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Abstract

ICD coding aims to automatically assign Inter-
national Classification of Diseases (ICD) codes
from unstructured clinical notes or discharge
summaries, which saves human labor and re-
duces errors. Although several studies are pro-
posed to solve this challenging task, none dis-
tinguishes the importance of different phrases
with a word window. Intuitively, informative
phrases should be useful for the prediction.
This paper proposes a feature compressed ICD
coding model named Fusion to address this
issue. In particular, we propose an attentive
soft-pooling approach to compress the sparse
and redundant word representations into infor-
mative and dense ones as local features. Next,
we use the key-query attention mechanism for
modeling the inner relations among local fea-
tures to generate the global features, which are
further used to predict ICD codes. Experiments
on two widely used datasets demonstrate that
Fusion is comparable with baselines. We also
find that none of the state-of-the-art approaches
significantly perform better than others. Thus,
automated ICD coding is still a challenging
task.

1 Introduction

The International Classification of Diseases (ICD)
coding system helps standardize the recording of di-
agnoses and treatments assigned to patients by med-
ical professionals in the world. These ICD codes
are generated from massive unstructured clinical
notes. However, manual code assignments is labor-
intensive and prone to errors. Thus, automatic ICD
code assignment becomes an urgent need in the
healthcare domain.

Traditional machine learning methods (Larkey
and Croft, 1996) tried to tackle this task based on
feature extraction. However, it does not work well
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since clinical notes are noisy and complex. Re-
cently, deep learning-based approaches (Cao et al.,
2020; Xie et al., 2019; Li and Yu, 2020; Mullen-
bach et al., 2018) are proposed to improve its perfor-
mance. Among others, convolutional methods (Cao
et al., 2020; Xie et al., 2019; Li and Yu, 2020; Mul-
lenbach et al., 2018) outperform other approaches.
Besides, some studies try to incorporate external in-
formation to further improve the performance (Cao
et al., 2020; Xie et al., 2019). However, they still
suffer the following issues.

• Redundant Information Deduction. The clin-
ical notes are noisy and complex, where only
some key phrases are highly related to the cod-
ing. However, convolutional methods treat all
the word windows equally, ignoring that differ-
ent words have different importance and should
be weighted differently within word windows.
Besides, the sliding windows used in the con-
volutional methods produce a lot of redundant
information. Thus, it is important to reduce the
non-informative and redundant information and
distinguish the contributions of different convo-
lutional features.

• Interactions among Local Features. Most ex-
isting approaches such as MultiResCNN (Li and
Yu, 2020) only use the local features for coding
obtained using different filters. However, they
ignore the importance of interactions among dif-
ferent local features. For example, sleep apnoea
(OSA) and insomnia are related to hypertension
and ischaemic heart disease (Harrison and Wood,
1949). Thus, combining different local features
may discover new useful patterns to improve cod-
ing.

To tackle these issues, we propose a feature
compressed ICD coding model named Fusion,
which can automatically compress the local fea-



tures and further learn global features to enhance
the coding performance. In particular, Fusion uses
an LSTM network to stack the segments of Bert
embeddings from truncated clinical notes as iputs,
and takes an attention-based soft-pooling approach
to compress local features learned by word convo-
lutions, passing residual convolution blocks. By
aggregating all the local features from different con-
volutional filters, Fusion then applies key-query
attention mechanism to model interactions among
local features and obtain global ones. A code-wise
attention mechanism is then used to learn a feature
vector associated with each ICD code. This vector
is finally used to make a prediction. Experiments
on two public datasets show that Fusion outper-
forms state-of-the-art baselines over five evaluation
metrics. Moreover, we find that none of the existing
approaches outperforms others on the MIMIC-III
dataset. Thus, automated ICD coding is still an
open challenge.

2 Related Work

Traditional machine learning models have been ap-
plied to automatically extract ICD codes using the
hand-crafted feature vectors as the inputs (Larkey
and Croft, 1996; Gundersen et al., 1996; Franz
et al., 2000; Pestian et al., 2007; Farkas and Szarvas,
2008). However, they did not achieve satisfactory
performance due to the difficulty of extracting use-
ful features from complex and noisy clinical notes.
Deep learning models have shown their superiority
for this task, including recurrent-based deep mod-
els (Shi et al., 2017; Li et al., 2018; Xu et al., 2019)
and convolution-based models (Kim, 2014; Mul-
lenbach et al., 2018; Cao et al., 2020; Li and Yu,
2020). In general, convolutional models perform
better than recurrent-based ones. Several studies
try to incorporate advanced pretrained language
model BERT (Devlin et al., 2019), ICD code de-
scriptions (Wang et al., 2018; Mullenbach et al.,
2018; Xie and Xing, 2018; Li and Yu, 2020), ICD
code structure (Wang et al., 2020; Cao et al., 2020),
and knowledge graph (Cao et al., 2020; Xie et al.,
2019) to improve the performance.

