al., 2019; Fu et al.,
2019; Aydar et al., 2020; Tian et al., 2021c) be-
cause of their effectiveness in capturing contextual
information by powerful encoders.

In addition, previous studies try to improve re-
lation extraction performance by incorporating ex-
tra knowledge into their models. Among all such
knowledge, syntactic information from the auto-
generated dependency parse of the input sentence
indicates its helpfulness to improve model perfor-
mance for the reason that word dependencies pro-
vide long distance contextual information (Xu et al.,
2015). However, in previous studies, the main fo-
cus is the dependencies among words, with little
attention paid to dependency types, which are also

https://github.com/cuhksz-nlp/RE-TaMM
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essential to help the relation extraction task. For ex-
ample, Figure 1 shows the dependency tree of a sen-
tence where the entities (i.e., “bone marrow” and
“stem cells”) are highlighted in red; the dependency
type “nsubj” (nominal subject) between “bone mar-
row” and “produces” as well as the type “dobj”
(direct object) between “stem cells” and “produces”
indicates the first (i.e., “bone marrow”) and the
second entity (i.e., “stem cells”) are the subject
and object of “produces”, which provide important
cues to predict the relation between the two enti-
ties. Moreover, previous studies also suffer from
the noise in the auto-generated dependency tree,
in which cases all the dependencies are modeled
equally without identifying their contributions to
the task.2 Therefore, it is important to design an
appropriate approach to leverage the dependency
information to improve the relation extraction task.

In this paper, we propose a neural approach for
relation extraction, with a type-aware map mem-
ory (TaMM) module to encode dependency infor-
mation obtained from an off-the-shelf dependency
parser. Specifically, for each word in an entity, we
firstly extracts the dependency information associ-
ated with it, where two types of dependency infor-
mation are considered: the first is “in-entity” depen-
dency suggested by the governor and dependents of
that word; the second is “cross-entity” dependency
obtained from the dependency path between enti-
ties. Then, TaMM is applied to map the associated
words along with the dependency types between
them to memory slots and then assign a weight
to each slot to distinguish its contribution to the
relation extraction task. Compared with other ap-
proaches, such as graph neural networks (GCN), to
leverage dependency information, our approach not
only leverages the dependency type information,
but also distinguish reliable dependency informa-
tion from noisy ones and model them accordingly.
The evaluation of different models is performed
on two English benchmark datasets, i.e., ACE2005
and SemEval 2010 Task 8 (Hendrickx et al., 2010),
where our approach outperforms all baselines and
previous studies by achieving the state-of-the-art
performance on both datasets.

2 Preliminaries
Relation extraction is conventionally regarded as
a text classification task, where an input sentence

2For example, in Figure 1, the dependency between “the”
and “marrow” contributes less than the dependency between
“marrow” and “produces” to relation extraction.

X = x1 · · ·xl has l words and two entities, i.e., E1

and E2, in it are mapped to a particular relation
class (denoted by ŷ).3 In most cases the contex-
tual information is of great importance to make
a correct prediction for relations. Therefore, it is
straightforward to consider integrating extra fea-
tures to enhance contextual modeling. Of all such
features, the syntactic information suggested by
the dependency tree of the input sentence has been
demonstrated to be useful for relation extraction in
many studies (Xu et al., 2015; Zhang et al., 2018;
Guo et al., 2019). However, most models to lever-
age the dependency information are not naturally
appropriate to model the dependency types among
words. It is required to find an appropriate approach
to leverage the dependency type information.

Of all choices, key-value memory networks
(KVMN) (Miller et al., 2016) is an effective so-
lution in modeling pair-wisely organized informa-
tion to improve many NLP tasks (Tapaswi et al.,
2016; Das et al., 2017; Mino et al., 2017; Xu et al.,
2019; Nie et al., 2020; Song et al., 2020; Tian et al.,
2020a,d, 2021b). Specifically, KVMN maps the
information instances into a list of memory slots
si = (ki, vi) (i is the index of the memory slot
si) with ki referring to the key and vi the value,
respectively. The KVMN addresses the memory
slot si by assigning a weight pi to the value vi by
comparing the input (denoted by x) to the key ki:

pi = softmax (AΦX (x) ·AΦK (ki)) (1)

where Φ· are functions that map the input features
into their embeddings and A is a matrix that maps
the embeddings into another vector space. After ad-
dressing all memory slots, KVMN reads the values
by computing the weighted sum of the value vec-
tors (i.e., AΦV (vi)) using the resulting probability
weights (i.e., pi), which is expressed by

a =
∑
j

pi ·AΦV (vi) (2)

Then, a is incorporated into the input representa-
tion by an element-wise summation:

o = AΦX (x) + a (3)

Thus, the resulting vector o contains the weighted
information from all values in the memory slots
and is finally used to predict the output.

