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Abstract

BERT has been studied as a promising tech-
nique to improve NMT. Given that BERT is
based on the similar Transformer architecture
to NMT and the current datasets for most MT
tasks are rather large, how pre-training has
managed to outperform standard Transformer
NMT models is underestimated. We compare
MT engines trained with pre-trained BERT
and back-translation with incrementally larger
amounts of data, implementing the two most
widely-used monolingual paradigms. We ana-
lyze their strengths and weaknesses based on
both standard automatic metrics and intrinsic
test suites that comprise a large range of lin-
guistic phenomena. Primarily, we find that
1) BERT has limited advantages compared
with large-scale back-translation in accuracy
and consistency on morphology and syntax; 2)
BERT can boost the Transformer baseline in
semantic and pragmatic tasks which involve in-
tensive understanding; 3) pre-training on huge
datasets may introduce inductive social bias
thus affects translation fairness.

1 Introduction

Neural machine translation (NMT) has shown
promising results as an end-to-end approach to
automatic translation (Sutskever et al., 2014; Bah-
danau et al., 2014; Vaswani et al., 2017). One
reason for its success is the availability of large
amounts of training resources such as parallel cor-
pora with high quality. For low-resource languages
or domain-specific settings, monolingual data have
also been effectively used by NMT systems (Zhang
and Zong, 2016; Siddhant et al., 2020), providing
rich linguistic features for translation.

Two lines of work have been done on leveraging
monolingual corpora to improve translation qual-
ity. One approach is back-translation (Bojar and
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Tamchyna, 2011; Sennrich et al., 2016), in which
an auxiliary target-to-source system is trained on
genuine bitext, and then used to generate synthetic
text from a large monolingual corpus on the target
side. The synthetic and genuine pairs are then used
together to train a source-to-target MT model.

An alternative method of using monolingual
data is the pre-trained language model (Devlin
et al., 2019; Radford et al., 2019), a neural net-
work trained over large texts and can be incorpo-
rated into standard NMT encoder-decoder archi-
tectures (Jean et al., 2015; Gulcehre et al., 2015;
Zhu et al., 2020). Pre-trained language models
have led to improvements in NMT results across
low-resource scenarios (Song et al., 2019), cross-
lingual transfers (Conneau and Lample, 2019; Liu
et al., 2020) and code-switching settings (Yang
et al., 2020).

Among these two dominant monolingual
paradigms, there has been relatively more work
investigating how back-translation helps NMT. For
example, initial studies show that back-translation
is beneficial to machine translation by producing
more fluent outputs (Edunov et al., 2020). How-
ever, relatively little work has focused on how pre-
trained language models contribute to translation.
We fill this gap by quantitatively comparing MT
models trained with pre-trained language models
and back-translation under a fair large-scale set-
ting. Specifically, for pre-trained language mod-
els, we reimplement BERT-fused NMT (Zhu et al.,
2020), and for back-translation, we use incremen-
tally larger data amounts to train a range of systems,
with the synthetic data being half, equal, twice and
four times of the authentic data. We conduct ex-
periments on rich (WMT’14 English-to-German)
and low (LDC Chinese-to-English) resource sce-
narios, and evaluate performance on 8 benchmarks
covering morphological, syntactic, semantic and
pragmatic competences. Empirically, we find that:
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1. BERT yields improvement for standard NMT
in BLEU but has no remarkable advantage
compared with large-scale back-translation.

2. BERT has little effect on correcting smaller
discrepancies in morphological and syntactic
levels in NMT (Section 5.1& 5.2).

3. BERT features salient promotion for MT re-
quiring heavy context understanding and in-
tensive knowledge, but also brings concerns
around bias and fairness (Section 5.3& 5.4).

To our knowledge, we are the first to detect the
effectiveness of pre-training in NMT by a compari-
son with back-translation in a fair setting. We also
contribute to the analysis of BERT in a bilingual
situation.

2 Related Work

Pre-training in NMT Gulcehre et al. (2015)
and Jean et al. (2015) are among the first to in-
tegrate language models into the decoder part of
NMT. Subsequent work extends the studies by
adding pre-trained representations in the encoder
part (Edunov et al., 2019) or the both sides (Ra-
machandran et al., 2017) of NMT networks.

Recent research focused on leveraging the pre-
trained BERT for NMT. Clinchant et al. (2019) uti-
lize BERT on NMT’s encoder. Conneau and Lam-
ple (2019) initialize both the encoder and decoder
by multilingual BERT. Imamura and Sumita (2019)
investigate a BERT fine-tuning method for NMT.
Clinchant et al. (2019) compare different NMT
architectures with BERT. Zhu et al. (2020) sug-
gest using BERT as an extra memory. Specifically,
they first encode the inputs by BERT and use the
last layer’s output as an extra memory. The Trans-
former NMT network uses an extra self-attention
module to weigh the memory in each layer of both
the encoder and decoder. The model shows a no-
ticeable improvement in both supervised, semi-
supervised and unsupervised tasks, leading to the
new state-of-the-art results of using BERT in NMT.
Given the significant improvements achieved by
their work, we adopt this model in our experiments.

