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Abstract

This paper focuses on utilizing metaphor inter-
pretation to enhance metaphor detection. Con-
sidering that existing approaches to metaphor
interpretation are limited by ambiguous mean-
ings of the metaphorical substitute words,
this paper proposes a novel interpretation
mechanism that utilizes glosses to interpret
metaphorical words. Since there is no dataset
annotated for both metaphor detection and
metaphor interpretation, we enhance three
datasets TroFi, VUA, and PSUCMC from the
field of metaphor detection with gloss anno-
tations. Accordingly, we develop a model
for jointly conducting metaphor detection
and gloss-based interpretation (named MDGI-
Joint for short). Experimental results demon-
strate that MDGI-Joint outperforms state-of-
the-art models on all the three enhanced
datasets and that gloss-based metaphor inter-
pretation benefits metaphor detection.1

1 Introduction

Metaphor has been defined as words or other lin-
guistic expressions representing another concept
with the language from a more concrete conceptual
domain (Kövecses and Zoltán, 2002; Lagerwerf
and Meijers, 2008). According to existing studies
on metaphor (Kövecses and Zoltán, 2002; Steen,
2010), metaphor has been used so frequently in
daily language that it almost occurs in one out of
three natural language sentences.

Metaphor detection aims to identify all
metaphorical words in given texts and has been
demonstrated to be of great value in many Natural
Language Processing (NLP) tasks, such as machine
translation (Mao et al., 2018), machine reading
comprehension (Shutova et al., 2013), etc. There-

⇤Corresponding author
1Source code and datasets are available at https://

github.com/sysulic/MDGI.

Example : The stroke clouded memories of her youth.
Metaphorical word : clouded 
(Mao, Lin, and Guerin 2018) interpretation : change
Meanings of change : make different, remove or replace the 

coverings of,  , become deeper in tone
Gloss as interpretation : to make unclear or confused

Figure 1: An example for metaphor detection, where
the word clouded is a metaphorical word (highlighted
in bold and underline). Interpretation by a substitute
word (highlighted in bold) is computed by (Mao et al.,
2018). Gloss as interpretation (highlighted in blue bold
italics) is picked from the Merriam Webster dictionary.

fore, metaphor detection has drawn increasing inter-
ests in recent years. There have emerged a number
of methods for metaphor detection, including SEQ
(Gao et al., 2018), RNN HG (Mao et al., 2019),
RNN MHCA (Mao et al., 2019), MUL GCN (Le
et al., 2020), DeepMet (Su et al., 2020), etc.

To capture the meanings of metaphorical words,
metaphor interpretation has also been studied,
which paraphrases metaphorical expressions into
literal expressions that maintain the intended mean-
ings of given texts (Mao et al., 2018). Existing
approaches have treated metaphor interpretation as
extraction of transferred properties, identification
of the underlying conceptual mapping, or gener-
ation of a literal substitute paraphrase (Rai and
Chakraverty, 2020). All of them are yet limited by
ambiguous meanings of the metaphorical substitute
words. Consider the example shown in Figure 1.
The metaphorical word clouded is interpreted as
change in (Mao et al., 2018), where change has
10 diverse meanings according to WordNet (Miller,
1995). Due to multiple meanings of change, it is
difficult to precisely capture the intended meaning
of the metaphorical word clouded.

It has been pointed out by Group (2007) that,
metaphors have a clear distinction between their
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basic meanings and contextual meanings. Consider
the example shown in Figure 1 again. The gloss-
based interpretation for clouded gives the meaning
“to make unclear or confused”, which is evidently
different from the basic meaning “to grow cloudy”
of clouded. In other words, different from the
substitute word, the gloss extracted from dictionar-
ies can provide an unambiguous interpretation of
clouded which exhibits a clear distinction to its ba-
sic meaning. Therefore, we can utilize gloss-based
metaphor interpretation to enhance the metaphor
detection task.

Based on the above observations, we propose to
use glosses to interpret metaphorical words. Specif-
ically, we formulate metaphor interpretation as a
task of predicting the best gloss among a set of
candidate glosses. Considering that Word Sense
Disambiguation (WSD) (Kilgarriff, 2004) is a pop-
ular technique for identifying the correct meaning
of a target word, modern WSD methods can be
adapted to metaphor interpretation.

By now there is a lack of dataset annotated for
both metaphor detection and metaphor interpreta-
tion. In order to study whether gloss-based inter-
pretation benefits metaphor detection, we enhance
three benchmark datasets in the field of metaphor
detection, including two English datasets (TroFi
and VUA) and one Chinese dataset (PSUCMC).
For each dataset, we construct a set of candidate
words and annotate these words with glosses ex-
tracted from a dictionary.