3E1 and E2 are actually sub-strings of X and we assume
E1 is on the left side of E2.
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Figure 2: The architecture of our approach with an example sentence where entities are highlighted in red color.
The left part illustrates the backbone classification model; the right part shows the process to leverage the in-entity
and cross-entity memory slots associated with “bone” (highlighted in yellow) through the proposed type-aware
map memories (TaMM). In entity and cross-entity memory slots are written in blue and green color respectively.

3 The Proposed Approach

Although KVMN can be used to leverage extra
information for relation extraction, it loses the in-
formation of keys by using it as a weighting com-
ponent as stated previously. Therefore, we propose
type-aware map memories (TaMM) to leverage
both context words (keys) and dependency types
(values) to improve relation extraction, where two
types of dependency information, i.e., “in-entity”
and “cross-entity” dependencies are considered.

Figure 2 illustrates the architecture of our ap-
proach, in which the entities in the input X is
highlighted in red; the left part illustrates the back-
bone classification model; the right part shows the
process of constructing in-entity (S(in)) and cross-
entity (S(cross)) memory slots from the dependency
tree of the input and the process of incorporating
them into the backbone model through TaMM. To
summarize, our approach can be formalized as

ŷ = arg max
y∈T

p (y|X , E1, E2,TaMM (S)) (4)

where T is the set of entity relation types and S =
(S(in),S(cross)) is the memory slots for TaMM.

The following texts illustrates the details of our
proposed appraoch, including how we construct the
memory slots and the computation of TaMM, with
its application in relation extraction.

3.1 Memory Slot Construction

In order to construct the memory slots used in our
approach, we firstly use an off-the-shelf toolkit to
generate the dependency parsing results of the input
X . In the parse tree, every word in X is connected
with its governor and its dependents with labeled
dependency connections; for any two words in X ,
there is exactly one path between them4. For each
word in an entity, e.g., the word xiu in Eu (iu is
the index of xiu in X and u ∈ {1, 2}), we consider
two types of dependency information suggested by
the obtained dependency tree of X and construct
their corresponding memory slots. The first one is
“in-entity” memory slots constructed upon all the
governor and dependents of xiu (i.e., first-order de-
pendencies). The second is “cross-entity” memory

4The dependency parsing results actually build a graph
(tree) of the input X , where words in X represent the graph
nodes, and the dependency connections are the graph edges.
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Figure 3: An illustration of the construction process for two types of memory slots (i.e., in-entity memory slots (a)
and cross-entity memory slots (b)) for “bone” (with yellow background). Entities are presented in red color.

slots constructed upon the words and dependency
arcs along the dependency path between xiu and
the words in the other entity5. Figure 3 shows the
process to construct the two types of memory slots
from the dependency tree of a sentence, where the
entities in it are highlighted in red. In the following
text, we illustrate the way to extract the in-entity
and the cross-entity memory slots for xiu .

In-entity Memory Slots In-entity memory slots
focus on the contextual information from the words
connecting to xiu by dependency parses. To con-
struct them, we firstly locate the governor and all
dependents of xiu in X from the dependency tree.
Then we regard the governor and dependents as
the keys in the memory slots and their dependency
relations with xiu as their corresponding values.
Therefore, we obtain a list of memory slots with
the j-th of them denoted as s(in)iu,j

= (k
(in)
iu,j

, v
(in)
iu,j

),

where k(in)iu,j
is the word connected with xiu by a

dependency connection and v(in)iu,j
the dependency

relation type between them. For example, in Figure
3(a), for the word “bone” (highlighted with yel-
low background) in the first entity “bone marrow”,
we find its dependent “marrow” and the depen-
dency relation type compound between them (the
dependency with its type is highlighted in blue)
and obtain the dependency slot S(in)2 =[(morrow,
ˆcompound)].6 In this case, there is only one word
(i.e., “marrow”) associated with “bone”. Similarly,
if the word we focus on is “marrow”, the in-entity
memory slots for it should be S(in)3 = [(The, det),
(bone, compound), (produces, ˆnsubj)].

