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Abstract

Previous work on adversarial attacks on depen-
dency parsers has mostly focused on attack
methods, as opposed to the quality of adver-
sarial examples, which in previous work has
been relatively low. To address this gap, we
propose a method to generate high-quality ad-
versarial examples with a higher number of
candidate generators and stricter filters, and
then verify their quality using automatic and
human evaluations. We perform analysis with
different parsing models and observe that: (i)
injecting words not used in the training stage
is an effective attack strategy; (ii) adversarial
examples generated against a parser strongly
depend on the parser model, the token embed-
dings, and even the specific instantiation of the
model (i.e., a random seed). We use these
insights to improve the robustness of English
parsing models, relying on adversarial training
and model ensembling.1

1 Introduction

Neural network-based models have achieved great
successes in a wide range of NLP tasks. However,
recent work has shown that their performance can
be easily undermined with adversarial examples
that would pose no confusion for humans (Zhang
et al., 2020). As an increasing number of successful
adversarial attackers have been developed for NLP
tasks, the quality of the adversarial examples they
generate has been questioned (Morris et al., 2020).

The definition of a valid successful adversar-
ial example differs across target tasks. In seman-
tic tasks such as sentiment analysis (Zhang et al.,
2019) and textual entailment (Jin et al., 2020), a
valid successful adversarial example needs to be
able to alter the prediction of the target model while

∗Work partially done while at the University of Edin-
burgh.

1Our code is available at: https://github.com/
WangYuxuan93/DepAttacker.git

preserving the semantic content and fluency of the
original text. In contrast, in the less explored field
of attacking syntactic tasks, the syntactic structure,
rather than the semantic content, must be preserved
while also maintaining the fluency. Preserving the
syntactic structure enables us to use the gold syn-
tactic structure of the original sentence in the evalu-
ation process. While preserving the fluency ensures
that ungrammatical adversarial examples, which
not only fool the target model but also confuse hu-
mans, will not be considered valid. Therefore in
this paper, we evaluate the quality of an adversarial
example in two aspects, namely the fluency and
syntactic structure preservation.

Recently, Zheng et al. (2020) proposed the
first dependency parser attacking algorithm based
on word-substitution which depended entirely on
BERT (Devlin et al., 2019) to generate candidate
substitutes. The rational was that the use of the
pre-trained language model will ensure fluency of
the adversarial examples. However, we find that
using BERT alone is far from enough to preserve
fluency.

Therefore, in this paper, we propose a method
to generate better adversarial examples for depen-
dency parsing with four types of candidate genera-
tors and filters. Specifically, our method consists of
three steps: (i) determining the substitution order,
(ii) generating and filtering candidate substitutes for
each word, (iii) searching for the best possible com-
bination of substitutions, based on pre-computed
candidates and the substitution order. We verify
the superiority of the proposed method in terms of
syntactic structure preservation and fluency using
both automatic and human evaluations, and further
show the limitation of the previous BERT-based
method.

Table 1 shows adversarial examples generated by
our and the method of Zheng et al. (2020), demon-
strating that examples generated by our method are

https://github.com/WangYuxuan93/DepAttacker.git
https://github.com/WangYuxuan93/DepAttacker.git
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Model Ours Zheng et al.
example-1 Most of those freed emancipated had

spent at least 25 years in prison.
Most of those freed had were spent at least
25 years in prison.

example-2 Boeing received a $ 46 million Air Force
contract for developing devising cable
systems for the Minuteman Missile.

Boeing received a $ 46 million Air Force
America contract for developing securing
cable systems for the Minuteman Missile.

example-3 He used better than 5,000 words heaping
scorn on the witnesses eyewitnesses for
exercising the Fifth.

He used better than 5,000 words times
heaping scorn on the witnesses dollars for
exercising the Fifth grand.

Table 1: Adversarial examples generated by our and Zheng et al. (2020)’s methods. The original words are
highlighted in bold blue font while the substitute words are highlighted in bold red ones.

more fluent, producing complicated substitutes like
emancipated, devising and eyewitnesses. Ad-
ditionally, since it is nontrivial to decode valid
multi-subword tokens from BERT, the BERT-based
method of Zheng et al. (2020) only generates single
subwords as substitutes.