Accordingly we develop a joint model
for Metaphor Detection and Gloss-based
Interpretation (named MDGI-Joint for short). To
be specific, our joint model encodes contexts
and glosses independently for every given word.
Based on both the contextual word embedding
and gloss embeddings, a probability distribution
for all glosses of the given word is computed
and then used to predict the best gloss, in a
similar way as the state-of-the-art WSD method
(Blevins and Zettlemoyer, 2020), Afterwards, an
attention mechanism is employed to compute
an integrated representation of all glosses. This
integrated representation is then concatenated
with the contextual word embedding to determine
whether the given word is metaphorical through
a classical prediction layer. The joint model is
trained by minimizing a combined loss from both
the metaphor detection task and the metaphor
interpretation task.

We conduct experiments on the aforementioned
three enhanced datasets. Experimental results
demonstrate that gloss-based metaphor interpre-
tation does benefit metaphor detection. On one
hand, the proposed model achieves state-of-the-
art performance on all three enhanced datasets in
the metaphor detection task. On the other hand,
it also achieves comparable performance with the
outstanding WSD method in the metaphor interpre-
tation task.

The main contributions of this paper can be sum-
marized as follows.

• We provide a novel interpretation mechanism
that utilizes glosses to interpret metaphorical
words.

• We enhance three metaphor detection datasets
(TroFi, VUA, and PSUCMC) with annotations
of glosses for metaphorical words.

• We develop a joint model for metaphor detec-
tion and gloss-based interpretation and empir-
ically show that metaphor interpretation with
glosses benefits metaphor detection.

2 Related Work
2.1 Metaphor Detection
Early studies on metaphor detection (Shutova et al.,
2010; Rei et al., 2017) usually follow the linguistics
theory (Lakoff and Johnson, 1980) and construct
mappings from the source domain to the target
domain.

Subsequent studies focus on metaphor detection
over subject-verb-objects, adjective-noun tuples, or
metaphorical phrases. Among these studies, a lot
of semantic features including the degree of ab-
stractness, the degree of concreteness, the degree
of imageability, semantic super-senses (namely
coarse semantic categories originating in WordNet),
lemma unigrams, and grammatical dependencies
are added to improve performance of metaphor de-
tection (Turney et al., 2011; Tsvetkov et al., 2014;
Klebanov et al., 2016; Özbal et al., 2016; Jang
et al., 2015). Jang et al. (2015) took topic distribu-
tion into consideration. Jang et al. (2016) explored
topic transition between a metaphor and its context.
For handing multi-modal information, Shutova
et al. (2016) considered both word embeddings
and visual embeddings whereas Bulat et al. (2017)
introduced a cross-modal method to integrate lin-
guistic representations and property-based repre-
sentations. A broader context of discourse was
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considered by (Jang et al., 2015) and (Mu et al.,
2019).

Regarding word-level metaphor detection,
metaphor detection can be treated as a sequence
tagging task. Wu et al. (2018) proposed a neu-
ral model, which uses Word2Vec (Mikolov et al.,
2013) as text representation and encodes part-
of-speech (POS) tags, word clusters with Con-
volutional Neural Network (CNN) and Bidirec-
tional Long Short-Term Memory (Bi-LSTM) net-
work. Gao et al. (2018) and Mao et al. (2019)
respectively utilized GloVe (Pennington et al.,
2014) and ELMo (Peters et al., 2018) embeddings.
Le et al. (2020) proposed to construct a graph
CNN guided by dependency trees of sentences for
metaphor detection and to construct a multi-task
learning framework for the WSD task, utilizing the
knowledge from WSD to improve metaphor detec-
tion. Instead of treating metaphor detection as a
sequence tagging task, Su et al. (2020) proposed a
novel reading comprehension paradigm based on
a pre-trained language model, using features from
POS tags and local texts.

