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Abstract

Lifelong topic models mainly focus on in-
domain text streams in which each chunk only
contains documents from a single domain. To
overcome data diversity of the in-domain cor-
pus, most of the existing methods exploit the
information from limited sources in a separate
and heuristic manner. In this study, we develop
a lifelong collaborative model (LCM) based
on non-negative matrix factorization to accu-
rately learn topics and domain-specific word
embeddings. LCM particularly investigates:
(1) developing a knowledge graph based on
the semantic relationships among words in the
lifelong learning process, so as to accumulate
global context information discovered by topic
models and local context information reflected
by context word embeddings from previous do-
mains, and (2) developing a subword graph
based on byte pair encoding and pairwise word
relationships to exploit subword information
of words in the current in-domain corpus. To
the best of our knowledge, we are the first to
collaboratively learn topics and word embed-
dings via lifelong learning. Experiments on
real-world in-domain text streams validate the
effectiveness of our method.

1 Introduction

Lifelong learning (Silver, 2011; Mitchell et al.,
2015), which accumulates and maintains the past
knowledge to help future learning in an endless
manner, has attracted considerable attention in
topic modeling (Chen et al., 2020b; Gupta et al.,
2020). Most lifelong topic models (Chen and Liu,
2014b; Chen, 2015; Wang et al., 2016) focus on the
corpus that only contains text from a single domain,
dubbed the in-domain corpus (Xu et al., 2018).
This is because in-domain corpora are widespread
in real-world applications, such as breaking news
and tweets related to a specific topic (domain). The
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key to the success of a lifelong topic model within
in-domain corpora is based on a precondition that
prior topical information of previous domains can
be fully exploited to guide meaningful learning
in the new coming domain (Chen and Liu, 2014b).
However, because the in-domain corpus is typically
of limited size (Xu et al., 2018), it is insufficient
for the existing methods to train coherent topics.

To alleviate the lack of global context in a cor-
pus, one simple solution for topic models is to
incorporate general-purpose pre-trained word em-
beddings (Das et al., 2015; Xun et al., 2016, 2017b;
Dieng et al., 2020). Although the general-purpose
embeddings can provide some useful information
for words within the in-domain corpus, their em-
bedding representations may not be ideal for the
target domain and in some cases they may even con-
flict with the meanings of the words in the task do-
main because words often have multiple senses or
meanings (Xu et al., 2018). Another solution trains
topics and word embeddings jointly in the one-shot
learning scenario (Xun et al., 2017a; Dieng et al.,
2020). Such a unified method prevents relying on
the external embedding corpus that is not always
closely aligned with the domain task, because the
model can learn domain-specific word embeddings
by itself. Unfortunately, the aforementioned mod-
els are conducted on collected documents without
the guidance of any prior knowledge. Besides, they
all treat words as atomic units, which may not per-
form well on the in-domain corpus with relatively
few words.

In light of these considerations, we aim to gener-
ate coherent topics and domain-specific word em-
beddings jointly by a lifelong process. On the one
hand, domain-specific word embeddings tend to
offer more accurate complementary information
to lifelong topic modeling than pre-trained embed-
dings. On the other hand, we alleviate the lack
of global and local context information within in-
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domain corpora by exploiting subwords (Pinter
et al., 2017). Both the topical and subword in-
formation are leveraged in our knowledge-based
learner to generate better domain-specific word
embeddings. To achieve this, we propose a life-
long collaborative model (LCM)1 by coordinating
global context, local context, and subword informa-
tion. First, our LCM maintains a knowledge graph
based on word relationships to accumulate the past
knowledge learned from previous domains, which
exploits from both the global word-document ma-
trix and the local word co-occurrence matrix. Sec-
ond, we develop a subword graph from the current
in-domain corpus to capture extra information of
words. We use non-negative matrix factorization
(NMF) as our framework, which is an effective
method of mining latent text semantics with great
flexibility in transforming prior knowledge into reg-
ulations (Lee and Seung, 1999; Chen et al., 2015,
2020b) and it gives sparseness to matrices with
interpretability (Hoyer, 2004). The main contribu-
tions of this study can be summarized as follows:

• We propose a lifelong learning method to
jointly generate topics and word embeddings
over in-domain text streams. To the best of
our knowledge, we are the first to collabora-
tively learn topics and domain-specific word
embeddings through a lifelong process.

• We incorporate local context information and
subword information into lifelong topic mod-
eling, which can alleviate the lack of global
context information when the target dataset is
relatively small.

• In lifelong word embedding learning, we
leverage the topical and subword information
to help generate better domain-specific em-
beddings for down-stream learning tasks.

2 Related Work

Topic modeling (Deerwester et al., 1990; Hofmann,
1999; Blei et al., 2003) and word embedding learn-
ing (Mikolov et al., 2013a,b) are two of the most
important tasks in natural language processing. The
former task aims to discover the latent semantic
structure of documents based on the global con-
text, while the latter one follows the distributional
hypothesis that words occurring in similar local
contexts tend to have similar syntactic and seman-
tic properties (Harris, 1954). The traditional topic
and word embedding learning models are based on

1https://github.com/XiaoruiQ/LCM

isolated learning, i.e., a one-shot task learning, thus
they lack ability to continually learn from incre-
mentally available data.

Lifelong Topic Modeling. A lifelong topic
model (Chen and Liu, 2014b; Chen, 2015; Wang
et al., 2016), as a typical example of lifelong ma-
chine learning, is gaining more and more research
interests than traditional one-shot deal that con-
ducts a topic model on collected documents just for
once (Chen et al., 2020b). Lifelong topic models
inherit three key characteristics in lifelong machine
learning, i.e., continuous tasks, knowledge accu-
mulation and maintenance, and a knowledge-based
learner that can leverage the past knowledge to help
future learning in a never-ending manner. Further-
more, lifelong topic modeling is mainly applied to
in-domain corpora where each chunk only contains
text from a single domain.