With the proposed attacking method, we evalu-
ate the robustness of different parsing models and
analyse the properties of adversarial attacks. We
find that (i) the introduction of out-of-vocabulary
(OOV, words not in the embedding’s vocabulary)
and out-of-training (OOT, words not in the training
set of the parser) words in adversarial examples are
two main factors that harm models’ performance;
(ii) adversarial examples generated against a parser
strongly depend on the type of the parser, the token
embeddings and even the random seed.

Adversarial training (Goodfellow et al., 2015),
where adversarial examples are added in the train-
ing stage, has been commonly used in previous
work (Zheng et al., 2020; Han et al., 2020) to im-
prove a parser’s robustness. Only a limited number
of adversarial examples have been used in such
cases, and Zheng et al. (2020) argued that overuse
of them may lead to a performance drop on the
clean data. However, we show that with improve-
ment in the quality of adversarial examples pro-
duced in our method, more adversarial examples
can be used in the training stage to further improve
the parsing models’ robustness without producing
any apparent harm in their performance on the
clean data. Inspired by our second finding, we
propose to improve the parsers’ robustness by com-
bining models trained with different random seeds
and embeddings. Such methods, which are not tar-
geting specific types of attacks, should improve the
capacity to defend against new attacks as compared
to standard adversarial training.

2 Method

In this section, we first give a formal definition of
a dependency parsing attack. Then we describe the
proposed attacking method for dependency pars-
ing, shown in Algorithm 1. It consists of three
steps, namely ranking word importance (lines 1-4),
generating candidates for substitution (line 7) and
searching for the best substitute combination (lines
8-21).

2.1 Problem Definition

Given an input text space X containing all possible
input sentences x and an output space Y contain-
ing all possible dependency trees of x, a parser
F : X → Y learns to map the sentence x to its
corresponding tree y, denoted by F (x) = y. The
i-th word of x is denoted by xi. For sentence x, a
valid adversarial example x∗ is crafted by adding a
perturbation to x so that

F (x∗) 6= y, σ(x∗,x) ≤ ε,

where σ is a constraint function and ε ensures that
i) the perturbation is imperceptible, ii) the true de-
pendency tree of x∗ should be the same as that of
x. In this paper, these two constraints are ensured
through the use of various filters (see Section 2.3)
and are used to evaluate the quality of adversar-
ial examples (see details on fluency and syntactic
structure preservation in Section 3.3).

2.2 Word Importance Ranking

Word importance ranking in our model is based on
the observation that some words have a stronger
influence on model prediction than others. Such
word importance is typically computed by setting
each word to unknown and examining the changes
in their predictions (Li et al., 2016; Ren et al., 2019).
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Algorithm 1 Dependency Parsing Attack

Input: Sentence example x(0) = {x1, x2, . . . , xN},
maximum percentage of words allowed to be modified γ
Output: Adversarial example x(i)

1: for i = 1 to N do
2: Compute word importance I(x(0), xi) via Eq. 1
3: end for
4: Create a set W of all words xi ∈ x(0) sorted by the

descending order of their importance I(x(0), xi).
5: t = 0
6: for each word xj in W do
7: Build candidate set Cj for xj following the Candidate

Substitute Generating step
8: Initialise valid candidate set VC ← {}
9: for each candidate ck in Cj do

10: Compute the accuracy change S(x(t), ck, j) via
Eq. 3

11: if S(x(t), ck, j) ≤ 0 then continue end if
12: Add ck to the set VC
13: end for
14: if VC is not empty then
15: c∗ = argmax

c∈VC
S(x(t), c, j)

16: t = t+ 1
17: x(t) ← Replace xj in x(t−1) with c∗

18: if t ≥ γ ·N then return x(t) end if
19: end if
20: end for
21: if t > 0 then return x(t) else return None end if

This helps to determine the word substituting order
in the proposed method.

In this work, we use a combination of the
changes found in the unlabelled attachment score
(UAS) and in the labelled attachment score (LAS)
to measure word importance. Specifically, the im-
portance of a word xi in sentence x is computed as

I(x, xi) =λarc∆UAS(x, x̂i)+

(1− λarc)∆LAS(x, x̂i),
(1)

where x = x1x2 . . . xi . . . xN is the original
sentence and x̂i = x1x2 . . .UNK . . . xN re-
places xi with an ‘unknown’ token. Here
∆UAS(x, x̂i) = UASF (x) − UASF (x̂i) and
∆LAS(x, x̂i) = LASF (x) − LASF (x̂i) are the
changes in UAS and LAS respectively. λarc is
a coefficient that controls the relative importance
of dependency arcs and their labels.