2.2 Metaphor Interpretation

Metaphor interpretation is an intricate task, having
a challenge in deciphering the meaning conveyed
by a metaphorical expression (Rai and Chakraverty,
2020). Existing approaches to metaphor interpre-
tation can be grouped into three categories. For
the first category, the problem of metaphor inter-
pretation is treated as a problem of extraction of
transferred properties. It is often assumed that a
metaphor is essentially a projection of a specific set
of salient concept properties from the source do-
main, known as property matching (Su et al., 2016;
Ortony, 1980). Su et al. (2016) extracted perceptual
properties from the source domain and the target
domain, and then searched for metaphor interpre-
tation by expanding the extracted properties with
synonymy relationships from WordNet. In contrast
to property matching, the second category defines
the problem of metaphor interpretation as a prob-
lem of identifying the underlying conceptual map-
ping, usually focusing on re-conceptualization of
the target domain (Marmolejo-Ramos et al., 2013;
Semino, 2010). Martin (2006) empirically found
that metaphor interpretation has certain contextual
clues (e.g., the appearance of a concept from the tar-
get domain) and related metaphorical expressions.
For the last category, the problem of metaphor in-

terpretation is treated as the generation of a literal
substitute paraphrase (Mao et al., 2018; Shutova
et al., 2012). Mao et al. (2018) used hypernyms and
synonyms as candidate substitutes and computed
the best substitute word by the cosine similarity
between the embedding of the given word and the
embedding of a candidate substitute.

All the above methods for metaphor interpre-
tation fail to capture the contextual meaning of a
metaphorical word due to ambiguous interpretation
of the metaphor. To tackle this issue, in this work
we provide a novel interpretation mechanism that
utilizes glosses to interpret metaphorical words.

2.3 Word Sense Disambiguation

Word sense disambiguation (WSD) aims to predict
a specific meaning of a word that occurs in a par-
ticular context (Navigli, 2009). Understanding the
meaning of a word in context is critical to many
NLP tasks, such as machine translation (Vickrey
et al., 2005; Neale et al., 2016; Gonzales et al.,
2017) and information extraction (Ciaramita and
Altun, 2006; Bovi et al., 2015). One category of
WSD is class-based, which provides coarse-grained
labels that are shared among different words. The
other category of WSD is word-based, aiming to
disambiguate every word in texts (Palmer et al.,
2001; Moro and Navigli, 2015; Blevins and Zettle-
moyer, 2020). Our proposed metaphor interpreta-
tion scheme belongs to this category. Some neural
models for word-based WSD exploit encoders for
better feature extraction. Based on an encoder,
they either train classifiers on top of extracted fea-
tures (Kågebäck and Salomonsson, 2016) or intro-
duce a shared output space to label words (Ra-
ganato et al., 2017). Other neural models aug-
ment word representations with additional data by
semi-supervised learning (Melamud et al., 2016;
Yuan et al., 2016). BEM (Blevins and Zettlemoyer,
2020), which inspires our model, is a state-of-the-
art method for word-based WSD. It introduces a
bi-encoder model to embed the target word with its
surrounding context and its glosses.

3 The Proposed MDGI-Joint Model

Given a sentence s consisting of n words {w0, w1,
. . . , wi, . . . , wn�1} and a list of all mi candidate
glosses Gi = {g0i , g1i , · · · , g

j
i , . . . , g

mi�1
i } for the

target word wi, the task of metaphor interpreta-
tion aims to select a gloss from Gi to interpret
the intended meaning of wi, whereas the task of
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       : to name the letters of in order
       : to write or print the letters of in a particular way

 
        : to add up to, mean 

  
        : to rest from an activity for a time

I am afraid spells trouble !
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Figure 2: The architecture of our proposed joint model for Metaphor Detection and Gloss-based Interpretation.

metaphor detection focuses on predicting whether
the word wi is metaphorical or literal. Since gloss-
based metaphor interpretation provides a rich rep-
resentation for the contextual meaning of the target
word, it is appropriate to construct a joint model
to incorporate gloss-based metaphor interpretation
and metaphor detection. Therefore, we propose a
model named MDGI-Joint to incorporate metaphor
detection and metaphor interpretation.

The architecture of MDGI-Joint is given by Fig-
ure 2. MDGI-Joint employs two encoders to gener-
ate respectively the contextual representation and
the gloss representation for a target word. The
probability distribution over all candidate glosses
is computed by an attention mechanism. The gloss
with the highest probability is predicted as the in-
terpretation of the target word. Afterwards, an
integrated representation of all candidate glosses is
computed and then concatenated with the contex-
tual representation. The concatenated representa-
tion is finally used to determine whether the target
word is metaphorical, through a fully-connected
layer followed by the softmax classifier.