Back-translation Back-translation is a widely
used data augmentation technology originally in-
troduced for SMT (Bojar and Tamchyna, 2011)
and then flourished in NMT (Sennrich et al.,
2016). It has been studied with dual-learning
frameworks (He et al., 2016), large-scale exten-
sions (Edunov et al., 2018; Wu et al., 2019), it-
erative versions (Hoang et al., 2018), unsuper-

vised scenarios (Artetxe et al., 2018; Lample et al.,
2018), tagged back-translated sources (Caswell
et al., 2019) as well as systematic analysis (Bur-
lot and Yvon, 2018; Poncelas et al., 2018; Edunov
et al., 2020). In line with Edunov et al. (2018), we
aim to broaden understanding of back-translation
in a large-scale manner. While their focus is on
different methods that generate synthetic source
sentences, ours is to investigate how large-scale pre-
training compares with large-scale back-translation
in boosting translation performance.

BERTology Much work has discussed BERT
with respect to morphology (Edmiston, 2020; Ha-
ley, 2020), syntax (Hewitt and Manning, 2019; Lin
et al., 2019; Goldberg, 2019), semantics (Ettinger,
2020; Warstadt et al., 2019; Tenney et al., 2019),
and world knowledge (Poerner et al., 2019; Zhou
et al., 2020). Both internal attention weights (Clark
et al., 2019; Htut et al., 2019) and external task
performances(Liu et al., 2019a; Zhou et al., 2020)
have been used as means of investigation. Our
work aligns with external evaluation. However, ex-
isting work considers a monolingual setting while
we discuss these issues under a bilingual task.

3 Protocol for MT Evaluation

We use BLEU (Papineni et al., 2002) and 8 more
focused evaluation tasks to probe MT systems with
pre-trained BERT and back-translation. Below we
introduce the error analysis protocols in detail.

3.1 Morphological Competence

We assess the morphological competence of MT
systems translating from English into morpho-
logically rich languages, which is a necessity
for MT systems to overcome out-of-vocabulary
source tokens and flexible word orders. We take
Morpheval1 (Burlot and Yvon, 2017; Burlot et al.,
2018) as one of the representative test suits, consist-
ing of a set of contrast pairs that can be triggered
in the source language and evaluated in the target
language (Table 1). This dataset describes three
types of contrasts: the first evaluates one single
morphological derivational feature such as number,
gender, tense; the second evaluates agreement; the
third concerns lexical replacements of the same cat-
egory, testing whether morphological consistency
still holds if a word is replaced by a hyponym.

1 https://github.com/franckbrl/morpheval v2
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Morphology En→De Source: The only issue now is the swelling around his eye.
Her only issue now is the swelling around his eye.

Target: Das einzige Problem ist jetzt die Schwellung um sein Auge.
Ihr einziges Problem ist jetzt die Schwellung um sein Auge. "

Target: Das einzige Problem ist jetzt die Schwellung um sein Auge.
Das einzige Problem ist jetzt die Schwellung um sein Auge. %

Syntax En→De Source: Prague Stock Market falls to minus by the end of the trading day.
Target: Die Prager Börse stürzt gegen Geschäftsschluss ins Minus. "

Target: Die Prager Börse stürzt gegen Geschäftsschluss nicht ins Minus. %
Homograph Translation En→De Source: I hope you didn’t get distracted during your watch.

Target: Ich hoffe, Sie wurden während Ihrer Wache nicht abgelenkt. (guard) "

Target: Ich hoffe, Sie wurden während Ihrer Uhr nicht abgelenkt. (clock) %
Conjunction Disambiguation En→De Source: Don’t apologize to me, but to her.

Target: Entschuldige dich nicht bei mir, sondern bei ihr. "

Target: Entschuldige dich nicht bei mir, aber bei ihr. %
Pronoun Coreference Resolution En→De Source: It could get tangled in your hair.

Target: Sie könnte sich in deinem Haar verfangen. "

Target: Er könnte sich in deinem Haar verfangen. %

Target: Es könnte sich in deinem Haar verfangen. %
Idiom Translation Zh→En Source: 胸有成竹

Target: Be very ready; have a well-thought-out plan. "

Target: Have a well-formed bamboo in one’s chest. (literal translation) %
Commonsense Reasoning Zh→En Source: 吃了游客的鳄鱼。

Target: The crocodile who ate the tourist. "

Target: Ate the tourist’s crocodile. %
Gender Bias En→De Source: The janitor does not like the baker because she always messes up the kitchen.

Target: Der Hausmeister mag die Bäckerin nicht, weil sie immer die Küche verschmutzt. "

Target: Die Hausmeisterin mag der Bäcker nicht, weil sie die Küche immer durcheinander bringt. %

Table 1: Test instances corresponding to each task. Key words are in bold. Elaboration is in Appendix A.

3.2 Syntactic Competence

We evaluate whether MT models can generate co-
herent and grammatical sentences. We adopt the
LingEval972 (Sennrich, 2017), a test set of con-
trastive translation pairs for analysis of a num-
ber of syntactic phenomena including syntactic
agreement over long distances, discontiguous verb-
particle constructions, transliteration of names and
faithful translation of polarity (Table 1).