2.3 Generation of Substitute Candidates
Generating substitute candidates is a critical step,
as it significantly influences the attack success rate
and the quality of generated adversarial examples.
Zheng et al. (2020) relied entirely on BERT to
generate candidates, but this limits the quality of
the adversarial examples. To alleviate this prob-
lem, we first collect candidate substitutes from four

generation methods, then apply filters to discard
inappropriate substitutes, ensuring both diversity
and quality of the generated candidates.

2.3.1 Generating Process

We collect substitutes from the following methods:
BERT-Based Method: We use BERT to gener-

ate candidates for each target word from its context.
This method generates only single subwords.

Embedding-Based Method: Following Alzan-
tot et al. (2018), we use word embeddings of
Mrkšić et al. (2016)2 to compute the N nearest
neighbours of each target word according to their
cosine similarity and use them as candidates.

Sememe-Based Method: The sememes of a
word represent its core meaning (Dong and Dong,
2006). Following Zang et al. (2020), we collect the
substitutes of the target word x based on the rule
that one of the substitutes the senses of x∗ must
have the same sememe annotations as one of senses
of x.

Synonym-Based Method: We use WordNet3 to
extract synonyms of each target word as candidates.

2.3.2 Filtering Process

We apply the following four types of filters to dis-
card candidates which are likely inappropriate, ei-
ther in terms of syntactic preservation or fluency.

POS Filter: We first filter out substitutes with
different part-of-speech (POS) tags from the origi-
nal word.4 This filter is essential for preserving the
syntactic structure of the sentence.

Word Embedding Similarity Filter: We use the
word embeddings of Mrkšić et al. (2016) to com-
pute the cosine similarity between the original word
and each of the substitutes in C and filter out those
whose similarities are less than a threshold εw.5

Grammar Checker Filter: We employ an off-
the-shelf grammar checker6 to filter out candidates
that may introduce grammar errors. This filter
helps to further ensure that the syntactic structure
and fluency are preserved.

Perplexity Filter: We employ GPT-2 (Radford
et al., 2019) to calculate the perplexity difference

2These embeddings are post-processed to ensure that the
nearest neighbours are synonyms.

3https://wordnet.princeton.edu
4We use the off-the-shelf Stanford tagger. (https://

nlp.stanford.edu/software/tagger.html)
5Non-synonym substitutes often reduce fluency.
6https://pypi.org/project/language_

tool

https://wordnet.princeton.edu
https://nlp.stanford.edu/software/tagger.html
https://nlp.stanford.edu/software/tagger.html
https://pypi.org/project/language_tool
https://pypi.org/project/language_tool
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between x and xc
i for each candidate c:

∆ppl(x, c, i) = ppl(xc
i )− ppl(x), (2)

where xc
i is x with its i-th word replaced by c, and

filter out c whose ∆ppl(x, c, i) > εp.

2.4 Best Substitute Searching

In this step, we greedily search for the best possible
combination of substitutions, relying both on the
previously created candidate lists and word sub-
stitution order. To preserve the syntactic structure
of sentences, we forbid replacement of pronouns,
articles, conjunctions, numerals, interjections, inter-
rogative determiners and punctuation. Additionally,
we set the maximum percentage of words allowed
to be modified γ in the experiments to control the
modification number.

Specifically, given a sentence x, we substitute
the words following the order computed in the
word importance ranking step. For each target
word xi, we build an adversarial example xc

i =
x1x2 . . . c . . . xN for each of its substitutes c. Then
we compute the accuracy change score from x to
xc
i as input to the parser:

S(x, c, i) =λarc∆UAS(x,xc
i )+

(1− λarc)∆LAS(x,xc
i ),

(3)

where ∆UAS(x,xc
i ) = UASF (x) − UASF (xc

i )
and

∆LAS(x,xc
i ) = LASF (x) − LASF (xc

i )
are the

changes in UAS and LAS, respectively. If the per-
centage of modified words in the sentence exceeds
a threshold γ, we stop the process. Otherwise, we
search for a substitute for the next target word.