3.1 Encoding Module for Sentences

Given a sentence s consisting of n words {w0, w1,
. . . , wi, . . . , wn�1} as well as a target word wi, the
contextual representation of wi will be encoded
into a vector. Considering that the pre-trained lan-
guage model BERT (Devlin et al., 2019) has been
proved to be effective in transfer learning, con-
tributing to state-of-the-art performance in many

NLP tasks, we fine-tune a BERT model to be the
context encoder. Initially, we construct a token se-
quence “[CLS], w0, w1, · · · , wn�1,[SEP]”, where
[CLS] and [SEP] are special tokens introduced in
BERT. Then this token sequence is taken as input
to BERT, yielding a sequence of 768-dimensional
vectors “h[CLS], h0, h1, . . . , hn�1, h[SEP ]” as the
output of BERT. The corresponding vector hi for
the target word wi is treated as the contextual rep-
resentation of wi.

3.2 Encoding Module for Glosses
For the target word wi, we collect the set of can-
didate glosses Gi = {g0i , g1i , ..., g

mi�1
i } from an

existing dictionary. We fine-tune another BERT
model to be the gloss encoder. Similar to the encod-
ing module for sentences, we also construct a token
sequence for each gloss and feed it into BERT. For
each gloss gji 2 Gi where 0  j  mi � 1, we use
the output 768-dimensional vector corresponding
to the first token “[CLS]” as the gloss representa-
tion, which is written as pji .

3.3 Prediction for Metaphor Interpretation
Based on the contextual representation hi of wi and
the gloss representation pji of each gloss gji 2 Gi

where 0  j  mi � 1, the probability ↵j
i for a

gloss gji to represent the intended meaning of the
word wi is computed by an attention mechanism,
formally defined as follow:

↵j
i =

exp(hTi p
j
i )Pmi�1

k=0 exp(hTi p
k
i )

(1)
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3.4 Prediction for Metaphor Detection
We define the joint representation qi of the target
word wi as the concatenation of the contextual rep-
resentation hi and the weighted sum p⇤i of gloss
representations p0i , . . . , p

mi�1
i , which is formally

defined below:

p⇤i =
mi�1X

j=0

↵j
ip

j
i , (2)

qi = [hi; p
⇤
i ] (3)

where [; ] denotes the concatenation of two vectors.
By transforming the joint representation qi

through a fully connected layer followed by the
softmax classifier, the probability distribution li
that the target word wi is metaphorical or literal is
formally defined below:

li = softmax(W1qi + b1) (4)

where W1 2 R2⇥1536 and b1 2 R2 are learnable
parameters. The probability distribution li is of the
form [l0i , l

1
i ], where l0i is the predicted probability

that wi is literal, and l1i is the predicted probability
that wi is metaphorical.

3.5 Training Objective Function
Based on predicted probabilities ↵0

i , . . . , ↵mi�1
i

over glosses, the loss value for metaphor interpre-
tation about the target word wi is defined as:

lossMI
i = �

mi�1X

j=0

I(fi = gji ) log(↵
j
i )) (5)

where fi is the correct gloss for wi in sentence s,
I(X) = 1 if X is true and I(X) = 0 otherwise.

As for the task of metaphor detection, we employ
the binary cross entropy loss for predicting the
target word wi to be literal or metaphorical, defined
as follow:

lossMD
i = �(1� yi) log(l

0
i )� yi log(l

1
i ) (6)

where yi is the correct label, yi = 0 if the label is
literal or yi = 1 if the label is metaphorical.

The proposed joint model is trained by minimiz-
ing the following combined loss for every training
sentence.

loss =
n�1X

i=0

lossMD
i + I(wi 2 C) ⇤ lossMI

i (7)

where n is the number of words in the considering
sentence, and C is a predefined set of candidate
words required to be interpreted, which is collected
from all metaphorical words in our experiments.

Table 1: Kappa-score for annotations in every dataset.

TroFi VUA PSUCMC

kappa-score 0.82 0.86 0.89

Table 2: Statistics of the enhanced datasets. #sentences
is the number of sentences; #tokens is the total number
of words needed to be detected, %M is the metaphor
percentage over the detected words, and #glosses is the
number of samples with gloss annotations.

Dataset #sentences #tokens %M #glosses

TroFi train 2,989 2,989 58.3 2,989
TroFi val 374 374 52.4 374
TroFi test 374 374 54.8 374

VUA train 6,323 116,622 11.2 2,710
VUA val 1,550 38,628 11.6 635
VUA test 2,694 50,175 12.4 905
VERB test 2,694 5,873 30.0 905

PSUCMC train 1,381 28,572 8.3 5,486
PSUCMC val 173 3,520 8.0 674
PSUCMC test 173 3,727 7.4 730
VERB test 165 736 16.3 120

4 Experiments

4.1 Three Enhanced Datasets
We enhance three datasets TroFi, VUA and
PSUCMC from the field of metaphor detection,
where TroFi and VUA are in English and PSUCMC
is in Chinese.