Based on NMF, Chen et al. (2020b) proposed
a lifelong topic model named NMF-LTM. How-
ever, the above method only considers the most
important 10 words under every topic while ig-
nores other non-top words, i.e., most words in the
vocabulary. This problem will be more serious
if the vocabulary size is large. Besides, NMF-
LTM may perform poorly for other downstream
tasks, because it can only capture the information
of limited words in sentences. Finally, NMF-LTM
only mines word relationships from the perspec-
tive of global (topical) information, which is inade-
quate within in-domain corpora. Considering the
limited global context in the new coming corpus,
Gupta et al. (2020) incorporated general-purpose
pre-trained word embeddings as complementary to
topics into the knowledge base for lifelong learn-
ing. Unfortunately, the above method required that
the dimension of word embeddings being equal to
the number of topics and each dimension of word
embeddings corresponding to a topic. This violates
the complementary but different points of view, i.e.,
the global viewpoint and the local viewpoint, for
topic models and word embedding models (Xun
et al., 2017a). This model optimizes a topic-word
matrix, in which each row represents the word dis-
tribution of a topic and each column represents the
embedding of a word. Each dimension of the word
embedding learned by this model implied the pos-
sibility of the word occurring in the corresponding
topic. However, word embeddings contain many
other features that cannot be captured by global
(context) information, e.g., the syntactic feature.

https://github.com/XiaoruiQ/LCM
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Word Embedding Learning. Lifelong learning
has also been adopted to train domain-specific word
embeddings, which fills the gap between general-
purpose embeddings trained on large-scale corpora
and the topic (domain) of the down-stream task.
For example, Xu et al. (2018) first developed a
meta-learner to expand the new in-domain corpus
by measuring the content similarity of past domains
and the new domain. Then, they generated word
embeddings for the new domain using the com-
bined data. However, this method only considered
the local context information from past domains,
which is inadequate to capture the polysemous na-
ture of words. As an illustration, apple is one of
polysemous words that is topically contextualized
by several domains, i.e., product line, operating
system, and fruit (Gupta et al., 2020).

3 Lifelong Collaborative Model

In this section, we detail the proposed LCM for
jointly learning topics and domain-specific word
embeddings in a lifelong process. The topical infor-
mation and local context from previous domains,
and a subword graph constructed from the current
in-domain corpus are exploited in LCM to guide
future tasks.

3.1 Problem Formalization
Given a stream of document chunks

{
DOCt

}T
t=1

accumulated in an endless manner (T = +∞), we
aim to jointly generate topics and domain-specific
word embeddings when each chunk only contains
text from a single domain. At any time point, our
LCM deals with the current document chunk, e.g.,
DOCt, by leveraging the past knowledge learned
from the previous document chunks, i.e., DOC1,
DOC2, . . . , DOCt−1. Table 1 lists the notations
used in this paper. We use bold uppercase letters
such as Dt to represent matrices, regular uppercase
letters such as M to represent scalar constants, and
regular lowercase letters such as λv to represent
scalar variables.

Notation Description

Dt ∈ RM×N Word-document matrix at the current moment
Ut ∈ RM×K Word-topic matrix at the current moment
Vt ∈ RK×N Topic-document matrix at the current moment
Xt ∈ RM×M Word co-occurrence matrix at the current moment
Bt ∈ RM×E Word embedding matrix at the current moment
Ct ∈ RM×E Context word embedding matrix at the current moment

M The number of words
N The number of documents
K The number of topics
E The dimension of word embeddings

Table 1: Frequently used notations.

3.2 Objective Function

Figure 1 illustrates the architecture of our LCM,
which processes in-domain text streams through a
knowledge-based learner. Formally, the objective
function of LCM is defined as follows:

L = ‖Dt −UtVt‖2F +
∥∥Xt −BtC

T
t

∥∥2
F

+ Υ(Vt) + Ψ(Ut) + Φ(Ct) + Ω(Bt),

s.t. Ut ≥ 0,Vt ≥ 0,Bt ≥ 0,Ct ≥ 0. (1)

It is noteworthy that we constrain the non-
negativity of Bt and Ct to learn sparse inter-
pretable word embeddings (Murphy et al., 2012;
Luo et al., 2015), so as to capture the polyse-
mous nature of words (Panigrahi et al., 2019).
With non-negativity constraints, words are repre-
sented by limited dimensions (Murphy et al., 2012).
All words that have positive values under specific
dimensions may share a common characteristic,
which enhances the interpretability of word embed-
dings and helps capture the polysemous nature.

The first term of our objective function aims to
factorize the global word-document matrix Dt into
the word-topic matrix Ut and the topic-document
matrix Vt, and the interpretability of Ut and Vt
is ensured by their non-negativity. For the local
context information, Levy and Goldberg (2014)
have proved that the Skip-Gram model with neg-
ative sampling (SGNS) is implicitly factorizing a
positive pointwise mutual information word co-
occurrence matrix shifted by a constant offset. Ac-
cordingly, we use the shifted positive pointwise mu-
tual information matrix as our word co-occurrence
matrix Xt and decompose it into the word embed-
ding matrix Bt and the context word embedding
matrix Ct, as presented in the second term. Given
a hyperparameter λv, the sparsity constraint on Vt
is introduced as the third term Υ(Vt) = λv ‖Vt‖1.
This ensures that each document covers limited
topics (Chen et al., 2020b). The sparsity of topics
encourages interpretable topics (Card et al., 2018),
which corresponds with the tuition that a document
usually focuses on several salient topics instead of
covering a wide variety of topics (Lin et al., 2019).
Although NMF has given sparseness to Vt, a more
direct control over such properties of the represen-
tation is still needed (Hoyer, 2004). The rest terms
Ψ(Ut), Φ(Ct), and Ω(Bt) are the constraints on
matrices Ut, Ct, and Bt, which will be described
in sections 3.2.3-3.2.5, respectively.
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Figure 1: Lifelong Collaborative Model (LCM)

3.2.1 Knowledge Graph (KG)

LCM uses relationships between words as the rep-
resentations of our KG to maintain knowledge of
past domains to help with the current in-domain
task. KG accumulates the knowledge of past do-
mains from two sources of information, i.e., the
global context information mined by topic models
and the local context information reflected by con-
text word embeddings. As shown in Figure 1, the
output of LCM contains the word-topic matrix Ut,
the topic-document matrix Vt, the word embedding
matrix Bt, and the context word embedding matrix
Ct. KG fuels the global context and local context
information with the help of Ut and Ct, as follows.

For the global context information, we use the
inner product to measure similarities between topic
distributions of words in Ut. For each word wi in
the current vocabulary of Dt, we find topT words
wj (j = 1, 2, ..., T ), whose topic distributions of
all topics are most similar to wi. Each wj and wi
are seen as word pairs that reflect the relationship
from the global context information, i.e., the topical
information. After finding topT related words of
each word, all the word pairs are accumulated and
de-duplicated. Following (Chen et al., 2020b), we
set the weight of each word pair (wi, wj) to 1.