3 Experimental Setup

3.1 Target Parsers and Token Embeddings

We choose the following two strong and commonly
used English parsers, one graph-based, the other
transition-based, as target models, both of which
achieve performance close to the state-of-the-art.

Deep Biaffine Parser (Dozat and Manning,
2017) is a graph-based parser that scores each can-
didate arc independently and relies on a decoding
algorithm to search for the highest-scoring tree.

Stack-Pointer Parser (Ma et al., 2018) is a
transition-based parser that incrementally builds
the dependency tree with pre-defined operations.

We used the following four types of token em-
beddings to study their influence on each parsers’

robustness. To focus on the influence of the embed-
dings, we use only the embeddings as input to the
parsers:

GloVe (Pennington et al., 2014) is a frequently
used static word embedding.

RoBERTa (Liu et al., 2019) is a pre-trained lan-
guage model based on a masked language mod-
elling object, which learns to predict a randomly
masked token based on its context. It produces
contextualised word piece embeddings.

ELECTRA (Clark et al., 2020) is a pre-trained
language model based on a replaced token detec-
tion object, which learns to predict whether each
token in the corrupted input has been replaced. It
produces contextualised word piece embeddings.

ELMo (Peters et al., 2018) is a pre-trained lan-
guage representation model based on character
embeddings and bidirectional language modelling.

3.2 Datasets and Experimental Settings

We train the target parsers and evaluate the pro-
posed method on the English Penn Treebank (PTB)
dataset,7 converted into Stanford dependencies us-
ing version 3.3.0 of the Stanford dependency con-
verter (de Marneffe et al., 2006) (PTB-SD-3.3.0).
We follow the standard PTB split, using section
2-21 for training, section 22 as a development set
and 23 as a test set.

It is important to note that when converting PTB
into Stanford dependencies, Zheng et al. (2020)
maintained the copula (linking verbs) as a head
when its complement was an adjective or noun.8

However, since the design objective of Stanford
dependency is to maximize dependencies between
content words (de Marneffe et al., 2006), a more
typical setting is to regard copulas as auxiliary mod-
ifiers. Therefore, we first compare with the previ-
ous method by performing this step under their
settings and further conduct experiments with the
typical PTB-SD-3.3.0 dataset for the convenience
of follow-up research.

While training the target parsers, we adopt
the hyper-parameters from their respective papers.
Note that to compare with the biaffine parser, which
uses first-order features, we also adopt the basic
setting for the stack-pointer parser.9 When using

7https://catalog.ldc.upenn.edu/
LDC99T42

8Referred to as PTB-SD-3.3.0-COP in the rest of the paper.
9According to our preliminary experiments, neither

second-order features nor beam search has an obvious in-
fluence on the parser robustness under our attack.

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
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RoBERTa, ELECTRA or ELMo embeddings as
input, we set the learning rate of these pre-trained
models to 2e-5 and that of other parameters to 2e-2.

For the hyper-parameters of each attacking
method, we set the word embedding similarity
threshold εw = 0.7, the candidate perplexity dif-
ference threshold εp = 20.0, the arc importance
coefficient λarc = 0.5 and the maximum percent-
age of words allowed to be modified γ = 15%.

3.3 Evaluation Metrics

As introduced in Section 2.1, two constraints
should be satisfied for an adversarial example to
be valid: i) the perturbation is imperceptible, ii)
the true dependency tree of x∗ should be the same
as that of x. For the first, we use fluency to mea-
sure the imperceptibility of the perturbations, and
assume that in a fluent adversarial example the
perturbation is imperceptible. For the second, syn-
tactic structure preservation is used to measure
whether an adversarial example’s true dependency
tree is identical to that of the original text. Both
automatic and human evaluations are used for anal-
ysis.

In the automatic evaluation, GPT-2 (Radford
et al., 2019) is used to compute the average per-
plexity of the adversarially modified PTB test set
to measure the overall fluency. In the human evalu-
ation, we ask three annotators to evaluate the qual-
ity of adversarial examples in two aspects, namely
syntactic structure preservation and fluency.10 To
evaluate the preservation of the syntactic structure,
we randomly collect 100 sentences along with their
adversarial examples and ask the annotators to de-
cide whether the syntactic structure is preserved in
each case. For the fluency evaluation, we randomly
collect 100 sentences along with the adversarial
examples generated by our method and those pro-
duced by the black-box method of Zheng et al.
(2020).11 For each sentence, the annotators are
asked to distinguish which example is better with
regard to fluency. For both evaluations, we adopt
the majority vote for the final results.