3.3 Semantic Competence

Semantics helps MT enforce meaning preservation
and handle data sparsity. We measure semantic
competence from the ambiguity of content words,
conjunctions and pronouns, corresponding to tasks
of homograph translation, conjunction disambigua-
tion, and pronoun coreference resolution, respec-
tively. First, homograph translation requires mod-
els to determine the intended sense of polysemous
words in context. We adopt MUCOW3 (Raganato
et al., 2019), a lexical ambiguity benchmark in
which a sentence containing an ambiguous word
is paired with a correct reference and an incorrect
modified translation with the ambiguous word be-
ing replaced by a word of a different sense. Sec-
ond, NMT should theoretically be able to handle
conjunctions with variant senses if the encoder cap-

2 https: //github.com/rsennrich/lingeval97
3 https://github.com/Helsinki-NLP/MuCoW

tures clues from sentence structures. We use the
test set of Popović (2019)4, which translates the
English conjunction but into two different Ger-
man conjunctions aber or sondern. The former
can be used after a positive or a negative clause,
while the latter is only used after a negative clause
when expressing a contradiction. Lastly, for coref-
erence resolution, we adopt ContraPro5 (Müller
et al., 2018) to evaluate the accuracy when mod-
els translate the English pronoun it to its German
counterparts es (it), sie (she) and er (he), based on
a correct understanding of antecedents.

3.4 Pragmatic Competence

We further evaluate systems on 3 challenging prob-
lems involving pragmatic inference: idiom trans-
lation, commonsense reasoning and gender bias.
First, idiom translation still presents a difficulty be-
cause the meaning of idioms is non-compositional
and non-literal, making word-by-word translation
incorrect. We use the CIBB dataset 6 (Shao et al.,
2018), in which a blacklist consisting literal trans-
lation of idiom characters is constructed and once
translations from NMT trigger the blacklist, the
literal translation errors can be counted to score the
systems. Another demanding competence for NMT
is commonsense reasoning. He et al. (2020) build

4 https://github.com/m-popovic
5 https://github.com/ZurichNLP/ContraPro
6 https://github.com/sythello/CIBB-dataset
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a bilingual test suite which grounds commonsense
knowledge into lexical ambiguity, contextual syn-
tactic ambiguity and contextless syntactic ambigu-
ity (Appendix A.3). Each source sentence has one
ambiguity type and corresponds to two contrastive
translations. We use this test suite 7 to measure
commonsense knowledge and inference of NMT
outputs. Lastly, we estimate gender bias. Follow-
ing Stanovsky et al. (2019), we use the WinoMT8

dataset to extract gender features from translations
and evaluate them against the gold annotations.

4 Experimental Setup

We verify the effectiveness of MT combined with
BERT (Zhu et al., 2020) and back-translation on
both rich- and low-resource scenarios.

4.1 Data and Baseline
For the rich-resource scenario, we take WMT’14
English-to-German (En→De) with a corpus size
of 4.5M 9. We use newstest2013 as the valida-
tion set and newstest2014 as the test set. For the
low-resource scenario, we take LDC Chinese-to-
English (Zh→En) with a corpus size of 1.25M .
We use nist06 as the validation set and report an
average score on nist02/03/04/05/08 test sets. We
apply wordpieces (Wu et al., 2016) to preprocess
data with a shared source and target vocabulary of
32K.

We train a standard Transformer NMT
model (Vaswani et al., 2017) on fairseq10 as
a baseline. We adopt transformer big for
En→De and transformer base for Zh→En
with a 6-layer encoder-decoder network. We set
the dropout ratio as 0.25 and use beam search with
width 4 and length penalty 0.6 for inference.

4.2 BERT-fused NMT
BERT (Devlin et al., 2019) is composed of a lay-
ered self-attention Transformer network and is pre-
trained on billions of unlabeled text to perform
masked language modeling and next sentence pre-
diction tasks. The former aims to restore the orig-
inal sequence from noisy input, while the latter
learns whether two sentences are consecutive.

Zhu et al. (2020) incorporate BERT into NMT
systems. On the source side, given a language input
x, the model first extracts the last layer’s output

7 https://github.com/tjunlp-lab/CommonMT
8 https://github.com/gabrielStanovsky/mt gender
9 https://nlp.stanford.edu/projects/nmt/
10 https://github.com/pytorch/fairseq

En→De Zh→En
Auth (M ) Synth (M ) Auth (M ) Synth (M )

4.500

2.250

1.250

0.625
4.500 1.250
9.000 2.500
18.00 5.000

Table 2: Corpora statistics of sentence pairs.

of the context-aware representation from BERT
encoder:

HB = BERT (x), (1)

and then fuses HB with each layer of the encoder
of the NMT model through attention mechanisms:

Hl
E =

1

2

(
attnS(Hl−1

E , Hl−1
E , Hl−1

E )

+attnB(Hl−1
E , HB , HB)

)
,

(2)

where H l
E refers to the hidden state after fusion of

the l-th layer, attnS is the multi-head self-attention
layer, and attnB is the BERT attention layer. In
the case of layer l in the target side, the decoder
also uses both contexts at the same time:

Hl
DS = attnMS(Hl−1

D , Hl−1
D , Hl−1

D ),

Hl
D =

1

2

(
attnB(Hl

DS , H
L
E , H

L
E)

+attnE(Hl
DS , HB , HB)

)
,

(3)

where attnMS , attnB , attnE is the multi-head
future-masked self-attention layer, BERT-decoder
attention layer and the encoder-decoder attention
layer, respectively. HL

E is the output of the encoder.
Following Zhu et al. (2020), we first train

a standard Transformer NMT and then initial-
ize the weights of the BERT-fused model. We
choose bert large cased11 with 24 layers
and 1024 hidden dimension for En→De and
bert base chinese12 with 12 layers and 768
hidden dimension for Zh→En, ensuring that the di-
mension of BERT and NMT model almost matches.
BERT is fixed during training. The optimization
algorithm is Adam in accordance with 0.0005 learn-
ing rate and the inverse sqrt scheduler.