Cross-entity Memory Slots Cross-entity mem-
ory slots aim to incorporate the contextual infor-
mation along the dependency path in between the

5“The other entity” means E2 if xiu is a word in E1.
6We add a ˆ mark before the dependency type to illustrate

the directional information of the dependency type.

two entities. To construct cross-entity memory
slots, for each xiu in Eu (we denote the other en-
tity as Eũ), we firstly find the dependency path
from xiu to the last word of Eũ. The motivation
of using the last word is that noun phrases in En-
glish (entities are always noun phrases) tend to
be head-final7. Then, similar to the process of
constructing in-entity memory slots, we extract
all words along that path (including the last word
of Eũ) as well as the corresponding dependency
relation types. Finally, we regard the words as
keys and the dependency relation types as values
in the memory slots and denote the j-th memory
slot as s(cross)iu,j

= (k
(cross)
iu,j

, v
(cross)
iu,j

). As illustrated
in Figure 3(b), for “bone” (highlighted with yellow
background) in the first entity “bone marrow”, we
locate the dependency path between “bone” and the
last word “cells” of the second entity “stem cells”:
“bone – marrow – produces – cells”, as well as the
dependency relation types along that path: “com-
pound” for “bone – marrow”, “nsubj” for “mar-
row – produces”, and “dobj” for “produces – cells”
(highlighted in green). Therefore, the cross-entity
memory slots for “bone” are S(cross)2 = [(marrow,
ˆcompound), (produces, ˆnsubj), (cells, dobj)].

In summary, for xiu in in Eu, we obtain the in-
entity memory slot list S(in)iu

and the cross-entity

memory slot list S(cross)iu
, which are fed into the

TaMM module as illustrated in Figure 2.

3.2 Type-aware Map Memories

There are previous approaches for relation extrac-
tion that leverage dependency information and fo-
cus on dependencies among words without consid-
ering their dependency types. With learning from
such information, there is a nonnegligible challenge
that there are noises in the auto-generated depen-

7For example, the head of “bone marrow” is “marrow” and
the head of “stem cells” is “cells”.
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dency results, which may hurt model performance
since they provide misleading contextual informa-
tion. One straightforward way to address this issue
is to weight different dependencies according to
their contribution to the relation extraction task. As
discussed in the previous section, although KVMN
provides a way to selectively model dependency
information it is limited in omitting the contextual
information carried by the keys in the final output
from the memories.

To address the aforementioned limitations in
KVMN, we propose type-aware map memories
(TaMM) to incorporate the dependency informa-
tion carried by both the keys and values (i.e., the
memory slots), where the architecture of TaMM is
illustrated on the top right of Figure 2. Specifically,
for each word in an entity, e.g., the word xiu in
Eu (iu is the index of xiu in X and u ∈ {1, 2}),
we consider two types of dependency information,
i.e., “in-entity” and “cross-entity” dependency in-
formation, and construct their corresponding mem-
ory slots. We denote the j-th in-entity and cross-
entity memory slots as s(in)iu,j

= (k
(in)
iu,j

, v
(in)
iu,j

) and

s
(cross)
iu,j

= (k
(cross)
iu,j

, v
(cross)
iu,j

), respectively, and use
the same process to model them.