To evaluate how successful the attack is, we re-
port the parsing results of the target models on
the original and the adversarially modified (after-
attack) PTB test set. The results are reported in
terms of unlabelled attachment score (UAS) and

10The three human annotators are postgraduate students
with a few years of research experience in syntactic parsing.

11We thank Zheng et al. (2020) for kindly providing us with
the adversarial examples they generated.

labelled attachment score (LAS). We also report
the attack success rate, namely the percentage of
successfully attacked sentences. If the prediction
accuracy of the modified sentence is lower than the
original one, it is regarded as a successful attack.12

4 Results

4.1 Comparison with Previous Work

We first evaluate our attacking method on PTB-
SD-3.3.0-COP and compare it with previous work
(Zheng et al., 2020). Since we focus on the black-
box attack in this paper, we compare with their
sentence-level black-box attack against the deep
biaffine parser with only word-based embeddings
as input. In both their and our settings, 15% of
words are allowed to be modified.

Model Automatic Human
PPL Fluency% Syntax%

Zheng et al. 267.96 20 75
Ours 139.99 80 85

Table 2: Automatic and human evaluation results on the
PTB-SD-3.3.0-COP test set. PPL denotes the average
perplexity. Syntax% denotes the preserved syntactic-
structure rate and Fluency% the higher fluency rate.

Table 2 shows that adversarial examples gener-
ated by our method substantially outperform the
previous method with regard to fluency and syntac-
tic structure preservation. In the automatic evalua-
tion, the average perplexity of examples generated
by our method is 139.99, as compared to 267.96
of those generated by the previous work. For com-
parison, the average perplexity of the original PTB
test set is 127.67, which is very close to ours.

In the human evaluation, results show that for
80% of the sentences, our adversarial examples
have better fluency, which further confirms the ef-
fectiveness of our method. In addition, 85% of the
examples we generated preserve the original syn-
tactic structure, as compared to 75% reported by
Zheng et al. (2020), showing that our method also
improves the syntactic-structure preservation rate.

Table 3 shows the attack results of the two meth-
ods.13 It is clear that with higher quality, the adver-
sarial examples generated by our method cause

12Note that Zheng et al. (2020) only considered unlabelled
scores, so when comparing with these, we use the difference
in UAS as the measurement of successful attacks. Conversely,
in experiments on PTB-SD-3.3.0, we use the difference in
LAS.

13We only compare UAS here since they did not report LAS
in their paper.
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Model Orig-UAS After-UAS Succ%
Zheng et al. 95.52 88.69 51
Ours 95.45 88.95 44

Table 3: Results on the PTB-SD-3.3.0-COP test set.
Orig-/After-UAS denotes the original and after-attack
UAS respectively. Succ% denotes the success rate.

fewer incorrect predictions. This suggests that
some of the previous attacks that were counted as
successful may have used invalid adversarial exam-
ples which are either ungrammatical or which have
actually changed the original syntactic structure.

Generator BERT Emb. Sem. Syn.
before 28.64 20.54 8.57 1.74
after 0.54 2.06 0.46 0.17
left% 1.89 10.04 5.32 10.03

Table 4: The average number of candidates before
and after filtering generated by BERT-based (BERT),
embedding-based (Emb.), sememe-based (Sem.) and
synonym-based (Syn.) methods respectively. And the
percentages of the left candidates.

To further demonstrate the limitation of the
BERT-based method which the previous work used
as the only candidate generator, we count the aver-
age number of candidates from our use of different
generators before and after filtering. Results in Ta-
ble 4 show that although the BERT-based method
generates the most candidates before filtering, only
1.89% of them are left after the filters are applied.
Whereas the left candidate percentage varies from
5% to 10% for the other three generators. The re-
sults further verify that the quality of candidates
generated by the BERT-based method is worse than
that from the embedding-based, sememe-based and
synonym-based methods.