4.3 Back-translation
For back-translation, we use the standard Trans-
former baseline with the method of Sennrich et al.
(2016) to synthesize augmented data. Our goal is
to give a comparison between BERT-fused NMT
and back-translation of different data scales, using
monolingual data from the same source of BERT
training by random selection from the Wikipedia13

11 https://huggingface.co/bert-large-cased
12 https://huggingface.co/bert-base-chinese
13 dumps.wikimedia.org/dewiki/latest
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14. Previous work shows that data capacity for back-
translation does not consistently improve perfor-
mance beyond a threshold (Poncelas et al., 2018),
therefore we choose a suitable amount and scale up
the data from 625k to 18M with the ratio between
authentic and synthetic data being 1:0.5, 1:1, 1:2
and 1:4, respectively (see Table 2). In total we have
18M monolingual sentences in German and 5M
monolingual sentences in English. All datasets are
preprocessed similarly to the training data.

4.4 Evaluation

We use the multi-bleu.perl from Moses on
tokenized sentences for BLEU evaluation of all
systems. The tasks of conjunction disambiguation
and idiom translation are evaluated on the presence
percentage of correct conjunction and pre-defined
blacklist words, respectively. The task of gender
bias is evaluated on morphological analysis from
3 aspects: overall accuracy calculated by the per-
centage of instances in which the translation pre-
served the gender of the entity from the original sen-
tence, ∆G denoting the difference in performance
between masculine and feminine scores, and ∆S
indicating the difference in performance between
pro-stereotypical and anti-stereotypical gender role
assignments (see examples in Appendix A.4).

Other tests use a contrastive pair paradigm,
which tests a model’s ability to discriminate be-
tween given good and bad translations by exploit-
ing the fact that NMT systems can be viewed as lan-
guage models of the target language, conditioned
on source texts. Similar to language models, NMT
models can score a negative log probability for sen-
tences. If the model score of the actual translation
is smaller than the contrastive translation, we treat
the decision as correct. We aggregate model deci-
sions on the whole test set and report the overall
percentage of correct decisions as results.

5 Results

The overall BLEU points are given in Table 315.
For both rich- and low-resource settings, the BERT-
fused model demonstrates stronger performances
than the baseline. However, systems augmented
with back-translated data are better than the BERT-
fused model, with the best score achieved by model
trained with 2.25M synthetic data (1:0.5 setting)

14 dumps.wikimedia.org/enwiki/latest
15 We successfully reproduced the BLUE scores of the baseline

and BERT-fused model as reported in Zhu et al. (2020).

System En→De Zh→En
Standard Transformer 29.20 45.15
+ back translation (1:0.5) 30.41 46.70
+ back translation (1:1) 30.25 47.23
+ back translation (1:2) 30.18 47.04
+ back translation (1:4) 30.25 46.39
BERT-fused model 30.03 46.55

Table 3: Model performance in terms of BLUE scores
(case-insensitive). The best scores are marked in bold.

System Params Speed (tok/sec) Len% (tgt/src)
Back-translation 2.93B 1269.46 0.95
BERT-fused model 3.43B 355.24 0.95

Table 4: Model comparison in En→De. We list the
results of baseline model and Zh→En in Appendix B.

for En→De, and 1.25M synthetic data (1:1 set-
ting) for Zh→En. This shows that in terms of
BLUE, the advantage of large-scale pre-training
is not obvious compared with large-scale back-
translation, even though the latter requires far less
training data and computational resources. Taking
En→De as an example (Table 4), back-translation
uses only 85% parameters compared to the BERT-
fused method, while achieves higher BLEU points,
3.6 times faster decoding speed, and the same tar-
get/source length ratio which indicates an equiva-
lent information richness in the target translation.

5.1 Morphology

Table 5 shows the results for the morphology test in
En→De translation. Generally, for derivational (Ta-
ble 5a), agreement (Table 5b) and consistency (Ta-
ble 5c) content, pre-training does not show promi-
nent advantages over back-translation in helping
the standard Transformer model convey correct
morphology from source to target. Prior work on
monolingual tasks (Hofmann et al., 2020; Edmis-
ton, 2020; Haley, 2020) has shown that BERT is
capable of encoding morphological information
and many morphological features can be extracted
by training a simple classifier on a BERT layer. In
our bilingual task, however, BERT is trained in
the source context and evaluated in the target lan-
guage. The performance discrepancy shows that
BERT’s morphology prediction for novel words
in mono language results from high-frequent mor-
phological data during pre-training, which helps
BERT to memorize the statistical connection over
contextualized string cues. In contrast, NMT mor-
phological rules involve both source and target lan-
guages, which is different from BERT training. Sur-
face cues are not available for BERT in bilingual
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(a) derivation Verbs Pronouns Nouns Adjectives Average
System Past Future Cond. Neg. Plur. Compd. Nbr. Compar. Superl.
Standard Transformer 91.40 76.90 91.10 97.80 98.10 63.80 66.40 92.20 97.80 86.17
+ back translation (1:0.5) 92.90 77.90 89.10 97.60 98.80 57.10 62.80 93.30 98.40 85.32
+ back translation (1:1) 93.10 77.90 88.90 97.60 98.70 60.20 61.80 93.30 98.00 85.50
+ back translation (1:2) 94.70 76.80 93.80 97.60 98.10 58.80 63.80 92.40 98.90 86.10
+ back translation (1:4) 95.80 79.20 95.40 98.40 98.90 57.50 65.10 92.70 97.30 86.70
BERT-fused model 93.30 77.10 91.50 97.80 98.30 63.10 64.30 90.70 97.30 85.93