Regarding the local context information, we use
the inner product to measure similarities between
context word embeddings of words in Ct. For each
word wi in the current vocabulary of Dt, we find
topT words whose context word embeddings are
most similar to this word. All word pairs represent

the relationship from the perspective of local con-
text information and their weights are set to η after
de-duplication, where η adjusts the weight relation-
ship between global context information and local
context information.

Then, we accumulate the word pairs from these
two sources to fuel the information of global con-
text and local context. It is worth noting that if a
word pair (wi, wj) appears simultaneously in the
two kinds of word pairs, its weight is recorded as
1 + η. De-duplication is not required here, because
the relationship between two words related in both
global context and local context is closer than that
of two words only related in one kind of source
information. We use Jt to denote all the related
word pairs in the current in-domain corpus, and Jt
is defined as:

Jt = {(Wk)ij}, (2)

where (Wk)ij represents the weight of the word
pair (wi, wj) in KG. Finally, KG is updated as
follows:

KGt = KGt−1 + Jt. (3)

3.2.2 Subword Graph (SG)
To incorporate subword information, LCM uses a
subword graph (SG) to store relationships between
words in Dt from the perspective of subword in-
formation. The motivation of introducing SG is
to capture more information from the structures
of words themselves as the complement for global
and local contexts (Bojanowski et al., 2017; Pinter
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et al., 2017). Many in-domain text streams contain
a high proportion of rare words with low word fre-
quencies, e.g., proper nouns in specific domains,
which cannot be adequately reflected by context
due to the low frequencies. Note that SG only
mines the subword information of the current in-
domain corpus since subwords are only related to
domain-independent structures of words.

A typical word in English is composed by three
kinds of subword units, i.e., the word root, the
prefix, and the suffix2. Word roots and prefixes
determine the meaning of words, while suffixes
determine the syntactic-related part of speech. We
adopt byte pair encoding (BPE) (Sennrich et al.,
2016), which can implicitly match these morpheme
boundaries, to conduct subword segmentation. We
also compare this segmentation method with char-
acter n-gram features (Bojanowski et al., 2017) in
experiments. For every word pair, the number of
shared subword units between them are recorded as
the weight. In the current in-domain corpus, SGt
is defined as:

SGt = {(Ws)ij}, (4)

where (Ws)ij represents the weight of the word
pair (wi, wj) in SGt.

3.2.3 Constraint on Ut

Before introducing Ψ(Ut), we first construct the
word-word relationship matrix Kt−1 ∈ RM×M

from KGt−1 to represent the closeness of relation-
ships between words. In KGt−1, we select all of
the word pairs in which both of the two words oc-
curred in the current vocabulary of Dt. Only these
words contribute to the current in-domain task on
Dt, and all diagonal elements of Kt−1 are 1. Rk,
which represents the threshold ratio forKG, is used
to select the “close” relationships between words.
For two words wi and wj , if the corresponding pair
(wi, wj) occurred in the selected word pairs in Dt

mentioned above, the value of kij will be deter-
mined by the threshold ratio Rk. If the weight of
(wi, wj), i.e., (Wk)ij , is greater than or equal to
the max weight of all the word pairs in Dt mul-
tiplied by Rk, then kij =

(Wk)ij
max(Wk)

. If it is less
than the max weight multiplied by Rk or wi and
wj are not connected in KGt−1, then kij = 0. In
the above, Rk helps to select word pairs with rela-
tively large weights. Although wrong connections

2https://en.wikipedia.org/wiki/Root_
(linguistics)

between some word pairs are kept in our KG, the
weights of them cannot be large enough, because
the max weight of KG becomes larger and larger
over time. These pairs will not be chosen to partic-
ipate in constraints of matrices. In summary, Kt−1
is calculated as follows:

kij =


1, i = j

(Wk)ij
max(Wk)

, (Wk)ij ≥ Rkmax(Wk)

0, otherwise. (5)

The word-word relationship regularization based
on KG for Ψ(Ut) holds that the topic distributions
of words that are closely related in KG would be
more similar than those have no connection in KG.
We use the Graph Laplacian (Dai et al., 2020) as the
first part of Ψ(Ut) to depict that under each topic
in Ut, the closer two words are connected in KG,
the closer their probabilities are. The second part
of Ψ(Ut) is the diversity regularization to reduce
the overlapping of topics, i.e., to improve the topic
uniqueness (Nan et al., 2019). Accordingly, Ψ(Ut)
is defined as follows:

Ψ(Ut) =λu1tr(U
T
t Ht−1Ut)

+ λu2
∥∥UT

t Ut − IK
∥∥2
F
. (6)

In the above, λu1 and λu2 are hyperparameters.
Ht−1 = diag(Kt−1 · 1) −Kt−1 represents the
Graph Laplacian of Kt−1, where 1 represents a
column vector in which all of the elements are 1,
and diag(Kt−1 · 1) represents the matrix with the
vector Kt−1 · 1 as diagonal elements. IK is an
identity matrix of order K ×K.

3.2.4 Constraint on Ct

KG, which fuels the information of global con-
text and local context from previous domains, is
constructed with the help of Ut and Ct. It also
contributes to both the two matrices on their con-
straints. For Φ(Ct), we use Kt−1 to introduce the
word-word relationship regularization. It depicts
that context embeddings of words that are closely
related in KG would be more similar than those
have less connection in KG. Specifically, under
each dimension in Ct, the closer two words are
connected in KG, the closer their representations
are. Φ(Ct) is calculated as follows:

Φ(Ct) = λctr(C
T
t Ht−1Ct), (7)

where λc is a hyperparameter.

https://en.wikipedia.org/wiki/Root_(linguistics)
https://en.wikipedia.org/wiki/Root_(linguistics)
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3.2.5 Constraint on Bt

The first part of Ω(Bt) is similar to the word-word
relationship regularization for Ψ(Ut) and Φ(Ct).
It holds that embeddings of words that are closely
related in SG would be more similar than those
have less connection in SG. We also use the Graph
Laplacian to depict that under each dimension in
Bt, the closer two words are connected in SG,
the closer their representations are. A word-word
relationship matrix St ∈ RM×M is constructed
from SGt, as follows:

sij =


1, i = j

(Ws)ij
max(Ws)

, (Ws)ij ≥ Rsmax(Ws)

0, otherwise, (8)

where (Ws)ij represents the weight of pair (wi, wj)
in SGt, and Rs denotes the threshold ratio of SG.
Rs helps exclude and ignore wrong connections in
SG. In addition, the cooperation ofKG and SG can
further reduce the influence of unimportant edges.
For example, a connection that is only selected by
Rk may not be as important as the connection that
is selected by both of Rk and Rs simultaneously.