Taking the in-entity memory slots as an example,
we firstly use two matrices to map the keys k(in)iu,j

and values v(in)iu,j
in the memory slots into their em-

beddings, which are denoted by e
k,(in)
iu,j

and e
v,(in)
iu,j

,
respectively. Next, we compute the weight piu,j as-
signed for each value through the inner production
between the key embedding e

k,(in)
iu,j

and the hidden
vector of xiu (which is denoted as hiu) obtained
from the encoder in the backbone model:

piu,j =
exp

(
hiu · e

k,(in)
iu,j

)
∑m

(in)
iu

j=1 exp
(
hiu · e

k,(in)
iu,j

) (5)

where m(in)
iu

is the number of in-entity memory
slots associated with xiu . Then, we apply the
weights to the corresponding memory slots and
obtain the weighted sum (denoted as a(in)iu

) of both
keys and values through

a
(in)
iu

=

m
(in)
iu∑

j=1

piu,j(e
k,(in)
iu,j

+ e
v,(in)
iu,j

) (6)

where “+” refers to element-wise sum of vectors.
Therefore, compared to KVMN, our approach is
able to leverage both context words and depen-

ACE2005 SemEval

# Instances
Train 48,198 8,000
Dev 11,854 -
Test 10,097 2,717

# Relation Types 7 19

Table 1: The statistics (number of instances and rela-
tion types) of the two benchmark datasets.

dency types associated with xiu .
With the same process for in-entity memory

slots, we deal with the cross-entity ones and obtain
the weighted sum a

(cross)
iu

. Finally, we concatenate

the two resulting vectors by aiu = a
(in)
iu
⊕ a

(cross)
iu

with aiu denoting the output of TaMM and con-
taining the weighted dependency information to
enhance the backbone model.

3.3 Relation Extraction with TaMM
Once the TaMM is built, it is straightforward to
apply it to relation extraction through a backbone
classifier. In our approach, we use BERT (Devlin
et al., 2019) as the classifier to encode the input X
and obtain the hidden vectors for all words. Note
that we only use the hidden vectors of the words in
the two entities to predict their relations. Therefore,
for each word xiu in the entity Eu, we feed hiu

into TaMM and obtain the corresponding output
aiu . Then, we concatenate hiu and aiu , and for
each entity Eu, use the max pooling strategy to
obtain the vectorized representation ou by

ou = MaxPooling(hiu ⊕ aiu) (7)

Afterwards, we concatenate the representation of
the two entities (i.e. o1 for E1 and o2 for E2) and
pass the resulting vector through a fully connected
layer (a classifer) to obtain the final prediction ŷ by

ŷ = W · (o1 ⊕ o2) + b (8)

where W and b are the trainable weight matrix and
bias vector for the fully connected layer.

4 Experimental Settings

4.1 Datasets
Two English benchmark datasets, i.e., ACE2005EN
(ACE2005)8 and SemEval 2010 Task 8 (SemEval)9

(Hendrickx et al., 2010) are used in the experiments
to evaluate our approach. For ACE2005, we fol-
low the same preprocess as that in Christopoulou

8https://catalog.ldc.upenn.edu/
LDC2006T06.

9http://docs.google.com/View?docid=
dfvxd49s_36c28v9pmw.

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw
http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw
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Hyper-parameters Values

Learning Rate 5e− 6, 1e− 5, 2e− 5,3e− 5
Warmup Rate 0.06, 0.1
Dropout Rate 0.1
Batch Size 16,32, 64, 128

Table 2: The hyper-parameters tested in tuning our
models. The best ones used in our final experiments
are highlighted in boldface.

et al. (2018); Ye et al. (2019), by removing the
two small subsets: cts and un, and splitting the
remaining 511 documents into three parts: 351 for
training, 80 for development and the rest 80 for
test10. For SemEval, we follow previous studies
(Hendrickx et al., 2010; Zeng et al., 2014; Zhang
and Wang, 2015; Xu et al., 2015; dos Santos et al.,
2015; Zhang et al., 2015; Wang et al., 2016; Zhou
et al., 2016; Zhang et al., 2017; Soares et al., 2019)
to use its official train/test split. The statistics of
the two datasets are summarized in Table 1.