(b) agreement Coordinated verbs Verbs Complex NP Coreference Adj Average
System Nbr Pers Tense Position Gdr Nbr Relative Personal Strong
Standard Transformer 94.20 94.20 94.20 92.60 100.0 100.0 67.50 93.80 94.10 89.81
+ back translation (1:0.5) 96.20 96.20 96.00 95.50 100.0 100.0 67.30 94.30 97.60 91.04
+ back translation (1:1) 96.70 96.70 96.50 95.70 100.0 100.0 66.20 94.40 96.50 90.89
+ back translation (1:2) 95.00 95.20 95.20 94.70 99.80 100.0 67.40 91.90 96.70 90.33
+ back translation (1:4) 96.30 96.70 96.30 95.60 100.0 100.0 65.70 93.60 96.60 90.65
BERT-fused model 96.50 96.70 96.50 93.90 100.0 100.0 67.70 95.00 94.10 90.81

(c) consistency Nouns Adjectives Verbs Average
System Case Gender Number Number Person Tense
Standard Transformer 0.019 0.010 0.008 0.034 0.020 0.070 0.027
+ back translation (1:0.5) 0.021 0.004 0.002 0.027 0.017 0.061 0.022
+ back translation (1:1) 0.016 0.005 0.004 0.024 0.013 0.050 0.019
+ back translation (1:2) 0.017 0.004 0.004 0.025 0.012 0.057 0.020
+ back translation (1:4) 0.015 0.002 0.001 0.028 0.018 0.046 0.018
BERT-fused model 0.024 0.010 0.007 0.027 0.014 0.064 0.024

Table 5: Performance on morphology tests. Parts a and b are evaluated by Accuracy values, while c by Entropy.

situation thus BERT cannot compute the interlin-
gual representations. This can explain why BERT
contributes less than back-translation in conveying
morphological features in bilingual scenarios.

5.2 Syntax

The results for syntax tests in En→De are shown
in Table 6. We find similar performances across all
systems, indicating that solving problems regard-
ing syntax is easy for the current standard Trans-
former since it has achieved a high accuracy close
to 100. Neither back-translation nor pre-training
brings significant benefits to the baseline. Initial
work on monolingual tasks (Goldberg, 2019; Wolf,
2019) claims that BERT learns powerful syntactic
representations and shows promise at agreement
phenomena. However, our results show that in
translation, BERT performs at best no better than
the Transformer baseline and back-translation tech-
niques in favoring the grammatical variants in the
target sides. Inspired by the results of morpholog-
ical and syntactic evaluations, we leave for future
work to separately incorporate the source and tar-
get side pre-training in the encoder and decoder
of NMT, with the aim to better leverage linguistic
information contained in language models (Guo
et al., 2020).

5.3 Semantics

Figure 1 shows results for translating sentences
with ambiguous words in both the news domain
(in-domain) and colloquial speech domain (out-

Agreement Polarity
System np sv verb ins del trans
Standard Transformer 98.70 98.23 98.53 99.41 95.10 98.45
+ back translation (1:0.5) 98.88 98.39 99.18 99.36 95.52 98.71
+ back translation (1:1) 98.92 98.49 99.10 99.43 95.08 98.54
+ back translation (1:2) 98.91 98.49 99.10 99.38 95.18 98.60
+ back translation (1:4) 99.04 98.61 99.06 99.41 95.05 98.80
BERT-fused model 98.57 98.13 98.82 99.41 95.72 98.54

Table 6: Accuracy values for syntax test suite.

of-domain). In the news domain, the F-score of
the baseline is 0.715. With back-translation, the
performance fluctuates but is worse than the BERT-
fused model. The BERT-fused model performs
the best of 0.735 in F-score and improves the
baseline by 2.8%. In the colloquial speech do-
main where words are more frequent than news
domains and thus have more senses, the BERT-
fused model still maintains the top and surpasses
the baseline by 11.7%. There is evidence that
BERT’s context-aware embeddings actually encode
certain forms of sense knowledge and provides dis-
tinct clusters corresponding to word senses (Wiede-
mann et al., 2019; Mickus et al., 2019). Thus we
conclude that incorperating BERT’s representation
with NMT’s encoder through attention mechanisms
(Equation 3) enables the translation model to cap-
ture fine-grained nuances of meaning and thus is
successful at differentiating source side ambiguous
words. However, when domain shifts, all models
decline in performance and the BERT-fused model
is no exception. Previous work has proven that
pre-training on large scale datasets can improve
out-of-domain model robustness (Hendrycks et al.,
2019; Mathis et al., 2021). It seems that this poten-
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base bt 1:0.5 bt 1:1 bt 1:2 bt 1:4
BT-ratio

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

F-
sc

or
e

News Domain

Colloquial Speech Domain

bert
bt

Figure 1: Results on homogragh translation test. We
list specific data of each model in Appendix C.

tial is not fully exploited in cross-lingual settings.
We plan to extend this point with the optimized
model RoBERTa (Liu et al., 2019b) in future work.