The second part is a sparsity constraint on Bt,
which depicts that each word only has features of a
limited number, because we aim to learn sparse rep-
resentations so that the generated domain-specific
word embeddings are more interpretable.

Finally, Ω(Bt) is defined as follows:

Ω(Bt) = λb1tr(B
T
t NtBt) + λb2 ‖Bt‖1 , (9)

where λb1 and λb2 are hyperparameters. Nt =
diag(St · 1)− St is the Graph Laplacian of St.

3.3 Alternately Iterative Algorithm
We develop an alternately iterative algorithm to
achieve a good compromise between ease of im-
plementation and speed. Take Bt as an example,
we first calculate the derivative of the objective
function L on Bt as follows:

∂L

∂Bt
=− 2XtCt + 2BtC

T
t Ct

+ 2λb1diag(St · 1)Bt − 2λb1StBt

+ λb2 · 1 · 1T . (10)

Based on the derivative of L on Bt, the updating
rule for Bt is given below:

Bt ← Bt ◦
XtCt + λb1StBt

BtCT
t Ct + J(Bt)

, (11)

where J(Bt) = λb1diag(St · 1)Bt + λb2
2 · 1 · 1

T .
Note that Ut, Vt, Ct, and Bt always satisfy the
non-negativity because they are updated in this
multiplication form. Due to the limited space, we
provide the updating rules for matrices Ut, Vt, and
Ct, the parameter inference process, the theoretical
proof of the algorithmic convergence, and the time
complexity analysis in Appendices A-D.

3.4 Model Scalability

Our model has a good scalability due to the “divide-
and-conquer” strategy. First, we partition the large
corpus into several small document chunks that be-
long to different domains, and we only decompose
matrices of one chunk at any time. Second, we use
sparse matrices to store KG and SG, thus they are
scalable and can be processed fast. Third, when
facing a large single domain corpus in text streams,
we can partition it into small sub-domain corpora
and process one corpus at each time.

4 Experiments

4.1 Dataset

We evaluate our LCM on the real-world Amazon
Review dataset3 (McAuley et al., 2015; He and
McAuley, 2016) from 28 departments (i.e., the first-
level category). Following (Xu et al., 2018), we
consider all the reviews under each second-level
category as a domain. Each domain has several
third-level categories, which will be used for all
down-stream tasks and model evaluation. We ran-
domly select 9 in-domain corpora to carry out ex-
periments. Table 2 summarizes the characteristics
of the selected 9 corpora, i.e., domain names, num-
bers of reviews and labels, the average text lengths,
and vocabulary sizes. The selected corpora are pre-
processed by eliminating stop-words and words
with frequency (in the total reviews from 9 do-
mains) lower than 15. Also, reviews with less than
20 words are removed.

Note that we choose the above dataset instead of
other datasets for lifelong topic modeling (Gupta
et al., 2020) since we focus on in-domain corpora
with rare overlaps, in which, documents share few
common information. For completeness, we also
shuffle these 7 training domains randomly and
show the results under different permutations in
Appendix E.

3http://snap.stanford.edu/data/
web-Amazon.html

http://snap.stanford.edu/data/web-Amazon.html
http://snap.stanford.edu/data/web-Amazon.html
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Domain Name #Docs #Labels Length Vocab

Safety Signs & Signals 11,298 8 32.12 16,090
Pet Behavior Center 7,450 5 43.34 14,301

SIM Cards & Prepaid Minutes 13,872 4 42.29 16,726
Horses 13,571 11 35.98 19,608
Video 10,088 5 76.35 23,196

Keyboards & MIDI 15,585 3 59.09 24,703
Characters & Series 16,663 6 67.77 35,393

Science Education 7,975 13 38.05 18,107
Cult Movies 15,252 13 83.25 47,668

Table 2: Dataset statistics.

4.2 Experimental Setting

We simulate an endless lifelong learning process
using the 9 corpora. Word-word relationships in
the knowledge graph are gradually accumulated on
the first 7 domains. With the help of this knowl-
edge graph, we conduct experiments on the last 2
domains and compare the model performance on
both lifelong topic modeling and domain-specific
word embedding learning.

We randomly select 5% reviews from “Cult
Movies (CM)” for validation. To build the knowl-
edge graph for the validation set, 5% reviews from
the first 7 corpora are sampled and reviews from
these 8 small-scale in-domain corpora also con-
struct a stream of document chunks. The idea
of grid search (Fayed and Atiya, 2019) is used
to select the best parameters for each metric. We
provide our hyperparameters search space for grid
search in Appendix F. The remaining 95% reviews
of the first 7 domains construct the training set. All
reviews from “Science Education (SE)” and the
remaining 95% documents from CM are used as
the testing set.

4.3 Baselines

For lifelong topic modeling, we compare our
method with the following baselines: LDA-
LTM4 (Chen and Liu, 2014b), NMF-LTM (Chen
et al., 2020b), and LNTM5 (Gupta et al., 2020).
For word embedding learning, we adopt Fast-
Text6 (Bojanowski et al., 2017), L-DEM (Xu et al.,
2018), SPINE7 (Subramanian et al., 2018), and
Word2Sense8 (Panigrahi et al., 2019). To the best
of our knowledge, L-DEM is the only work fo-
cuses on lifelong learning of domain-specific word
embedding. Following (Xu et al., 2018), we train

4https://github.com/czyuan/LTM
5https://github.com/pgcool/

Lifelong-Neural-Topic-Modeling
6https://github.com/bamtercelboo/

cw2vec
7https://github.com/harsh19/SPINE
8https://github.com/

abhishekpanigrahi1996/Word2Sense

other baselines in two ways for evaluation, i.e.,
only on the new in-domain corpus, and on the to-
tal document set by fusing the new corpus and all
corpora from the previous domains. We implement
NMF-LTM and L-DEM by Python according to the
original papers. For the sake of fairness, the param-
eters of all baselines9 are selected on the validation
set in the same experimental setting as LCM.