4.2 Implementation

In our experiments, we use Standard CoreNLP
Toolkits (SCT)11 to obtain the dependency tree
for each input sentence. Since the quality of text
representation plays an important role in the per-
formance of NLP models (Komninos and Man-
andhar, 2016; Song et al., 2017, 2018; Liu and
Lapata, 2018; Song and Shi, 2018; Song et al.,
2021), we use BERT12 (Devlin et al., 2019), which
is a pre-trained language model that achieves state-
of-the-art in many NLP tasks (Wu and He, 2019;
Soares et al., 2019; Tian et al., 2020b,c, 2021a),
as the encoder in our model. Specifically, we use
the uncased version of BERT with its default set-
tings (e.g., for BERT-base, we use 12 layers of
multi-head attentions with 768 dimensional hidden
vectors; for BERT-large, we use 24 layers of multi-
head attentions with 1024 dimensional hidden vec-
tors) and fine-tune its all trainable parameters in the
training stage. For TaMM, we randomly initialize
the embeddings of all keys and values with their
dimensions matching that of the hidden vectors
from BERT. For evaluation, we follow previous
studies to use the standard micro-F1 scores13 for

10We use the dataset split from https://github.
com/tticoin/LSTM-ER/tree/master/data/
ace2005/split.

11We use SCT under version 3.9.2 from https://
stanfordnlp.github.io/CoreNLP/.

12We download different BERT models from https://
github.com/huggingface/transformers.

13We use the evaluation script from sklearn framework.

Models ACE2005 SemEval

BERT-base 75.31 87.87
+ GCN 75.59 88.19
+ GAT 76.01 88.39
+ KVMN (In) 76.40 88.73
+ TaMM (In) 76.80 88.91
+ KVMN (Cross) 76.45 88.61
+ TaMM (Cross) 76.61 88.74
+ KVMN (Both) 76.83 88.98
+ TaMM (Both) 77.07 89.18

BERT-large 76.79 89.02
+ GCN 77.17 89.43
+ GAT 77.23 89.39
+ KVMN (In) 77.32 89.42
+ TaMM (In) 77.76 89.72
+ KVMN (Cross) 77.21 89.37
+ TaMM (Cross) 77.66 89.58
+ KVMN (Both) 77.96 89.88
+ TaMM (Both) 78.98 90.06

Table 3: F1 scores of our TaMM and baselines (i.e.,
BERT, standard GCN, standard GAT, and KVMN)
on the test sets of ACE2005 and SemEval, where
BERT-base and BERT-large encoders are used. For
KVMN and TaMM, different combinations of in-entity
and cross-entity dependency information (i.e., in-entity
only, cross-entity only, and both of them) are tried.

ACE2005 and use the macro-averaged F1 scores14

for SemEval. For other hyper-parameter settings
(i.e., learning rate, warmup rate, dropout rate, and
batch size) to train our model, we report them Ta-
ble 2, where we test all combinations of them for
each model and use the one achieving the highest
F1 score in our final experiments (the best combi-
nation of them is illustrated in boldface).

5 Results and Analyses

5.1 Overall Performance
In the main experiments, we run our models us-
ing BERT-base and BERT-large encoders with
and without TaMM and try different combinations
of in-entity and cross-entity dependency informa-
tion (i.e., in-entity dependency information only,
cross-entity dependency information only, and both
of them). We also run the baselines using stan-
dard graph convolutional networks (GCN), stan-
dard graph attention networks (GAT), and KVMN
to leverage the dependency information. Table 3
shows the results (F1 scores) of different models.15

14We use the official evaluation script downloaded from
http://semeval2.fbk.eu/scorers/task08/
SemEval2010_task8_scorer-v1.2.zip.

15For the same group of models, we report the F1 scores
on the development sets in Appendix A and the mean and
standard deviation of their test set results in Appendix B.

https://github.com/tticoin/LSTM-ER/tree/master/data/ace2005/split
https://github.com/tticoin/LSTM-ER/tree/master/data/ace2005/split
https://github.com/tticoin/LSTM-ER/tree/master/data/ace2005/split
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
http://semeval2.fbk.eu/scorers/task08/SemEval2010_task8_scorer-v1.2.zip
http://semeval2.fbk.eu/scorers/task08/SemEval2010_task8_scorer-v1.2.zip


2507

Models ACE2005 SemEval

Wang et al. (2016) - 88.0
Zhou et al. (2016) - 84.0
†Zhang et al. (2018) - 84.8
Christopoulou et al. (2018) 64.2 -
Ye et al. (2019) 68.9 -
*Wu and He (2019) (BERT-large) - 89.2
*Soares et al. (2019) (BERT-large) - 89.5
†Sun et al. (2020) - 86.0
†Yu et al. (2020) - 86.4
†Mandya et al. (2020) - 85.9

*TaMM (Both) (BERT-base) 77.07 89.18
*†TaMM (Both) (BERT-large) 78.98 90.06

Table 4: The comparison between our models (the ones
using TaMM (Both)) and previous studies on ACE2005
and SemEval. Models with dependency features and
BERT-large are marked by “†” and “*”, respectively.