Model After-UAS Succ% PPL
pos 72.21 89 326.06
pos+emb 79.87 75 286.92
pos+emb+gra 81.52 71 254.95
pos+emb+gra+ppl 88.95 44 139.99

Table 5: Ablation study of filters. pos, emb, gra and
ppl stand for POS (part of speech), word embedding
similarity, grammar checker and perplexity filters re-
spectively.

To evaluate the ability of the filters, we conduct
an ablation study with different combinations of
these filters. Results in Table 5 show that the per-
plexity as well as the attack success rate decreases
when more filters are applied. As expected, the
greatest perplexity drop is brought by the perplex-

ity filter.

4.2 Robustness Evaluation of Different
Models

Input Original After-Attack Succ%UAS LAS UAS LAS
Biaffine

G. 95.36 93.49 88.69 85.09 55.3
M. 96.29 94.51 90.70 87.67 47.5
E. 97.12 95.38 91.05 87.79 50.6
R. 97.09 95.41 92.14 89.42 46.1

Stack-Pointer
G. 94.93 93.05 88.26 84.64 52.6
M. 95.69 93.77 89.57 86.49 46.8
E. 96.94 95.19 90.69 87.47 50.3
R. 96.93 95.20 91.58 88.84 45.1

Table 6: Robustness evaluation results. Succ% de-
notes the success rate (computed based on LAS). G.,
M., E. and R. stand for GloVe, ELMo, ELECTRA and
RoBERTa respectively.

We evaluate the robustness of the different pars-
ing models introduced in Section 3.1 on PTB-SD-
3.3.0 and report the results in Table 6. First of
all, when applied to unperturbed sentences, the
graph-based deep biaffine parser performs consis-
tently better than the transition-based stack-pointer
parser (using the same embeddings). Among the
four kinds of embeddings, the word piece-level em-
beddings (i.e., ELECTRA and RoBERTa) achieve
the highest results, while GloVe yields the lowest
results.

As for the adversarially modified sentences, we
find that the drop in performance is close between
the two families of parsers (using the same embed-
dings), while the attack success rate against the
Stack-Pointer parser is slightly higher. In terms of
the embeddings, RoBERTa turns out to be the most
robust one, which has the lowest attack success
rate and achieves the highest performance on the
generated adversarial examples. ELMo is also a
comparatively robust embedding. We are surprised
to find that although ELECTRA achieves similar
performance to RoBERTa on clean input data, it
performs poorly on the adversarial examples. We
hypothesise that this is due to ELECTRA’s training
objective, i.e. learning to predict whether a token
in a corrupted sentence is genuine or not. With this
objective, some of our substitutes can be predicted
as incorrect tokens, yielding token representations
in the space not encountered by the parser in train-
ing, and hence damaging its performance. Lastly,
GloVe is the most vulnerable embedding. 14

14To evaluate the stability of the attack, for each parsing
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Vocab. Original After-Attack Succ%UAS LAS OOV OOT UAS LAS OOV OOT
50k 95.36 93.49 2 24 87.58 83.73 972 1285 59.5
400k 95.36 93.49 0 15 88.69 85.09 2 906 55.3
400k (T.) 95.36 93.49 0 8 90.06 87.26 0 0 45.5

Table 7: OOV and OOT test results. Vocab. stands for vocabulary size, T. means filtering out all the candidates
that have not appeared in the training set.

4.3 Out-of-Vocabulary and Out-of-Training
Words

In this section, we investigate the roles out-of-
vocabulary (OOV, words not in the embedding’s
vocabulary) and out-of-training (OOT, words not in
the training set of the parser) words play in depen-
dency parsing attacks. We perform attacks on the
Biaffine GloVe models trained with (i) 50k vocab-
ulary (50k), (ii) 400k vocabulary (400k) and (iii)
the same 400k vocabulary but where all candidates
not in the training set are filtered out (400k (T.)).