4.4 Evaluation Metrics

Suggested by (Lau et al., 2014; Chen and Liu,
2014a,b; Wang et al., 2016; Isonuma et al., 2020),
we use the normalized pointwise mutual informa-
tion (NPMI) (Aletras and Stevenson, 2013) score,
which closely matches human judgments, to mea-
sure the coherence of representative words of top-
ics generated by lifelong topic models. Follow-
ing (Chen et al., 2020b), top 20 words of each
topic are used for calculation. Considering that it
is important to discover discriminative topics, we
also adopt the topic uniqueness (TU) score (Nan
et al., 2019) to measure the diversity of topics. In
addition, the sparsity score of the document-topic
distribution (TS-U) and the topic-word distribution
(TS-V) proposed by Lin et al. (2019) is further used
to measure the topic sparsity quantitatively. Partic-
ularly, we use 1e-20 as the threshold to count the
number of zero values in document-topic and topic-
word distributions. Only values that are smaller
than 1e-20 can be set to zero. Although several
studies (Chang et al., 2009; Newman et al., 2010)
stated that the perplexity is unable to reflect the real
semantic coherence of topics and even negatively
correlated with human judgements, we show this
metric of each model for completeness.

As domain-specific dictionaries are relatively
small and meanwhile may contain some uncom-
mon words, it is inappropriate to evaluate domain-
specific word embeddings in traditional ways, e.g.,
calculating the word similarity. Following (Xu
et al., 2018), we build a down-stream text clas-
sification task to evaluate domain-specific word
embeddings generated by different models. The
two testing sets, i.e., SE and CM, are used for text
classification with their third-level categories as
classification labels. For each review, we use the
average embedding of all of the words as its fea-
ture vector to train a SVM classifier (Bayot and
Gonçalves, 2016; Qin and Wang, 2009). We use

9The search scope of each parameter that is different with
our method is obtained from the original papers.

https://github.com/czyuan/LTM
https://github.com/pgcool/Lifelong-Neural-Topic-Modeling
https://github.com/pgcool/Lifelong-Neural-Topic-Modeling
https://github.com/bamtercelboo/cw2vec
https://github.com/bamtercelboo/cw2vec
https://github.com/harsh19/SPINE
https://github.com/abhishekpanigrahi1996/Word2Sense
https://github.com/abhishekpanigrahi1996/Word2Sense
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Method Science Education (SE) Cult Movies (CM)

NPMI↑ TU↑ TS-U↑ TS-V↑ Perplexity↓ NPMI↑ TU↑ TS-U↑ TS-V↑ Perplexity↓

LDA-LTM -0.0201 0.6620 0.0000 0.0000 9081.5853 0.0509 0.6060 0.0000 0.0000 14191.7899
LNTM -0.3855 0.3610 0.0000 0.0000 9031.3161 -0.2072 0.4160 0.0000 0.0000 14057.3928

NMF-LTM -0.0453 0.3940 0.2012 0.1725 8564.4900 0.0386 0.2660 0.1125 0.0099 10870.6600
LCM 0.0012 0.5940 0.7782 0.5526 8706.1200 0.0633 0.6340 0.6781 0.4466 13040.8700

Table 3: Performance comparison of lifelong topic models. For all metrics, “↓” after the metric indicates smaller
is better while “↑” indicates larger is better. The best performance on each measure is highlighted by boldface.

accuracy to evaluate the effectiveness of word em-
beddings on the down-stream text classification
task as in (Xu et al., 2018).

4.5 Result Comparison

4.5.1 Lifelong Topic Modeling

Table 3 shows the performance of different models
on the lifelong topic discovery task, from which
we can observe that LCM performs the best or the
second best on each measure.

For the baselines, NMF-LTM achieves the best
perplexity while almost the poorest TU. As men-
tioned in (Burkhardt and Kramer, 2019), there is a
tradeoff between perplexity and TU in some cases,
which means that models generating a lot of redun-
dant topics may have a meaningless low perplex-
ity. The reason of obtaining a low TU for NMF-
LTM may be that it enforces documents within the
same class would have more similar topic distri-
butions, which is unsuitable to handle in-domain
text streams since all documents in the in-domain
corpus come from one class. This also influences
its sparsity. For example, a document only has
non-zero values for 10 topics while another docu-
ment from the same class has non-zero values for
another 10 topics. To get similar, they may both
become non-zero for 20 topics. LNTM faces the
same problem because it does not constrain the
diversity among topics explicitly. The coherence
score of LNTM is also unsatisfactory. A possible
reason is that it treats word embeddings as topic
distributions of words, which deteriorates the local
semantic information captured by context word em-
beddings. LNTM entirely neglected the sparsity of
document-topic and topic-word distributions, thus
its TS-U and TS-V are zero.

LDA-LTM has a main difference with the other
models, i.e., it does not construct the in-domain
text stream based on time series, but fuses all of
the previous domains together and accumulates
the knowledge from this large corpus to help with
the current in-domain corpus. Even though it is
difficult to compare LDA-LTM with other lifelong

topic models fairly, our LCM performs better than
LDA-LTM in most cases, because we can exploit
the information from local context and subwords.

The qualitative analysis of topics generated by
these models is provided in Appendix G.

4.5.2 Word Embedding Learning
Figure 2 reports the accuracy of text classification
using word embeddings with different dimensions.
Note that sparse interpretable word embeddings
always perform better when the embedding dimen-
sion is relatively large (Murphy et al., 2012). LCM
performs the best in each testing set under each
dimension, although some baselines (i.e., FastText,
SPINE, and Word2Sense) are trained on the to-
tal 9 corpora and access more information with-
out considering time series. L-DEM cannot learn
high-quality embeddings because it needs a large
amount of in-domain corpora to train its meta-
learner, which is not accessible in most applica-
tions. Compared to FastText that incorporates sub-
word information, our word embeddings perform
better on classification in all cases. One possible
reason is that the global context provides LCM with
extra information. Two sparse word embedding
models, i.e., SPINE and Word2Sense, overempha-
size the sparsity while ignore the quality for down-
stream tasks. LCM balances well between sparsity
and quality with the help of global context and sub-
words. We evaluate sparsity and interpretability of
word embeddings in Appendix H.

For completeness, we also replace the SVM clas-
sifier with a neural network classifier (Chen et al.,
2020a) consisting of 3 fully-connected layers. The
results are shown in Appendix I.

4.5.3 Ablation Experiments
Take SE as an example, we report results of abla-
tion experiments on NPMI, TU, and Accuracy in
Table 4. “LCM-KGG”, “LCM-KGL”, and “LCM-
SG” represent LCM without the participation of
global context in KG, local context in KG, and sub-
words in SG, respectively. Deleting each part leads
to performance degradation, which validates the
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Figure 3: Analysis on catastrophic forgetting. The x-axis shows the names of domains. For each model, the bottom
line indicates metrics in the original lifelong learning process, while the top line shows the model performance with
the help of KG generated by 7 training sets and CM. The boxes with red and solid edges mark the better metric for
each model in each domain, while boxes filled in red with underlined values mark the best metric in each domain
among all models.

effectiveness of global context, local context, and
subwords. Compared to the subword information,
KG contributes more to topic discovery and the
local context information plays the most important
role in word embedding learning. We replace BPE
of SG with character n-gram features (Bojanowski
et al., 2017) in “LCM-SGBPE”, which indicates
the effectiveness of BPE on capturing subwords.