Figure 2 shows the results for conjunction disam-
biguation. The accuracy of the BERT-fused model
is 96.62, with which we identify a progress of the
BERT-fused model over other systems. This shows
that BERT’s contextualized word embedding is use-
ful to capture clues from sentence structures and
form a generic idea of conjunctions. Conjunction
can impact the structure of the surrounding sen-
tences and is related more to fluency than to ade-
quacy. Therefore it can be more difficult than con-
tent word ambiguity (Popović, 2019). We conclude
that BERT can actually absorb fine-grained relevant
sense information during pre-training, which helps
learn meaningful conjunction sense distinctions.

Table 7 shows the results for coreference trans-
lation. The second column refers to the total ac-
curacy of pronoun translation. The BERT-fused
model achieves the score of 52.46, outperforming
the others by 0.52-1.16 in accuracy. This corre-
sponds to prior studies which show that BERT’s
attention matrices are able to do coreference reso-
lution by effectively encoding coreference signal
in deeper layers and at specific heads (Clark et al.,
2019). The last two columns reflect the models’
performance when antecedent location is inside
or outside the current sentence. The accuracy of
the BERT-fused model ranks the highest in short
antecedent distance, outperforming others by 2-
5 points, but deteriorates the most sharply as the
distance between the pronoun and its antecedent
increases. Though all models are ineffective in
larger segments, the BERT-fused model even un-
derperforms the baseline by 0.25 points. On the
one hand, these observations prove the ability of
BERT’s deeply bidirectional representation con-

base bt 1:0.5 bt 1:1 bt 1:2 bt 1:4
BT-ratio

91
92
93
94
95
96
97
98
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cu

ra
cy

bert
bt

Figure 2: Results on conjunction disambiguation test.
We list specific data of each model in Appendix C.

System Total1 Intra2 External3

Standard Transformer 51.78 79.83 44.76
+ back translation (1:0.5) 51.30 82.33 43.54
+ back translation (1:1) 51.65 82.50 43.94
+ back translation (1:2) 51.64 82.08 44.03
+ back translation (1:4) 51.94 82.00 44.42
BERT-fused model 52.46 84.25 44.51
1 Translating English pronoun it to German es, sie, er
2 within segment 3 outside segment

Table 7: Accuracy values for reference pronoun trans-
lation(right part) and antecedent location (left part).

Zh→En En→De
System Triggered BLEU
Standard Transformer 377 29.54
+ back translation (1:0.5) 359 28.85
+ back translation (1:1) 306 27.53
+ back translation (1:2) 334 27.12
+ back translation (1:4) 344 26.76
BERT-fused model 249 30.76

Table 8: Results on idiom translation.

ditioned on both left and right context to capture
intra-sentence dependency which is important for
understanding coreferences. On the other hand, it
also shows BERT’s limitation on long-range fea-
tures in document-level contexts, which is also ob-
served by Joshi et al. (2019). As mentioned earlier
in Section 4.2, one training task of BERT is to pre-
dict the next sentence. We assume that BERT is
better than the standard Transformer to capture re-
lation between two sentences and thus can improve
performance on translation involving long-range
features. Based on our results, however, seemingly
BERT’s potential in capturing sentence relations is
not thoroughly exploited by NMT architectures.

5.4 Pragmatics

Table 8 shows results for idiom translation. Among
all translations, the baseline triggers 377 literal er-
rors. Back-translation makes progress on the basis
of the baseline, while the BERT-fused model per-
forms substantially better than all its counterparts,
only triggering 249 literal errors in the blacklist.
Regarding the effect of training data size, we find
that from 377 errors with no back-translated sen-
tence pairs to 306 with 1.25M sentence pairs, the
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Figure 3: Results on commonsense reasoning.

errors continue to decrease as we add more syn-
thetic data. However, it slightly rises when building
systems with 2.5M synthetic data, showing that in-
creasing data size is not the most useful to help
idiom translation, while a better encoding of idiom
expression via pre-training may help. The data size
of Zh→En is relatively small, so we further verify
BERT’s effectiveness in the large-scale En→De ex-
periment (elaborated in Appendix D). The BLEU
results are summarized in the last column of Ta-
ble 8. The BERT-fused model still gains the best
performance among others with a score of 30.76.
This shows that in addition to local syntactic prop-
erties, BERT’s context-aware embedding based on
previous and following context can help the en-
coder of NMT to capture global topical properties
of words, thus making the model more expressive
and understand the underlying meanings better.

The commonsense reasoning results are shown
in Figure 3. The results clearly show that the
BERT-fused model is better than the baseline and
back-translated models in all three reasoning types,
with the largest superiority on lexical ambiguity,
a smaller gap on contextless syntactic ambiguity,
and the weakest gap on context syntactic ambigu-
ity. The performance of back-translation shows
that incrementally larger amounts of training data
do not consistently improve the commonsense rea-
soning performance of NMT, therefore it is likely
the knowledge implied in the pre-trained language
model that enhances commonsense reasoning abil-
ity of MT systems. Prior work (Zhou et al., 2020)
has proven BERT’s effectiveness in promoting com-
monsense ability in monolingual tasks. We further
find that in bilingual scenario, BERT can also help
model utilize knowledge via injecting prior infor-
mation on the encoder part of NMT.