• TroFi (Birke and Sarkar, 2006). This
is a benchmark metaphor dataset with
verb metaphors annotated. Following the
work (Mao et al., 2019), we treat unlabeled
words as literal in the training phase.

• VUA (Steen, 2010). The VU Amsterdam
Metaphor Corpus (VUA) samples fragments
from the British National Corpus. All words
in the corpus are labeled. We evaluate on both
the VUA ALL POS track and the VUA-Verb
track.

• PSUCMC (Lu and Wang, 2017; Nacey et al.,
2019). The PSU Chinese Metaphor Corpus

Table 3: Data splits of PSUCMC for different POS tags,
including NOWN, VERT, ADJ and ADV.

Dataset NOUN VERB ADJ ADV

all 929 2,547 390 19
train 760 1,988 334 13
val 105 244 31 4
test 64 315 25 2
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Table 4: Accuracy on the metaphor interpretation task.
All numbers are in %.

Model VUA PSUCMC TroFi

BEM 45.5 82.3 71.9
MDGI-Joint-S 46.4 82.3 72.2
MDGI-Joint 44.3 80.8 70.9

consists of text samples from the Lancaster
Corpus of Mandarin Chinese where are an-
notated for metaphor-related words follow-
ing MIPVU (Steen, 2010). All words in
PSUCMC are labeled. Following the ex-
perimental setting of VUA, we evaluate on
both the PSUCMC ALL POS track and the
PSUCMC-Verb track.

All these datasets are enhanced to support the
gloss-based metaphor interpretation task. We refer
to the set of words that need to be interpreted as
the candidate set. For TroFi, the candidate set
includes all labeled verbs. For VUA, the words
in the candidate set are randomly selected from
verbs. As for PSUCMC, we randomly choose a
set of words and filter the meaningless words to
construct a candidate set. Words in the candidate
set are annotated by human annotators.

For English datasets, when given a word in the
candidate set, the annotators are asked to look
up the Merriam-Webster dictionary2 to fetch its
glosses. For the Chinese dataset, word glosses are
extracted from the Baidu Dictionary3.

For every dataset, four annotators are recruited to
annotate the dataset independently. All annotators
need to select the most appropriate gloss that ex-
presses the contextual meaning of the target word,
by comparing all glosses with the given context
of the target word. They also need to discuss and
determine the final labels after generating their own
annotations.

To verify the reliability of the annotations, we
use kappa-score to measure inter-annotator agree-
ments for the annotations. Kappa-score (Siegel,
1956) has been widely used in computational lin-
guistics to measure the reliability of an annotation
scheme. Table 1 shows the kappa-score for annota-
tions in every dataset, which demonstrates that the
annotations have a high degree of reliability.

For PSUCMC and TroFi, we randomly split the
samples into a training set, a validation set, and a

2
https://www.merriam-webster.com/

dictionary/

3
https://dict.baidu.com

test set according to the proportion of 8 : 1 : 1.
For VUA, the data splits provided by (Mao et al.,
2019) are reused. Table 2 reports the statistics of
all experimental datasets, whereas Table 3 gives
more details about PSUCMC.

4.2 Experimental Setup

In our experiments, BERT4 is used as both the
context encoder and the gloss encoder, where the
uncased BERT base model is used for TroFi and
VUA, and the Chinese BERT base model is used
for PSUCMC.

There are two variants for our proposed model.
The first variant, named MDGI-Joint-S, shares pa-
rameters between the context encoder and the gloss
encoder. The second one, named MDGI-Joint, im-
plements two independent encoders for context and
gloss, respectively.

To train these two models, we set the learning
rate as 2e-5. The maximum number of epochs is
set to 20. We set the dropout probability to 0.2
for the fully connected layer. The max sequence
length is set to 128 for TroFi and VUA, and 256
for PSUCMC. The batch sizes for the two tasks
are all set to 8 for VUA and TroFi, and 16 for
PSUCMC. We keep the best model that maximizes
the F1 score on the validation set for the metaphor
detection task. This model is then used to evaluate
the test set.

4.3 Compared Methods

We compare our method with the following meth-
ods.

• SEQ (Gao et al., 2018). SEQ is a neural model
taking ELMo embeddings and GloVe embed-
dings as input. It uses a Bi-LSTM encoder to
capture the contextual information of the tar-
get word, and then employs a fully connected
layer followed by the softmax classifier to pre-
dict whether a word is metaphorical or not.