The results are shown in Table 7, where we re-
port the attack results along with the number of
OOV and OOT words in the adversarially modified
words before and after the attack. Firstly, by com-
paring the OOV and OOT numbers before and after
the attack in the 50k model, we find that words
chosen to be replaced are often non-OOV and non-
OOT, while their substitutes are often OOV and
OOT. Secondly, the comparison between the 50k
and 400k results shows that when the number of
OOV words decreases, the robustness of the model
increases. Therefore, it is reasonable to assume
that OOV words in adversarial examples cause in-
correct predictions. Thirdly, according to the 400k
and 400k (T.) results, when the number of OOT
words in adversarial examples are reduced to 0 by
filtering out all the OOT candidates, the attack suc-
cess rate drops substantially. Therefore, we have
reason to believe that unfamiliar OOT words are
another factor degrading a parser’s performance.

The OOV problem mostly appears in models us-
ing word-level embeddings such as GloVe and can
be alleviated by simply increasing the vocabulary
size. While for the OOT problem, one potential
solution is using adversarial training, where a new
parser is trained with a mixture of clean training
data and adversarial examples.

model in Table 6 we attack another two trained with different
random seeds. The experiment shows all the results are stable
across seeds.

4.4 Adversarial Training

Previous work (Zheng et al., 2020; Han et al., 2020)
used a limited number (from 2,000 sentences to
half of the training data) of adversarial examples in
adversarial training as (Zheng et al., 2020) argued
that overuse of them may lead to a performance
drop on the clean data. In this section, we inves-
tigate the adversarial training strategies on all the
parsing models introduced in Section 3.1. Specif-
ically, we generate adversarial examples for the
whole PTB training set and retrain parsers on dif-
ferent amount of adversarial examples along with
the original training set. Figure 1 shows that as the
number of adversarial examples used in adversar-
ial training increases, the robustness of the models
increases accordingly. For most of the models, the
increase of robustness stops between 50% and 70%
of adversarial examples used.
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Figure 1: After-attack results with different amounts of
adversarial examples used for adversarial training (best
viewed in colour).

Table 8 shows the results of Biaffine parsers re-
trained with 100% of the adversarial examples gen-
erated for the original training set. We find that in
most cases, the parsing results on the clean data are
not obviously influenced although all of the adver-
sarial examples are used. In addition, the robust-
ness of all of the retrained models is substantially
improved.
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Input Original After-Attack Succ%UAS LAS UAS LAS
Biaffine

G. 95.36 93.49 88.69 85.09 55.3
G.* 95.32 93.45 91.90 89.34 38.5
M. 96.29 94.51 90.70 87.67 47.5
M.* 96.17 94.37 93.49 91.03 33.2
E. 97.12 95.38 91.05 87.79 50.6
E.* 96.96 95.23 95.03 92.58 33.4
R. 97.09 95.41 92.14 89.42 46.1
R.* 97.03 95.30 95.30 93.02 29.5

Stack-Pointer
G. 94.93 93.05 88.26 84.64 52.6
G.* 94.92 93.04 91.58 88.82 36.2
M. 95.69 93.77 89.57 86.49 46.8
M.* 95.75 93.81 92.64 90.02 34.1
E. 96.94 95.19 90.69 87.47 50.3
E.* 96.83 95.04 94.53 91.96 34.2
R. 96.93 95.20 91.58 88.84 45.1
R.* 96.80 95.01 95.10 92.83 29.1

Table 8: Adversarial training results. * denotes models
with adversarial training.

4.5 Transferability
We refer to adversarial examples as transferable if,
generated against one model, they succeed in fool-
ing another one. Previously, Jin et al. (2020) found
that in text classification and entailment tasks, ad-
versarial examples are moderately transferable be-
tween models with different embeddings. In this
section, we examine the following three kinds of
transferabilities of adversarial examples in depen-
dency parsing attacks: (i) Cross Seed: adversarial
examples generated against one model are tested on
another model trained with a different random seed;
(ii) Cross Parser: adversarial examples generated
against one model are tested on another from a
different family of parsers; and (iii) Cross Embed-
ding: adversarial examples generated against one
model are tested on another trained with a different
type of embedding.

Src Cross Cross Cross Embedding
Seed Parser G. M. E. R.

G. 45.0 40.3 55.3 27.7 27.2 25.2
M. 36.3 35.6 28.0 47.5 29.6 27.2
E. 34.8 40.2 27.1 28.8 50.6 29.2
R. 39.8 35.0 25.5 27.9 29.8 46.1

Table 9: Attack success rates (%) in the transferability
test with Biaffine parser as the source parser. Src repre-
sents the source model.