There are several observations. First, TaMM
works well with both BERT base and large, where
consistent improvement is observed over the BERT-
base and BERT-large baselines across all datasets,
although they have already achieved very good per-
formance. Second, TaMM outperforms standard
GCN and GAT models, which can be attributed to
our modeling of dependency type information in
TaMM. Third, under all the three settings to incor-
porate different types of dependency information
(i.e., in-entity, cross-entity, and both), our models
with TaMM outperforms the BERT baseline and
the highest F1 score is achieved when both in-entity
and cross-entity dependency information are used
(i.e., + TaMM (Both)). This observation confirms
the individual contribution of in-entity and cross-
entity dependency information as well as the effec-
tiveness of our approach to leverage them together
to improve model performance. Fourth, compared
with our TaMM models using cross-entity depen-
dency information only (i.e., + TaMM (Cross)),
the models using in-entity dependency informa-
tion only (i.e., + TaMM (In)) achieves higher re-
sults in most cases. One possible explanation could
be the following. There are overlaps between in-
entity dependencies and cross-entity dependencies.
For example, the dependency between “bone” and
“marrow” is shared by both in-entity dependencies
and cross-entity dependencies in Figure 3. There-
fore, with in-entity dependency only, TaMM not
only leverages the contextual words directly asso-
ciated with the entities themselves, but also can
still partially benefit from the contextual informa-
tion along the dependency path, whereas TaMM
with cross-entity dependency only fails to leverage
the contextual words directly associated with the
entities, which leads TaMM (In) to achieve better

Models Order ACE2005 SemEval

Baseline N/A 76.79 89.02

TaMM (In) 1st 77.76 89.72
2nd 77.53 89.59
3rd 78.05 89.79

TaMM (Both) 1st 78.98 90.06
2nd 78.27 89.95
3rd 78.41 89.91

Table 5: F1 scores of models using BERT-large and
TaMM (In/Both) to leverage 1st-, 2nd-, and 3rd-order
dependencies. “N/A” refers to no order can be applied.

performance than TaMM (Cross). Fifth, for all the
settings, our model with TaMM consistently out-
performs the baselines with KVMN, which demon-
strates the effectiveness of our approach to improve
relation extraction. The explanation is that TaMM
is able to leverage both context words (keys) and
dependency types (values) at the same time, while
KVMN fails to incorporate the context information
carried by keys, which leads KVMN to omit some
important features and thus get inferior results.

Moreover, we compare our model under the best
setting (i.e., the ones using TaMM to leverage both
in-entity and cross-entity dependency relation) with
previous studies and report the results (F1 scores) in
Table 4. It is found that our model with BERT-large
encoder outperforms all previous studies (including
the ones also using BERT-large encoder).

5.2 The Effect of Dependency Information

To analyze the effect of using dependency infor-
mation, we perform three investigations on models
using BERT-large encoder.

The first investigation is to examine different
orders of dependencies used in TaMM. Previous
experiments showed the effectiveness of our model
with TaMM on first-order word dependencies. We
also try second- and third-order dependencies via
the model (i.e., large BERT) with TaMM (Both).
The results (with scores from the first-order depen-
dencies) are reported on table 5, where the cor-
responding results from the models with TaMM
(In) as well as the BERT-large baseline are also
reported. The observations are drawn as follows.
First, models with TaMM under all settings outper-
forms the BERT-large baseline, which is confirmed
by all results on both datasets. Second, models with
TaMM (Both) consistently outperform the ones
with TaMM (in) under the same setting, which in-
dicates the cross-entity dependencies are able to
bring greater improvements. Third, for models
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Figure 4: The performance of BERT-large baseline
and our TaMM (both) on test instances from SemEval
grouped by the entities’ distance (i.e., the number of
words between two entities).

with TaMM (Both), using higher order dependen-
cies often results in inferior results; while the trend
is on the opposite for models with TaMM (in). One
possible explanation is that for TaMM (both), most
essential word dependencies in between the two
entities have already been encoded, higher order
dependencies sometimes introduce noise other than
useful information; while for TaMM (In), leverag-
ing higher order dependencies allows the model
to cover more contextual information along the
dependency path between two entities.