3 Model

The goal of automated ICD coding is to predict
a set of unique ICD codes Y from the code set
C = {c1, c2, · · · , cs} when given clinical note
D = {w1, w2, · · · , wn}, where Y ⊆ C, s is the
number of unique ICD codes, and n is the num-

ber of words in D. This task is challenging since
s is very large, which is over 15,000 for ICD-9
codes and 60,000 for ICD-10 codes, respectively.
Besides, extensive noisy information exists in the
clinical note D.

To solve these challenges, we propose a feature
denoised model (Fusion) for automated ICD cod-
ing as shown in Figure 1. This model consists of
six modules: the Input layer, the RoBert layer, the
compressed convolutional layer, the feature aggre-
gation layer, the code-wise attention layer, and the
prediction layer. Next, we introduce the details of
each module in the following subsections.

3.1 Input Layer

We take the clinical note D = {w1, w2, · · · , wn}
as the model input. For each unique word wi,
word2vec (Mikolov et al., 2013) is used to pre-
train its embedding, which is denoted as ei, a de-
dimensional embedding. Thus, the input of Fusion
is a matrix D = {e1, e2, · · · , en}.

3.2 Compressed Convolutional Layer

Given the input data D, the compressed convolu-
tional layer aims to learn dense and informative
word representations, which are further used to
learn the clinical note representation. In partic-
ular, we first use convolutional neural networks
(CNN) to learn word representations and then pro-
pose an attention-based soft-pooling approach to
compress those representations. Finally, residual
convolution blocks (He et al., 2016) are introduced
as MultiResCNN (Li and Yu, 2020) on top of the
compressed features.

3.2.1 Word Convolution

CNNs are powerful for text classification tasks
(Kim, 2014) that they have multiple filters with
different kernel sizes (i.e., word windows) to cap-
ture diverse patterns. Let m be the number of filters.
The kernel of each filter fi is denoted as ki. Thus,
we can apply m different 1-dimensional convolu-
tions on the input data D. For the i-th filter, we
have

xi
j = conv({ej , ej+1, · · · , ej+ki−1};Wi

x), (1)

where conv(·; ·) represents the 1-dimensional con-
volutional operation, and Wi

x denotes the learned
parameter.
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Figure 1: Overview of the proposed Fusion.

3.2.2 Attention-based Soft-pooling
The word convolutional operation uses sliding win-
dows, which produces redundant information ex-
isting in adjacent word representations. Thus, to
remove such information, we propose to compress
word representations learned by Eq. (1) via an
attention-based soft-pooling operation.

Given a word wj , its neighboring words
{wj+1, · · · , wj+g−1}, and the corresponding
filter fi, we first learn the local-based at-
tention scores αi

j = Wi
αx

i
j + b with

softmax function, i.e., [βi
j , · · · , βi

j+g−1] =

softmax([αi
j , · · · , αi

j+g−1]), where Wi
α and b

are learnable parameters. Then we conduct
attention-based soft-pooling on the g words and
obtain the compressed representation as in Eq. (2).

oip =

j+g−1∑
q=j

βi
qx

i
q (2)

In such a way, the whole n word representations
learned by Eq. (1) will be replaced by P = ⌈ng ⌉
new representations, i.e., {oi1,oi2, · · · ,oiP }. In
such a way, we can reduce the number of word
representations and obtain more dense ones.

3.2.3 Residual Convolution Block
For each filter fi, we now have a denoised matrix
{oi1,oi2, · · · ,oiP } that represents the input D. To
avoid vanishing gradients and train the model eas-
ier, we also introduce residual blocks on top of the
compressed features. In particular, we replace the
batch norm layer with the group norm layer. Let
a denotes the number of residual blocks, and we
have rip = ResidualBlcok({oip, · · · ,oip+a−1}).