The results for gender translation are presented
in Table 9. With BERT, gender bias in MT is not

System Accuracy ∆G ∆S
Standard Transformer 71.2 3.9 9.3
+ back translation (1:0.5) 67.0 7.8 11.8
+ back translation (1:1) 71.6 2.7 10.6
+ back translation (1:2) 75.1 0.1 5.2
+ back translation (1:4) 72.1 2.0 5.5
BERT-fused model 71.4 3.2 14.6

Table 9: Performance on gender bias test suite. For ∆G
and ∆S, higher numbers indicate stronger biases.

mitigated. The best performance is achieved by
the model trained with back-translation data in
a 1:2 setting, scoring 75.1, 0.1 and 5.2 in Accu-
racy, ∆G and ∆S, respectively. The scores of
the BERT-fused model are 71.4, 3.2, 14.6, respec-
tively, not competitive with the baseline on Accu-
racy and ∆G, and even much poor on ∆S. On
the one hand, this further indicates that BERT may
encode unintended social correlations during pre-
training (May et al., 2019; Tan and Celis, 2019),
and will propagate bias to downstream MT applica-
tion. On the other hand, the poor ∆S score shows
that the BERT-fused model is prone to translate
based on gender stereotypes, and suffer deterio-
rated performance when translating antistereotyp-
ical assignments. This is in line with prior obser-
vations in QA and relation classification (Poerner
et al., 2019) which shows that BERT’s knowledge
can come from learning stereotypical associations.

6 Conclusion

We presented a quantitative study of BERT in NMT
as compared with large-scale back-translation.
With 8 intrinsic evaluation tasks which cover a
large range of linguistic phenomena, our observa-
tions suggest that BERT’s bi-directional architec-
ture, contextualized representation and knowledge
learned from pre-training can help NMT manage
semantic and pragmatic difficulties, but BERT-style
representations may additionally introduce artifacts
undesired in MT. For morphological and syntactic
problems in which BERT does well in monolingual
tasks, there is still limitation under the bilingual
setting, requiring breakthroughs in BERT-fused
modeling. Our findings about BERT are largely
in line with research in monolingual setting, while
we broaden the analysis under bilingual situations.
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Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
neural machine translation systems for WMT’15. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 134–140, Lisbon, Por-
tugal. Association for Computational Linguistics.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 5039–5049, Brussels, Belgium. Association
for Computational Linguistics.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic
knowledge. In Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 241–253, Florence,
Italy. Association for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Alexander Mathis, Thomas Biasi, Steffen Schneider,
Mert Yuksekgonul, Byron Rogers, Matthias Bethge,
and Mackenzie W Mathis. 2021. Pretraining boosts
out-of-domain robustness for pose estimation. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1859–1868.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measur-
ing social biases in sentence encoders. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1

https://doi.org/10.18653/v1/2020.blackboxnlp-1.31
https://doi.org/10.18653/v1/2020.blackboxnlp-1.31
https://doi.org/10.18653/v1/2020.findings-emnlp.327
https://doi.org/10.18653/v1/2020.findings-emnlp.327
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/W18-2703
https://doi.org/10.18653/v1/W18-2703
https://doi.org/10.18653/v1/2020.emnlp-main.316
https://doi.org/10.18653/v1/2020.emnlp-main.316
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/W15-3014
https://doi.org/10.18653/v1/W15-3014
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063


1728

(Long and Short Papers), pages 622–628, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Timothee Mickus, Denis Paperno, Mathieu Constant,
and Kees van Deemter. 2019. What do you mean,
bert? assessing bert as a distributional semantics
model. arXiv preprint arXiv:1911.05758.

Mathias Müller, Annette Rios, Elena Voita, and Rico
Sennrich. 2018. A large-scale test set for the eval-
uation of context-aware pronoun translation in neu-
ral machine translation. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, pages 61–72, Brussels, Belgium. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. Bert is not a knowledge base (yet): Fac-
tual knowledge vs. name-based reasoning in unsu-
pervised qa. arXiv preprint arXiv:1911.03681.

A Poncelas, D Shterionov, A Way, GM de Buy Wen-
niger, and P Passban. 2018. Investigating backtrans-
lation in neural machine translation. arXiv preprint
arXiv:1804.06189.
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A Details on Test Suites

For your reference, below we make more elabora-
tions on evaluation test suites.

A.1 Morphology test

This test set is structured in the form of contrastive
pairs. In accordance with Table 5, we have:

1. Verbs-past: differ in the tense of the main verb
(present in one source sentence while past in
the other).

2. Verbs-future: differ in the tense of the main
verb (present in one source sentence while
future in the other).

3. Verbs-cond.: a verb in future tense is turned
into its conditional form.

4. Verbs-neg.: differ in the polarity of the main
verb (affirmative in one source sentence while
negative in the other).

5. Pronouns-plur.: differ in the number of the
pronoun (a singular pronoun in one source
sentence while a plural form in the other).

6. Nouns-compd.: the first source sentence con-
tains a multiword expression that is most
likely translated by a compound in German.
The other is modified by one single English
word in the multiword expression, such that
the new German translation should result in a
compound that has at least one morpheme in
common with the one seen in the first transla-
tion.

7. Nouns-nbr.: differ in the number of the noun
(a singular noun in one sentence while a plural
form in the other).

8. Adjectives-compar.: differ in the form of the
adjective (the bare adjective in one sentence
while the comparative form in the other).

9. Adjectives-superl.: one sentence contains an
adjective while the other contains its superla-
tive form.

10. Coordinated verbs: one sentence contains a
simple verb while the other contains a coordi-
nated VP in the form of “verb and verb”.