2/2/2021 dim_acc (1).svg

file:///C:/Users/xiaorui/Downloads/WeChat Files/wxid_yvzrwc13nbwl12/FileStorage/File/2021-02/dim_acc (1).svg 1/1

Figure 2: Classification performance comparison of
SVM classifiers with word embeddings generated by
different methods. Models marked with “total” are con-
ducted on the combination of 7 training sets and the
current testing set. W2S represents Word2Sense.

Method NPMI TU Accuracy
LCM-KGG -0.0099 0.5790 0.7283
LCM-KGL -0.0109 0.5740 0.7244
LCM-SG -0.0076 0.5810 0.7288

LCM-SGBPE -0.0123 0.5800 0.7314
LCM 0.0012 0.5940 0.7360

Table 4: Results of ablation experiments.

4.5.4 Analysis on Catastrophic Forgetting
Catastrophic Forgetting (Robins, 1995; Kirkpatrick
et al., 2017), which is a big challenge for lifelong
topic models, will not be a serious problem for
LCM. The learning process of LCM only accumu-
lates knowledge in KG, and the model is trained
on each in-domain corpus independently by fol-
lowing (Chen et al., 2020b). To further investigate
the ability of LCM in avoiding catastrophic for-
getting, we use the final updated KG after CM to
“go back” to help train the model on the 7 training

set one by one. As LDA-LTM does not construct
the in-domain text stream based on time series, we
only take NMF-LTM and LNTM for comparison.
In terms of NPMI and TU, Figure 3 shows that
LCM has the best ability to alleviate catastrophic
forgetting. For all domains, the latest KG will not
have a significant negative impact on LCM (i.e., the
catastrophic forgetting is limited), and sometimes
it even helps with the new task. For example, both
NMF-LTM and LCM achieve better NPMI scores
with the latest KG in “SIM Cards & Prepaid Min-
utes”. One possible reason is that later domains
provide valuable information through KG.

5 Conclusions

In this work, we propose a lifelong collabora-
tive model (LCM) for learning topics and domain-
specific word embeddings. LCM deals with the
new in-domain corpus by coordinating global and
local context information from previous domains,
and subword information from the current corpus.
A knowledge graph based on word-word relation-
ships is leveraged during the learning process. Ex-
periments on real-world in-domain text streams
demonstrated the superior performances of LCM.
In the future, we plan to incorporate contextualized
word representations into topic models (Bianchi
et al., 2020, 2021) for alleviating collapsing of
word senses and learning more coherent topics.
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Appendices
A Updating Rules for Ut,Vt, and Ct

First, we transform the objective function L as:

L = ‖Dt −UtVt‖2F +
∥∥Xt −BtC

T
t

∥∥2
F

+ λv ‖Vt‖1
+ λu1tr(U

T
t Ht−1Ut) + λu2

∥∥UT
t Ut − IK

∥∥2
F

+ λctr(C
T
t Ht−1Ct)

+ λb1tr(B
T
t NtBt) + λb2 ‖Bt‖1

=tr(DT
t Dt − 2DT

t UtVt + V T
t UT

t UtVt)

+ tr(XT
t Xt − 2XT

t BtC
T
t + CtB

T
t BtC

T
t )

+ λvtr(1
TVt1)

+ λu1tr
(
UT
t diag(Wt−1 · 1)Ut

)
− λu1tr(UT

t Wt−1Ut)

+ λu2tr(U
T
t UtU

T
t Ut − 2UT

t Ut)

+ λctr
(
CT
t diag(Wt−1 · 1)Ct

)
− λctr(CT

t Wt−1Ct)

+ λb1tr
(
BT
t diag(St · 1)Bt

)
− λb1tr(BT

t StBt)

+ λb2tr(1
TBt1) + const.

Then, the updating rules for matrices Ut,Vt, and
Ct can be derived as follows:

Ut ← Ut ◦
DtV

T
t + λu1Wt−1Ut + 2λu2Ut

UtVtV T
t + Z(Ut)

,

Vt ← Vt ◦
UT
t Dt

UT
t UtVt + λv

2 · 1 · 1T
,

Ct ← Ct ◦
XT
t Bt + λcWt−1Ct

CtBT
t Bt + λcdiag(Wt−1 · 1)Ct

.

In the above, Z(Ut) = λu1diag(Wt−1 · 1)Ut +
2λu2UtU

T
t Ut.

B Alternately Iterative Algorithm

The inference method of our LCM is shown in
Algorithm 1.

C Convergence Analysis

In this section, we analyze the convergence of Al-
gorithm 1.

Theorem C.1. Algorithm 1 is guaranteed to con-
verge to a locally-optimal solution.

Algorithm 1 Alternately Iterative Algorithm

Input:{DOCt}Tt=1(T can be infinite);
Output:{Ut}Tt=1, {Vt}Tt=1, {Ct}Tt=1, {Bt}Tt=1.

1. KG0 = ∅;
2. for t = 1, 2, 3, ..., T do
3. Randomly initialize non-negative matri-

ces U (0)
t , V (0)

t , C(0)
t , B(0)

t ;
4. Construct St from SGt;
5. Construct Kt−1 from KGt−1;
6. Set the iteration number i to 0;
7. repeat
8. i = i+ 1;

9. Compute B
(i)
t , U

(i)
t , V

(i)
t , and

C
(i)
t ;

10. until convergence;
11. Compute KGt using Eq. (3).
12. end

First, we prove the convergence of the update
rule of Bt in Eq. (11).

Definition C.1. G(x, z) is an auxiliary function
for F (x) if the following conditions are satisfied.

G(x, z) ≥ F (x), G(x, x) = F (x).

Lemma C.1. If G is an auxiliary function, then F
is non-increasing under the following update rule:

xt+1 = argmin
x
G(x, xt). (12)

Proof.

F (xt+1) ≤ G(xt+1, xt) ≤ G(xt, xt) = F (xt).

If we could prove that the updating rule of Bt

confirms to Eq. (12) for an appropriate auxiliary
function, we would conclude that Bt converges to
a local minimum.