• RNN HG (Mao et al., 2019). RNN HG also
takes ELMo embeddings and GloVe embed-
dings as input. Different from SEQ (Gao et al.,
2018), RNN HG concatenates the encoded
representation with the GloVe embedding to
capture the contextual information of the tar-
get word.

4
https://github.com/google-research/

bert
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Table 5: Accuracy on the metaphor detection task. All numbers are in %. ‘-’ denotes no evaluation on the
corresponding dataset.

VUA ALL POS VUA-Verb PSUCMC ALL POS PSUCMC-Verb TroFi
Method P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

SEQ 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 74.9 57.5 65.0 95.4 71.6 40.2 51.5 87.5 91.2 85.9 88.4 87.7
RNN HG 71.8 76.3 74.0 93.6 69.3 72.3 70.8 82.1 70.6 69.8 70.2 95.6 67.0 56.8 61.5 88.2 90.4 82.4 86.2 85.6
RNN MHCA 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8 73.5 68.7 71.1 95.9 63.1 58.3 60.6 87.5 86.6 84.9 85.7 84.5
MUL GCN 74.8 75.5 75.1 93.8 72.5 70.9 71.7 83.2 - - - - - - - - - - - -
DeepMet 73.8 73.2 73.5 90.5 76.2 78.3 77.2 86.2 66.7 73.9 70.1 96.4 61.4 67.3 64.2 93.1 92.2 81.0 86.2 85.8

MDGI-Joint-S 81.3 73.2 77.0 94.6 78.8 71.5 75.0 85.6 89.7 69.8 78.5 97.2 85.9 60.8 71.2 92.0 89.2 84.9 87.0 86.1
MDGI-Joint 82.5 72.5 77.2 94.7 78.9 70.9 74.7 85.4 89.0 70.6 78.7 97.2 85.9 60.8 71.2 92.0 89.3 89.3 89.3 88.2

• RNN MHCA (Mao et al., 2019). RNN MHCA
has a similar architecture as RNN HG. But it
adopts a multi-head contextual attention mech-
anism to capture the contextual information
of the target word.

• MUL GCN (Le et al., 2020). MUL GCN is a
multi-task learning framework. It exploits the
similarity between word sense disambiguation
and metaphor detection, by employing a graph
convolutional neural network (GCN) to con-
nect the words of interest with context words
for metaphor detection.

• DeepMet (Su et al., 2020). DeepMet is a
RoBERTa (Ott et al., 2019) based model with
an ensemble strategy. It also takes features in-
cluding POS tags and local texts as input. For
fairness, we only compare our models with
the single model of DeepMet.

• BEM (Blevins and Zettlemoyer, 2020). BEM
is a model for the WSD task. It consists of
two independent encoders. One is the context
encoder, which embeds the target word and
its surrounding context. The other encoder
is the gloss encoder, which embeds the gloss
for each word sense. Both encoders are deep
transformer networks initialized from BERT.

For the evaluation on PSUCMC and TroFi, we
use the publicly released code for all the com-
pared methods except for MUL GCN whose code
is unavailable. Thus we cannot obtain results for
MUL GCN on both PSUCMC and TroFi. For
VUA, we present results that are reported in the
published papers of the compared methods.

It should be noted that all compared meth-
ods target the English domain only in their pub-
lished papers. Since PSUCMC is a dataset in
the Chinese domain, to evaluate the compared
methods on PSUCMC, we use ELMo embeddings
trained on the Xinhua proportion of Chinese gi-

gawords5, which is a Chinese corpus released by
Che et al. (2018) and Fares et al. (2017); more-
over, we place the GloVe embeddings with word
embeddings trained on the zh-wiki corpus6 based
on Word2Vec (Mikolov et al., 2013).

4.4 Experimental Results
We use P (precision), R (recall), F1 (F1 score) and
Acc (accuracy) as the evaluation metrics for the
metaphor detection task, and Acc (accuracy) for
the metaphor interpretation task. All the reported
numbers are in percent. For the metaphor detection
task, all words in the test set are evaluated. For the
metaphor interpretation task, although correspond-
ing glosses can be computed for all words, only the
words with annotations in the test set are evaluated.