3.3 Feature Aggregation Layer
Since m filters are used to obtain m compressed
features, we concatenate them together as the lo-

cal features, i.e., lp = [r1p, · · · , rmp ]. Then the
whole document can be represented by a matrix
Dl = {l1, l2, · · · , lP }. However, such an aggrega-
tion only takes local information into account but
ignores the interactions with the remaining words.

Thus, we propose to use the key-query attention
mechanism (Vaswani et al., 2017) to learn a global
feature representation for each compressed word
window. Thus, we have the global features Dg =
[g1, · · · ,gP ] = attention([l1, · · · , lP ]).

3.4 Code-wise Attention Layer

Due to a large number of labels, directly us-
ing the global features Dg to make predictions
may not perform well. Thus, we use a code-
wise attention layer to generate a matching vec-
tor for each ICD code used to make a prediction.
Let uk represent the embedding of the k-th ICD
code, i.e., ck. Then we calculate the attention
weights on all the global features using uk, i.e.,
[γk1 , · · · , γkP ] = softmax([ukg1, · · · ,ukgP ]).
Then the code-wise vector can be obtained by
vk =

∑P
p=1 γ

k
pgp.

3.5 Prediction Layer

Using the code-wise vector vk, we can make a
prediction using the sigmoid function, i.e.,

ỹk = (1 + exp(w⊤
k vk))

−1, (3)

where wk is the learnable parameter vector. Finally,
cross-entropy loss function on a specific clinical
note D is used to optimize the proposed model.

L = −
s∑

k=1

(yk log(ỹk) + (1− yk) log(1− ỹk)).

(4)



Dataset MIMIC-III 50 MIMIC-III Full

Setting Model
AUC F1 P@N AUC F1 P@N

Macro Micro Macro Micro 5 Macro Micro Macro Micro 8

Note Only

Fusion 0.909 0.933 0.619 0.674 0.647 0.915 0.987 0.083 0.554 0.736
C-MemNN 0.833 – – – 0.420 – – – – –
C-LSTM-ATT – 0.900 – 0.532 – – – – – –
CAML 0.875 0.909 0.532 0.614 0.609 0.895 0.986 0.088 0.539 0.709
DR-CAML 0.884 0.916 0.576 0.633 0.618 0.897 0.985 0.086 0.529 0.690
MultiResCNN 0.899 0.928 0.606 0.670 0.641 0.910 0.986 0.085 0.552 0.734

Note + Ontology
HyperCore 0.895 0.929 0.609 0.663 0.632 0.930 0.989 0.090 0.551 0.722
MSATT-KG 0.914 0.936 0.638 0.684 0.644 0.910 0.992 0.090 0.553 0.728

Table 1: Experiment results on MIMIC-III 50 and MIMIC-III Full datasets.

4 Experiment

4.1 Datasets

We conduct experiments on two public datasets
MIMIC-III 50 and MIMIC-III Full (Johnson et al.,
2016) to extract ICD-9 codes from discharge sum-
maries. We use the same setting as previous
works (Mullenbach et al., 2018; Shi et al., 2017;
Li and Yu, 2020; Cao et al., 2020). The MIMIC-
III 50 dataset contains the top 50 most frequent
codes, 8,067, 1,574, and 1,730 discharge sum-
maries for training, development, and testing, re-
spectively. The MIMIC-III Full dataset consists of
8,921 codes, 47,719, 1,631, and 3,372 discharge
summaries for training, development, and testing,
respectively. The number of labels on the MIMIC-
III Full dataset is significantly greater than that on
the MIMIC-III 50 dataset, making the task more
difficult.

4.2 Metrics and Parameter Settings

We follow previous work (Mullenbach et al., 2018)
and use Micro Macro AUC (area under the ROC),
Micro Macro F1, and Precision@K scores as met-
rics. For MIMIC-III 50, we report Precision@5
(P@5) and P@8 for MIMIC-III Full. We use the
same parameter setting as MultiResCNN (Li and
Yu, 2020)1, and set g as 2 in our experiments, i.e.,
compress two features together.

4.3 Baselines

Existing studies either only take clinical notes
as the inputs or incorporate external informa-
tion, working with notes to enhance the per-
formance. Our work belongs to the first cate-
gory. For the “note only” category, we employ C-
MemNN (Prakash et al., 2017), C-LSTM-ATT (Shi
et al., 2017), CAML (Mullenbach et al., 2018),

1https://bit.ly/3opDmjM

DR-CAML (Mullenbach et al., 2018), and Mul-
tiResCNN (Li and Yu, 2020) as baselines. We also
use HyperCore (Cao et al., 2020), and MSATT-
KG (Xie et al., 2019) as baselines, which incor-
porate the ICD code ontology to enhance the per-
formance. Since all the approaches use the same
settings, we directly use the results reported in the
original papers.