Lemma C.2. Let z = (Bt)ij > 0, G(x, z) is an
auxiliary function for F (z) = L ((Bt)ij = z).

G(x, z) =F (z) +
∂F (z)

∂z
(x− z) +

(x− z)2

z

(BtC
T
t Ct + λb1diag(St · 1)Bt

+
λb2
2
· 1 · 1T )ij .

Proof. Clearly, G(x, x) = F (x). Taylor expan-
sion of F (x) is:

F (x) = F (z)+
∂F (z)

∂z
(x−z)+1

2

∂2F (z)

∂z2
(x−z)2.
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In order to show G is an auxiliary function, we
have to show G(x, z) ≥ F (x):(
BtC

T
t Ct + λb1diag(St · 1)Bt + λb2

2 · 1 · 1
T
)
ij

z

≥ 1

2

∂2F (z)

∂z2
,

where ∂2F (z)
∂2z

= 2(CT
t Ct)jj + 2λb1(diag(St ·

1))ii − 2λb1(St)ii.
To prove the inequation, we first verify how the

inequality holds on the first term:

(BtC
T
t Ct)ij

(Bt)ij
=

1

(Bt)ij

∑
k

(Bt)ik(C
T
t Ct)kj

=
1

(Bt)ij

∑
k=j

(Bt)ik(C
T
t Ct)kj

+
1

(Bt)ij

∑
k 6=j

(Bt)ik(C
T
t Ct)kj

=
1

(Bt)ij
(Bt)ij(C

T
t Ct)jj

+
1

(Bt)ij

∑
k 6=j

(Bt)ik(C
T
t Ct)kj

≥(CT
t Ct)jj .

Similarly, we can get:

λb1 (diag(St · 1)Bt)ij ≥ λb1 (diag(St · 1))ii .

Since λb1, λb2, and each element in St are non-
negative, we have the above inequation. This estab-
lishes that G is an auxiliary function for F .

Proof. To show that Algorithm 1 converges (i.e.,
Theorem C.1), we need to show that update rule for
Bt follows Eq. (12). ∂G(x,z)

∂x is listed as follows:

∂G(x, z)

∂x
=(−2XtCt + 2BtC

T
t Ct

+ 2λb1diag(St · 1)Bt − 2λb1StBt

+ λb2 · 1 · 1T )ij

+
x− z
z
· 2(λb1diag(St · 1)Bt

+ BtC
T
t Ct +

λb2
2
· 1 · 1T )ij .

Solving ∂G(x,z)
∂x = 0 for x, we get the update rule

as mentioned in Eq. (11). Since G is the auxiliary
function for F , the value of F is non-increasing.
We can prove the convergence of update rules for
Ut, Vt, and Ct similarly. Thus, Algorithm 1 is
guaranteed to converge to a local minimum.

D Time Complexity Analysis

In this section, we analyze the time complexity
of Algorithm 1. For updating matrices Bt, Ut,
Vt, and Ct, the time complexity of one iteration is
O((3E+1)M2+(2E2+3E)M),O((3E+1)M2+
(2E2 + 2E)M), O(MNK + 2M2K + 3MK2 +
NK2 +M2 + 2MK), and O(3KMN + 3KN),
respectively. Thus, the time complexity of each
iteration is O(4MNK + (6E + 3)M2 + (4E2 +
5E)M+2M2K+3MK2+NK2+2MK+3KN)
for our method, which spends an extra time cost of
O((6E+ 2)M2 + (4E2 + 5E)M − (2K + 1)N2)
to learn word embeddings when compared with
the previous NMF-based lifelong topic model, i.e.,
NMF-LTM (Chen et al., 2020b). Although the time
complexity is proportional to M , we can alleviate
the scalability issue simply. For example, ifM (i.e.,
the vocabulary) of a single domain is too large, we
can partition this domain into several small sub-
domain corpora. At each time, we only process
matrices of one sub-domain, and M of each small
sub-domain will not be too large.

As an illustration, it costs about 30 seconds per
iteration for training LCM based on a workstation
equipped with Intel(R) Xeon(R) CPU E5-2680 v3
@ 2.50 GHz, 8 cores and 128G memory. To achieve
convergence, LCM costs about 1 hour to update Bt,
Ut, Vt, and Ct for all domains in order. NMF-LTM
costs about half an hour accordingly.

E Different Permutations of Training
Domains

We shuffle training domains randomly for 5 times,
and show the results under these different permuta-
tions in Table 5, which indicates that LCM is robust
to domain permutations.

F Search Space of Hyperparameters

Table 6 shows the search space of hyperparameters
for grid search in our LCM. To ensure a fair com-
parison with NMF-LTM (Chen et al., 2020b), topT
in LCM is set to 5. For each word, our knowledge
graph selects 5 most similar words from global and
local context information, respectively. In other
words, each word is connected to 10 similar words,
which is equivalent to NMF-LTM. Note that for the
topic number, we select 50 as topic numbers for
all evaluations of LCM after validation. For fair
comparison, we directly choose 50 as topic num-
bers for baselines and this is not a hyperparameter
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Permutation Science Education (SE) Cult Movies (CM)

NPMI↑ TU↑ Perplexity↓ Accuracy↑ NPMI↑ TU↑ Perplexity↓ Accuracy↑

1 -0.0072 0.5870 8708.0200 0.7207 0.0639 0.6340 13350.4800 0.8455
2 -0.0064 0.5840 8704.2400 0.7196 0.0570 0.6090 13420.5600 0.8461
3 -0.0106 0.5960 8701.5600 0.7196 0.0580 0.6170 13373.0800 0.8443
4 -0.0053 0.5880 8705.9500 0.7171 0.0524 0.6090 13369.4400 0.8467
5 -0.0013 0.5700 8744.0600 0.7135 0.0562 0.6030 13554.5300 0.8480

Table 5: Performance comparison of LCM within different permutations of the dataset. For all metrics, “↓” after
the metric indicates smaller is better while “↑” indicates larger is better.

Hyperparameter Search Space

λv [0.001]
λu2 [0.5]
λb2 [0.001, 0.1]

λu1, λc, λb1 [0.1, 1, 10]
topT [5]
η [0.1, 0.5, 1, 2, 10]

Rk, Rs [0.5, 0.6]
topic number [50, 200]

word embedding dimension [100, 300, 1500]
iterations [100, 200]

Table 6: Hyperparameters’ search space.