The second is to explore the performance of our
model on different test instances grouped by their
entity distance (i.e., the number of words between
the two entities), to see whether our approach can
capture long-distance word-word dependencies and
help with relatin extraction. In doing so, we split
the test set of SemEval into three groups according
to the entity distance (i.e., from 0 to 4, from 5 to 9,
and higher than 10) and perform our best TaMM
model and the BERT baseline on them. Figure 4 il-
lustrates the performance of TaMM (i.e., the orange
bar) and BERT (i.e., the blue bar). It can be found
that our TaMM outperforms the BERT-baseline
on all three groups of test instances, where bigger
gaps can be observed when the entities’ distance
goes higher. This observation demonstrates the ef-
fectiveness of our approach to encode dependency
information to improve relation extraction.

The third investigation is to explore the effect of
TaMM using different dependency parsers. Specifi-
cally, in addition to the Stanford CoreNLP Toolk-
its (SCT) used in the main experiments, we also
try spaCy16 to obtain the dependency trees and re-
port the results (with BERT-large encoder) in Table
6. It is found that models with different depen-
dency parsers consistently outperform the BERT-
large baseline, which indicates the robustness of
our model design in improving relation extraction.

16https://spacy.io/

Models Parser ACE2005 SemEval

Baseline N/A 76.79 89.02
TaMM (In) SCT 77.76 89.72

spaCy 77.74 89.78
TaMM (Cross) SCT 77.66 89.58

spaCy 77.60 89.61
TaMM (Both) SCT 78.98 90.06

spaCy 78.92 90.01

Table 6: F1 scores of models using BERT-large and
TaMM (In/Cross/Both) to leverage dependency infor-
mation from different parsers (i.e., SCT and spaCy).

5.3 Case Study
To examine how TaMM leverages dependency in-
formation to improve model performance, in Fig-
ure 5, we show an example input where our ap-
proach successfully predicts the relation in be-
tween the two entities (in red colors) to be “Entity-
Destination”, while the BERT-large baseline fails
to do so (“Component-Whole”). In the figure, the
dependencies between words are highlighted in
different colors to represent the total weights as-
signed to their corresponding in-entity and cross-
entity memory slots, where darker color refers to
higher weight. Overall, we find that the most em-
phasized dependencies are along the dependency
path connecting the two entities, where the mem-
ory slots for those dependencies receive the highest
weights. For the first entity “treadmill”, the depen-
dency type ˆnsubj: pass (passive nominal subject)
in the highlighted memory slot (installed, ˆnsubj:
pass) suggests the first entity is the patient of the ac-
tion install; similarly, for the second entity “space
station”, the highlighted dependency type ˆobj (ob-
ject) suggests this entity is the location of the action
install given the fact that the input is a passive sen-
tence. Therefore, our approach is able to leverage
these cues learned from word dependencies and
their dependency types so as to predict the correct
relation for the two entities: “Entity-Destination”.

6 Related Work

Relation extraction is an important task in NLP,
which significantly relies on a good modeling of
the contextual information to achieve outstanding
model performance. To improve the capability of
context modeling for relation extraction, studies in
the past decade leverage neural networks, such as
using CNN (Zeng et al., 2014; Wang et al., 2016),
RNN (Socher et al., 2012; Xu et al., 2015; Zhou
et al., 2016) and BERT encoders (Wu and He, 2019;
Soares et al., 2019; Wang et al., 2019). To further

https://spacy.io/


2509

Figure 5: An example input fed into our model with TaMM (Both) and its correctly predicted relation between
the two entities marked in red. Word dependencies are highlighted in different colors to visualize the total weights
assigned to their corresponding in-entity and cross-entity memory slots, where darker color refers to higher weight.