4.4.1 Results for Metaphor Interpretation
It can be seen from Table 4 that, no matter whether
the two encoders share parameters or not, the pro-
posed model achieves similar results comparable
with BEM. MDGI-Joint-S is even slightly supe-
rior to BEM. The implemented BEM model does
not share parameters between the two encoders.
Therefore, it can be confirmed that the improved
performance of MDGI-Joint-S comes from captur-
ing the interaction between the two tasks, rather
than from inheriting parameters from BEM.

4.4.2 Results for Metaphor Detection
From Table 5, it is evident that MDGI-Joint out-
performs other methods over all three datasets ex-
cept for the VUA-Verb track. Although DeepMet
achieves the best performance on the VUA-Verb
track, it exhibits lower performance than our pro-
posed model on other datasets and the VUA ALL
POS track. There results indicate that joint training
for metaphor detection and metaphor interpreta-
tion does improve the performance of metaphor

5
https://github.com/HIT-SCIR/

ELMoForManyLangs

6
https://dumps.wikimedia.org/zhwiki/

latest/
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Table 6: Case studies to analyze the beneficial effect of gloss-based interpretations.

Text Detected word Gold label Gold gloss Prediction Method

Iranian guns pummeled Basra on the war’s first day, and in the

following eight years, about 65, 000 shells rained down.
rained metaphorical to fall like rain

literal DeepMet

metaphorical MDGI-Joint

Stand up man. stand literal to support oneself on the feet in an erect position
metaphorical DeepMet

literal MDGI-Joint

Table 7: Ablation study for the metaphor detection task. All numbers are given in %.

VUA ALL POS VUA-Verb PSUCMC ALL POS PSUCMC-Verb TroFi
Method P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

MDGI-Joint-S 81.3 73.2 77.0 94.6 78.8 71.5 75.0 85.6 89.7 69.8 78.5 97.2 85.9 60.8 71.2 92.0 89.2 84.9 87.0 86.1
MDGI-Joint 82.5 72.5 77.2 94.7 78.9 70.9 74.7 85.4 89.0 70.6 78.7 97.2 85.9 60.8 71.2 92.0 89.3 89.3 89.3 88.2
MD-MGI 83.3 71.5 76.9 94.7 78.4 69.1 73.4 85.5 76.2 75.6 75.9 96.5 72.3 67.5 69.8 90.5 91.2 85.4 88.2 87.4
MD (only) 80.9 72.2 76.3 94.4 77.5 70.1 73.6 84.8 80.3 69.8 74.7 96.5 77.9 61.7 68.8 90.9 92.5 83.9 88.0 87.4

Table 8: Ablation study for the gloss-based metaphor
interpretation task. The measure is accuracy in %.

Model VUA PSUCMC TroFi

MDGI-Joint-S 46.4 82.3 72.2
MDGI-Joint 44.3 80.8 70.9
MD-MGI 44.8 80.8 70.3

detection. It can also be seen that all the compared
methods perform poorly on the Chinese dataset
PSUCMC. This is probably due to that these meth-
ods are strongly language sensitive. The reason
why DeepMet outperforms our model on the VUA-
Verb track is due to extra information such as sub-
classes of POS tags being taken as input in Deep-
Met. It is interesting to see whether our proposed
model can be further improved by exploiting extra
information. But this question is out of the scope
of this work. It will be explored in our future work.

4.5 Case Study
As shown in Table 6, we use two cases to exemplify
the superiority of our model in the metaphor detec-
tion task, demonstrating that gloss-based interpreta-
tion improves performance of metaphor detection.

The first example is picked from the TroFi
dataset (see Row 2 in Table 6). In this example
the detected word rained is a metaphorical word,
but DeepMet predicts it as literal. The reason could
be that the word rained commonly occurs in the
given context. In contrast, MDGI-Joint correctly
predicts it as metaphorical according to its gloss-
based interpretation to fall like rain since a gloss
of the form do like some behavior is commonly
used as the gloss of a metaphorical word.

The second example is selected from the VUA
dataset (see Row 3 in Table 6). In this example
the detected word stand has a literal meaning in its

context. DeepMet wrongly predicts it as metaphor-
ical, while MDGI-Joint gives a correct prediction
based on its predicted gloss-based interpretation
which has an expression style as that of general
glosses of literal words.

4.6 Ablation Study
To investigate the effect of joint training for the
two tasks, we further conduct experiments on the
following weakened models.

• MD-MGI. In this model we only use the con-
text representation to predict whether a target
word is metaphorical. In other words, the
weighted sum of gloss representations is not
considered in the metaphor detection task, al-
though the two tasks are still jointly trained
without sharing parameters between the con-
text encoder and the gloss encoder.