Hyperparameter NPMI TU Perplexity Accuracy

λv 0.001 0.001 0.001 0.001
λu2 0.5 0.5 0.5 0.5
λb2 0.001 0.1 0.1 0.1
λu1 10 10 10 0.1
λc 10 0.1 10 10
λb1 0.1 1 10 1
topT 5 5 5 5
η 1 1 2 1
Rk 0.5 0.5 0.6 0.5
Rs 0.6 0.6 0.6 0.5

topic number 50 50 50 50
word embedding dimension 1500 1500 1500 300

iterations 200 200 200 200

Table 7: Best hyperparameters on the validation set.

of baselines. We list the best hyperparameters on
the validation set for different metrics in Table 7.
We provide the search space of hyperparameters
for grid search in all of our baselines and their
corresponding best hyperparameters in our codes.

For hyperparameters, we first varied search
spaces for sensitive analysis and observed that
LCM was robust to most hyperparameters. Thus,
we used final search spaces in Table 6. For com-
pleteness, we also show the variances of results
under different hyperparameter values in Table 8.
Take some hyperparameters in CM as examples,
we vary each parameter when others are fixed,
and compute the variances of NPMI and Accu-
racy, which indicates that LCM is robust to most
hyperparameters.

G Qualitative Analysis of Topics

Following (Chen et al., 2020b), we map the topics
learned by LCM with ones by LDA-LTM (Chen
and Liu, 2014b), LNTM (Gupta et al., 2020), and
NMF-LTM (Chen et al., 2020b), respectively. Par-
ticularly, we represent each topic by its top 20

Hyperparameter Range Var-NPMI Var-Accuracy

λu1 [0.01, 0.1, 1, 10, 100] 1.28E-05 1.79E-05
λb1 [0.01, 0.1, 1, 10, 100] 2.71E-05 3.50E-03
λc [0.01, 0.1, 1, 10, 100] 9.32E-07 5.15E-06
Rk [0.3, 0.5, 0.6, 0.8] 6.57E-05 3.08E-05

iterations [50, 100, 200, 300] 1.28E-05 3.92E-05

Table 8: Variances of results.

words, and compute the cosine similarity between
every two topics. Take SE as an example, we ran-
domly show 3 topics, as listed in Table 9. Irrelevant
words are marked by italics.

LDA-LTM, NMF-LTM, and LCM learn topics
well in most cases. However, NMF-LTM captures
some high-frequency words (i.e., amazon, anatomy,
anatomical) in the corpus, which are not related to
the topic “Design and production of handicrafts”.
LDA-LTM also assigns an irrelevant word “print”
to the topic “Machinery and industrial manufactur-
ing technology”, and an irrelevant word “spring”
to the topic “Body structure and anatomy”.

The ability of LNTM in generating cohesive top-
ics is poor. It is noteworthy that the topics gener-
ated by LNTM seem not related to other models,
because we use cosine similarity to map topics. If
the cosine similarities are the same (for LNTM, it
is 0 sometimes), the topics with smaller IDs will
be chosen. For the sake of fairness, we also show a
relatively coherent topic generated by LNTM sep-
arately in Table 10. The result of LNTM is still
worse than other models, which contains 7 irrele-
vant words in the top 10 word list.

H Evaluating Interpretability

To evaluate the interpretability of our domain-
specific word embeddings, we follow (Murphy
et al., 2012) to show top 5 words for 5 randomly
chosen dimensions in word embeddings generated
from CM. Although there exists noisy words, the
dimensions are generally semantically coherent
and interpretable. We also choose one polyse-
mous word “cell” in SE to measure the ability of
our method in capturing the polysemous nature of
words. We select the two highest values of the word
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vector learned by our LCM for “cell”, and find top
5 words in these two dimensions. From Table 11,
we can observe that the two dimensions focus on
cells in biology and cell phones, which reflect the
two different meanings of “cell”.

ID LDA-LTM LNTM NMF-LTM LCM

Machinery and industrial manufacturing technology

1 bed deserved mm mm
2 mm clamped bed bed
3 axis mothers frame frame
4 screws crowds screws screws
5 screw players axis axis
6 belt suspiciously screw set
7 motor resolutions stepper screw
8 nuts wasps power stepper
9 print military wires lead
10 set collapses tape tape

Design and production of handicrafts

1 model deserved model brain
2 brain crowded brain paint
3 pieces mothers models models
4 models rider structures pieces
5 paint mutual anatomy structures
6 heart trends paint lines
7 motor wasp amazon budget
8 quality bloom detail detail
9 painted fumbling anatomical white

10 job habitat stand detailed

Body structure and anatomy

1 skull deserved skull skull
2 teeth crowded teeth teeth
3 jaw mothers anatomy anatomy
4 quality rider jaw jaw
5 size mutual bone mandible
6 top trends mandible foramen
7 spring wasp foramen bone
8 removable bloom detail detail
9 life fumbling skulls study
10 skulls habitat removable removable

Table 9: Qualitative analysis of topics. Top 10 words
are listed with irrelevant ones marked in italics.

ID LNTM

Music and instruments

1 tens
2 deserved
3 habitat
4 circuitry
5 guitars
6 mothers
7 headphones
8 piano
9 rider

10 foray

Table 10: Qualitative analysis of LNTM. Top 10 words
are listed with irrelevant ones marked in italics.

Top
Words

depleted constant drained dissolve exhausted
painted spray paint grease di
icing cake riffing esp wrapping
weed pot smoking smoke smoked

angora sweater dressing sweaters skirt
Close Words

for “cell”
cell sewn animal cells believes

phones cell games fascinating computers

Table 11: Examples of evaluating interpretability.

Table 12 shows the classification accuracy and
the sparsity (i.e., the proportion of zeros) of word
embeddings generated by different methods, where
the dimension is 1500. Compared with other mod-
els, our LCM generates domain-specific word em-

Method
Science Education Cult Movies

Accuracy Sparsity Accuracy Sparsity
SPINE 0.3080 0.9969 0.4332 0.9979

Word2Sense 0.7043 0.9920 0.7267 0.9920
LCM 0.7360 0.9438 0.8481 0.9099

Table 12: Classification accuracy and sparsity of word
embeddings generated by different methods.

beddings with a good balance between sparsity and
classification accuracy.

I Evaluating Word Embedding Learning
Models by Neural Networks
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Figure 4: Classification performance comparison of
neural networks with word embeddings generated by
different methods.

To compare different word embedding learning
models comprehensively, we replace the SVM clas-
sifier with a neural network classifier consisting of
3 fully-connected layers. As shown in Figure 4,
LCM also performs the best in each testing set
under each dimension.