enhance the models for this task, incorporating
extra knowledge into the models has been proved
as an effective method, where normally three types
of extra knowledge are used: lexical, syntactic and
semantic knowledge, and syntactic knowledge has
been proved to be useful for this task (Xu et al.,
2015). With this finding, there are studies also
using advanced neural architecture, such as graph
convolutional networks, to incorporate syntactic
knowledge from auto-generated dependency parse
of the input sentence (Zhang et al., 2018; Guo et al.,
2019; Sun et al., 2020; Yu et al., 2020; Mandya
et al., 2020). Compared to the aforementioned
studies, TaMM offers a simple yet effective non-
graph-based approach to leverage dependencies
for relation extraction. TaMM provides the ability
not only incorporate both word dependencies and
their types into the model to help improve relation
extraction performance, but also discriminatively
leverage the dependencies by assigning different
weights to them, which can address the potential
noise in the auto-generated dependencies and thus
further improve model performance.

7 Conclusion

In this paper, we proposed an effective method
for relation extraction with word dependencies en-
coded by TaMM, whose keys and values are built
upon the dependency tree of the input sentence ob-
tained from off-the-shelf toolkits. Particularly, for
each entity in the sentence, we extract words asso-
ciated with it according to the dependency parse
of the input sentence and their corresponding de-
pendency relation types. Then, we use TaMM to
encode and weight such information and integrate it
into the relation extraction task. The novelty of this
work lies in the modeling of contextual informa-

tion through dependencies and their relation types
encoded in TaMM. Experimental results on two
public English benchmark datasets illustrate the
effectiveness of our approach with state-of-the-art
performance achieved on all datasets.
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Appendix A. Experimental Results on the
Development Set

Table 7 reports the F1 scores of different models
on the development set of ACE2005.17

Models BERT-base BERT-Large

BERT 75.03 76.51

+ GCN 75.33 76.82
+ GAT 75.77 76.89

+ KVMN (In) 76.28 77.10
+ TaMM (In) 76.61 77.52

+ KVMN (Cross) 76.25 77.06
+ TaMM (Cross) 76.54 77.44

+ KVMN (Both) 76.49 77.48
+ TaMM (Both) 76.86 78.13

Table 7: F1 scores of models with different configu-
rations (i.e., the ones using base or large BERT with
KVMN or TaMM and different combinations of in-
entity and cross-entity dependency information) on the
development set of ACE2005 for relation extraction.

Appendix B. Mean and Deviation of the
Results

In the experiments, we test models with different
configurations. For each model, we train it with
the best hyper-parameter setting using five different
random seeds. We report the mean (µ) and standard
deviation (σ) of the F1 scores on the test set of
ACE2005 and SemEval in Table 8.

17SemEval does not have an official dev set.

Models
ACE2005 SemEval
µ σ µ σ

BERT-base 74.86 0.42 87.48 0.38

+ GCN 75.15 0.31 88.02 0.16
+ GAT 75.70 0.29 88.01 0.36

+ KVMN (In) 76.15 0.24 88.62 0.10
+ TaMM (In) 76.61 0.18 88.76 0.14

+ KVMN (Cross) 75.99 0.42 88.43 0.16
+ TaMM (Cross) 76.43 0.14 88.49 0.24

+ KVMN (Both) 76.44 0.34 88.59 0.36
+ TaMM (Both) 76.59 0.46 88.96 0.19

BERT-large 76.28 0.47 88.66 0.34

+ GCN 76.29 0.46 89.15 0.26
+ GAT 76.82 0.32 89.12 0.25

+ KVMN (In) 76.98 0.33 89.23 0.13
+ TaMM (In) 77.35 0.38 89.48 0.26

+ KVMN (Cross) 77.06 0.13 89.19 0.17
+ TaMM (Cross) 77.31 0.34 89.45 0.12

+ KVMN (Both) 77.08 0.49 89.61 0.23
+ TaMM (Both) 78.62 0.32 89.88 0.16

Table 8: The mean µ and standard deviation σ of ac-
curacy and F1 scores of all models (i.e., the ones us-
ing base or large BERT with KVMN or TaMM and
different combinations of in-entity and cross-entity de-
pendency information) on the test set of ACE2005 and
SemEval for relation extraction.