4.4 Performance Analysis

Table 1 shows the experimental results of all ap-
proaches in terms of different metrics. We can
observe that overall Fusion outperforms all the
baselines in the “Note Only” setting on both the
MIMIC-III 50 and MIMIC-III datasets in terms of
all the metrics. These results clearly demonstrate
the effectiveness of the proposed feature compres-
sion and aggregation approaches for the automated
ICD coding task.

Although HyperCore and MSATT-KG incorpo-
rate external information to improve the perfor-
mance, the performance of Fusion is still compa-
rable. On the MIMIC-III Full dataset, our model
is even better at F1 Micro and P@N scores. On
the MIMIC-III 50 dataset, Fusion also achieves
the highest P@N score without using any addi-
tional knowledge. We also can observe that on
the MIMIC-III Full dataset, none of the methods
can be significantly better than others. The reason
may be that all the models cannot be trained suffi-
ciently with the huge number of ICD code labels
on noisy, sparse, and unstructured medical clinical
notes, which makes this task more challenging.

4.5 Ablation Study

In this section, we remove parts of the full Fusion
model to validate the contribution of each individ-
ual module. Table 2 shows the ablation study re-
sults. “MaxPool” means replacing our soft-pooling
layer with the traditional max-pooling layer. As

https://bit.ly/3opDmjM


Dataset MIMIC-III 50 MIMIC-III Full

Model
AUC F1 P@N AUC F1 P@N

Macro Micro Macro Micro 5 Macro Micro Macro Micro 8
Fusion 0.909 0.933 0.619 0.674 0.647 0.915 0.989 0.088 0.554 0.736
MaxPool 0.908 0.929 0.624 0.669 0.639 0.900 0.986 0.081 0.552 0.726
DocLevel 0.853 0.886 0.477 0.556 0.551 - - - - -

Table 2: Ablation experiment results on MIMIC-III 50 and MIMIC-III Full datasets.

Model AUC F1 P@N
Macro Micro Macro Micro 5

Fusion+ 0.931 0.950 0.683 0.725 0.679
Fusion 0.909 0.933 0.619 0.674 0.647

Table 3: Performance evaluation with extra data.

shown in Table 2, the results drop on all metrics ex-
cept the F1 Macro, which indicates the importance
and benefits of using the proposed soft-pooling
layer. Max-pooling will lose part of critical infor-
mation during the compression and is not differ-
entiable. With soft-pooling, the key information
can be better preserved during the compression pro-
cess, since the selection process is guided by the
gradient.

“DocLevel” refers to replacing the code-wise
attention layer with the single document-level at-
tention. The attention is based on the document
feature, and all codes use the same attention weight
during the prediction instead of calculating code-
specific attention weights. Thus, all codes will
use the same feature for the prediction. In such
a way, much unrelated information will also be
kept. For example, we do not want to preserve the
heart-failure-related information while predicting
the COPD code. As a result, most scores drop sig-
nificantly compared to the original design. The
introduction of the code-specific attention makes it
possible that the predictor can dynamically adjust
the attentions based on the cases. Thus, the redun-
dant information can be better removed with our
design.

4.6 Model Training with Extra Data

In this section, we aim to validate whether using
extra data can improve the performance of the pro-
posed Fusion. Towards this end, we use the train-
ing data of the MIMIC-III full dataset to train the
model to predict the top 50 most frequent codes.
The testing set is the same as that of the MIMIC-
III 50 dataset. Table 3 shows the results. We can
observe that using extra training data significantly
improves the performance of the ICD coding task.

5 Conclusion

In this paper, we propose Fusion for the automated
ICD coding task. In particular, Fusion uses RoBert
to embed the notes, focuses on compressing redun-
dant feature information, distinguishing the impor-
tance of adjacent phrases, and considering inter-
actions among local features. We conduct exper-
iments on two widely-used datasets to show the
effectiveness of Fusion in terms of five evaluation
metrics. From experimental results on the MIMIC-
III Full dataset, we find that automated ICD coding
is still challenging due to the noisy data and a large
number of ICD code labels.
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