Results in Table 9 and 10 show that the attack
success rate always drops when adversarial exam-
ples are tested on other models, indicating that the
adversarial examples strongly depend on the parser
model, the token embeddings and even the spe-

Src. Cross Cross Cross Embedding
Seed Parser G. M. E. R.

G. 41.1 40.8 52.6 25.8 25.7 23.7
M. 36.0 34.8 26.5 46.8 27.0 26.6
E. 35.3 33.7 24.4 28.5 50.3 29.9
R. 41.1 38.8 24.2 26.0 29.7 45.1

Table 10: Attack success rates (%) in the transferability
test with Stack-Pointer parser as the source parser. Src.
represents the source model.

cific instantiation of the model (i.e., the random
seed). Among the three kinds of transferabilities,
the cross seed transfer is the strongest while the
cross embedding transfer is the weakest.

4.6 Cross-Seed and Cross-Embedding
Ensemble
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Figure 2: Attack success rates of the examples with and
without cross-seed ensemble.

Based on the observations from Section 4.5,
we propose to improve the robustness of parsing
models using a cross-seed ensemble and cross-
embedding ensemble. To ensemble multiple
parsers, we simply compute the average of the prob-
ability distributions across them and use that result
as the new distribution in the ensembled model.

Figure 2 shows the effect of the cross-seed en-
semble, where almost all the attack success rates
are dropped with such an ensemble. In addition, it
is most effective with ELMo while least effective
with ELECTRA and RoBERTa.

Table 11 shows the effect of using the cross-
embedding ensemble, where robustness increases
when more models with different token embed-
dings are ensembled. Moreover, contrary to adver-
sarial training, the ensemble method is not tuned
to specific types of attacks and appears robust to
‘unseen’ attacks, showing that it is more likely to
defend against new attacks.
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Input Original After-Attack Succ%UAS LAS UAS LAS
Biaffine

R. 97.09 95.41 92.14 89.42 46.1
R.G. 97.16 95.55 92.39 89.77 43.8
R.G.M. 97.20 95.58 92.53 89.97 42.5
R.G.M.E. 97.25 95.63 92.73 90.12 41.5

Stack-Pointer
R. 96.93 95.20 91.58 88.84 45.1
R.G. 97.01 95.32 92.15 89.49 43.4
R.G.M. 96.98 95.26 92.28 89.62 42.3
R.G.M.E. 97.14 95.45 92.27 89.64 41.5

Table 11: Cross-embedding ensemble results

5 Related Work

Existing textual adversarial attacks have mostly fo-
cused on semantic tasks such as sentiment analysis
(Zhang et al., 2019) and textual entailment (Jin
et al., 2020). Although most of this work has ap-
plied various techniques to maintain the fluency
of adversarial examples, a recent study by Morris
et al. (2020) reported that quite a number of these
techniques introduce grammatical errors.

In syntactic tasks, Zheng et al. (2020) recently
proposed the first dependency parser attacking
method which depends entirely on BERT to gener-
ate candidates. However, we show that the quality
of adversarial examples generated by their method
is relatively low due to the limitation of the BERT-
based generator, and we propose to generate better
examples by using more generators and stricter
filters.

Han et al. (2020) proposed an approach to attack
structured prediction models with a seq2seq model
(Wang et al., 2016) and evaluated this model on de-
pendency parsing. They used two reference parsers
in addition to the victim parser to supervise the
training of the adversarial example generator, and
found that the three parsers produce better results
when they have different inductive biases embed-
ded to make the attack successful. This finding is
quite close in spirit to our conclusion in Section 4.5.
Hu et al. (2020) also put forth efforts to modify the
text in syntactic tasks while preserving the origi-
nal syntactic structure. However, their goal is to
preserve privacy via the modification of words that
could disclose sensitive information.

6 Conclusion

In this paper, we propose a method for generat-
ing high-quality adversarial examples for depen-
dency parsing and show its effectiveness based on
automatic and human evaluation. We investigate

the robustness of different types of neural depen-
dency parsers. We show that OOV and OOT words
are two critical characteristics that cause a perfor-
mance drop and propose to solve the OOT problem
with adversarial training. We further examine three
kinds of transferabilities of adversarial examples
and propose to improve the robustness of parsing
models by ensembling across random seeds and
token embeddings.
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