11. Verb position: the sentence pairs are gener-
ated by locating complex sentences where the
principal clause can be omitted and the sub-
ordinate clause leads to a German translation
where the verb should be located at the end of
the clause.

12. Complex NP: one sentence contains a per-
sonal pronoun while the other contains a com-
plex NP in the form of “adj+noun”.

13. Coreference: one sentence contains a corefer-
ence link involving a personal pronoun (it) or
a relative pronoun (that, which, who, whom,
whose). The antecedent noun of the pronoun
is changed to a synonym in the other sentence.

14. Strong adjective: one sentence contains a sub-
ject noun phrase with a definite article, an
adjective and a noun. The other simply re-
places the article by a possessive determiner.
In German, an adjective following a definite
article does not contain any gender marker in
its ending, whereas it does contain it when
following a possessive determiner.

15. Nouns: one sentence contains a noun while
the other with hyponyms.

16. Adjectives: one sentence contains an adjective
while the other with hyponyms.

17. Verbs: one sentence contains a verb while the
other with hyponyms.

A.2 Syntax test
This test set is structured in the form of contrastive
pairs. In accordance with Table 6, we have:

1. Noun-phrase agreement: the determiners
agree with their head noun in number and gen-
der in one sentence, while the other sentence
randomly changes the gender of a singular
definite determiner to introduce an agreement
error.

2. Subject-verb agreement: subjects and verbs
agree with one another in grammatical number
and person in one sentence, while the other
swaps the grammatical number of a verb to
introduce an agreement error.

3. Separable verb particle: verbs and their sepa-
rable prefix form a semantic unit in one sen-
tence, while the other sentence replaces a sep-
arable verb particle with one that has never
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been observed with the verb in the training
data.

4. Polarity-inserting: one sentence remains the
right polarity, while in the other sentence we
reverse polarity by inserting the negation par-
ticle nicht (not) or the negation prefix -un.

5. Polarity-deleting: one sentence remains the
right polarity, while in the other sentence we
reverse polarity by deleting the negation parti-
cle nicht (not) or the negation prefix -un.

6. Transliteration: one sentence maintains a right
name, while in the other sentence, two adja-
cent characters of the name are swapped.

A.3 Pragmatics test: Commonsense

In accordance with Figure 3, we have:

1. Lexical ambiguity: relates to word meanings
which can be disambiguited by resorting to
commonsense knowledge.

2. Contextless syntactic ambiguity: relates to
sentence structures which can be correctly in-
terpreted by resorting to commonsense knowl-
edge.

3. Context syntactic ambiguity: relates to sen-
tence structures which cannot be interpreted
uniquely if no more context is given.

A.4 Pragmatics test: Gender bias

In accordance with Table 9, we have:

1. Masculine and feminine gender role: e.g., a
male doctor versus a female nurse.

2. Stereotypical and anti-stereotypical gender
role: e.g., a female nurse versus a female doc-
tor.

B Model comparison

Below we list supplement results of model compar-
ison in Zh→En (Table 10) and En→De (Table 11).

C Data of experiment results

Below we list specific data of each model in the
tests of homograph translation (Table 12), conjunc-
tion disambiguation (Table 13) and commonsense
reasoning(Table 14).

D Idiom translation in En→De

Fadaee et al. (2018) build a bilingual data set for
idiom translation in En→De. It consists of 1500
parallel sentences whose English side contains an
idiom and the German side refers to a proper refer-
ence translation. The evaluation method is BLEU.
We adopt this data set in our experiment.
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Zh→En Params Speed (tok/sec) Len% (tgt/src)
Transformer 2.69B 1533.02 1.3
Back-translation 2.69B 1533.02 1.3
BERT-fused model 3.13B 732.07 1.3

Table 10: Supplement of Zh→En Model comparison.

En→De Params Speed (tok/sec) Len% (tgt/src)
Transformer 2.93B 1269.46 0.95

Table 11: Supplement of En→De Model comparison.

News Domain Colloquial Speech Domain
System Precision Recall F-score Precision Recall F-score
Standard Transformer 0.781 0.659 0.715 0.442 0.326 0.375
+ back translation (1:0.5) 0.788 0.670 0.724 0.447 0.325 0.376
+ back translation (1:1) 0.792 0.647 0.712 0.430 0.321 0.367
+ back translation (1:2) 0.794 0.644 0.711 0.437 0.303 0.357
+ back translation (1:4) 0.796 0.662 0.723 0.427 0.270 0.330
BERT-fused model 0.816 0.669 0.735 0.510 0.356 0.419

Table 12: Results on homograph translation test.

System Total
Standard Transformer 94.74
+ back translation (1:0.5) 94.00
+ back translation (1:1) 95.87
+ back translation (1:2) 95.03
+ back translation (1:4) 93.81
BERT-fused model 96.62

Table 13: Accuracy for conjunction disambiguation test.

System LA1 CL SA2 CT SA3

Standard Transformer 55 60 55
+ back translation (1:0.5) 56 56 54
+ back translation (1:1) 56 58 55
+ back translation (1:2) 57 58 54
+ back translation (1:4) 56 61 54
BERT-fused model 60 63 56
1 lexical ambiguity 2 contextless syntactic ambiguity
3 contextual syntactic ambiguity

Table 14: Accuracy for commonsense reasoning test.