• MD (only). This model addresses the
metaphor detection task only and neglects
the metaphor interpretation task. It detects
metaphors based on the contextual representa-
tion of words only.

From Table 7 we observe that the performance
of MD-MGI drops slightly on the metaphor detec-
tion task compared to the proposed model. The
reason is probable that, in MD-MGI the two tasks
only interact through the context encoder, leading
to limited benefits for metaphor detection. From
Table 8 we can see that all the three compared
variants are comparable in the metaphor interpre-
tation task, where MDGI-Joint-S is slightly better
than others. These results show that whether the
metaphor detection task uses the weighted sum of
gloss representations or not has few impacts on
the metaphor interpretation task. It can be seen
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Table 9: Performance on the VUA ALL POS track for
metaphor detection, separated by different POS tags.
In-vocabulary words are annotated words whereas out-
of-vocabulary words have no annotations. Only a por-
tion of verbs in VUA are annotated.

POS P R F1 Acc

ADJ 78.6 57.1 66.2 92
ADV 81.5 65.2 72.4 96.4
NOUN 78.3 60.8 68.8 91.6
VERB(in-vocabulary) 79.2 75.5 77.3 82.0
VERB(out-of-vocabulary) 78.1 70.2 73.9 91.6
Other POS 88.3 84.6 86.4 97.5

from Table 7 that the weakest variant namely MD
(only) performs worse than all the other variants,
indicating that joint training for metaphor detection
and metaphor interpretation leads to performance
improvement in metaphor detection.

4.7 Error Analysis on VUA
Taking the VUA dataset as example, there are more
false negatives than false positives generated by
MDGI-Joint; i.e., the recall is lower than the preci-
sion, as shown in Table 9. Especially, adjectives,
adverbs and nouns have a significantly lower re-
call than verbs. The reason for this phenomenon is
two-fold. On one hand, only a partial set of verbs
has annotations in the VUA dataset, so the detec-
tion of metaphorical adjectives, adverbs or nouns
can only gain limited benefits from the metaphor
interpretation task. On the other hand, in VUA a
number of metaphors appear at the phrase level,
but MDGI-Joint is only able to detect metaphors at
the word level, thus it is more likely to predict false
negatives. Consider the following example picked
from VUA id:a7w-fragment01#41: But only two
million out of the 20 million journeys which am-
bulance crews carry out each year are emergency
calls. MDGI-Joint only detects the word carry as
metaphorical. It treats words separately and cannot
predict the preposition out in the phrase carry out
as metaphorical. It also wrongly predicts crews as
literal possibly due to that the word is a noun.

5 Discussion

Out-of-vocabulary words are treated differently
in the training phase and in the test phase. In
the training phase, the loss of metaphor interpre-
tation over out-of-vocabulary words is not com-
puted according to Equation (7). In the test phase,
the evaluation on metaphor detection involves all
words, but the evaluation on metaphor interpre-

tation only targets in-vocabulary words. For the
metaphor detection task, in-vocabulary words and
out-of-vocabulary words have no different treat-
ments. We have conducted extra experiments
for metaphor detection on the VUA ALL POS
track. The results reported in Table 9 show that
MDGI-Joint achieves significantly higher perfor-
mance on in-vocabulary verbs (77.3%) than on
out-of-vocabulary verbs (73.9%), but on all out-
of-vocabulary words, MDGI-Joint achieves similar
performance (77.2%).

Due to the limited glosses extracted from exist-
ing dictionaries, there will be correct glosses for
novel metaphors that do not appear in the train-
ing set. It has been shown (Rai and Chakraverty,
2020) that interpreting novel metaphors in general
situations is difficult. Hence our proposed gloss-
based interpretations are definitely more suitable
for conventional or lexical metaphors. Neverthe-
less, by considering that we can expand glosses
with more external resources, the effectiveness of
our proposed approach is not limited to a fixed set
of metaphors.

6 Conclusion and Future Work

Metaphor detection is of great value in many nat-
ural language processing tasks. In this paper we
have utilized gloss-based metaphor interpretation
to enhance metaphor detection. The novelty mainly
lies in the interpretation mechanism, i.e., utilizing
glosses to interpret metaphorical words. Accord-
ingly, we propose a joint model for metaphor de-
tection and gloss-based interpretation. We enhance
three datasets in the field of metaphor detection to
evaluate the joint model. Experimental results con-
firm that metaphor interpretation in gloss improves
the performance of metaphor detection. Future
work will extend our approach to other rhetoric
identification tasks.
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