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Abstract

Document-level relation extraction aims to de-
tect the relations within one document, which
is challenging since it requires complex rea-
soning using mentions, entities, local and
global contexts. Few previous studies have dis-
tinguished local and global reasoning explic-
itly, which may be problematic because they
play different roles in intra- and inter-sentence
relations. Moreover, the interactions between
local and global contexts should be considered
since they could help relation reasoning based
on our observation. In this paper, we pro-
pose a novel mention-based reasoning (MRN)
module based on explicitly and collaboratively
local and global reasoning. Based on MRN,
we design a co-predictor module to predict
entity relations based on local and global en-
tity and relation representations jointly. We
evaluate our MRN model on three widely-
used benchmark datasets, namely DocRED,
CDR, and GDA. Experimental results show
that our model outperforms previous state-of-
the-art models by a large margin.

1 Introduction

Relation extraction (RE), identifying the semantic
relations among target entities in the text, has long
been a fundamental task in the natural language pro-
cessing (NLP) community (Zeng et al., 2014; Xu
et al., 2015). Prior efforts largely focus on sentence-
level RE (Lin et al., 2016; Zhang et al., 2018). How-
ever, recent studies reveal that a large number of
relations can actually be expressed through multi-
ple sentences, which necessitates document-level
RE (Yao et al., 2019). Compared with sentence-
level RE, the entities for document-level relations
may be mentioned in multiple sentences across a
document. Therefore, document-level RE requires
capturing the complex interactions between all enti-
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for the position of a Chicago municipal court judge in 1939.

object         subject: intra-sentence relation
object         subject: inter-sentence relation

P17:   country  
P27:   country of citizenship  
P102: member of political party
P570: date of death

P27
[S1] Edward Rowan Finnegan (June 5, 1905 – February 2, 1971)
was a U.S. Representative from Illinois from 1961 to 1964.

[S5] Finnegan unsuccessfully sought the Democratic nomination
... P17

[S12] He continued to serve until his death in 1971.

...

P102

...

Figure 1: An example of document-level RE from the
DocRED dataset. We use the same color to denote the
mentions of the same entity.

ties in the entire document (Nan et al., 2020; Zeng
et al., 2020; Wang et al., 2020).

It is well known that local and global contexts
are two key performance enhancers for the task.
Intuitively, the former can benefit the identification
of nearer (e.g., intra-sentence) relations, while the
latter is more useful for distant (e.g., inter-sentence)
relations. For document-level RE, such context in-
formation is closely related to the ubiquitous men-
tions in a document, so mention-based reason-
ing with different context granularities is highly
important for the task. However, most previous
studies have not distinguished local and global rea-
soning explicitly (Peng et al., 2017; Christopoulou
et al., 2019; Sahu et al., 2019; Nan et al., 2020;
Zhou et al., 2020; Zeng et al., 2020; Li et al., 2020;
Zhang et al., 2020). Recently Wang et al. (2020)
investigate local and global contexts for document-
level RE by performing global and local reasoning
consecutively. However, their pipeline method can
be problematic because it ignores the interactions
and communications of local and global contexts,1

which limits the performance of the task.
1From Figure 1, it is shown that the intra-sentence relations

P27 and P102 can help to identify the inter-sentence rela-
tion P17, since ‘U.S.’ and ‘Democratic’ are linked through
‘Finnegan’.
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In this paper, we aim to address the above issues
for improving document-level RE by presenting a
novel Mention-based Reasoning Network (MRN).
As shown in Figure 2, MRN consists of several
innovative modules for modeling the relation rea-
soning locally and globally, including (1) a two-
dimensional windowed convolution for capturing
the local mention-to-mention interactions between
the subject and object arguments of relations, and
(2) a co-attention module for capturing the global
interaction between each pair of entity mentions.
Note that the above two modules also provide mu-
tual information to each other, in order to capture
the interactions between local and global contexts.

Moreover, different from previous work that ex-
presses entities with just one kind of representation
(Peng et al., 2017; Christopoulou et al., 2019; Sahu
et al., 2019; Nan et al., 2020; Zhou et al., 2020;
Zeng et al., 2020; Li et al., 2020; Zhang et al.,
2020), our method distinguishes mentions into sub-
jects and objects, and generates entity represen-
tations from both local and global mention-based
reasoning. Specifically, we design a novel mod-
ule, called co-predictor, to utilize both local and
global entity representations for jointly reasoning
the relations between close and distant entities.

We conduct extensive experiments on three
widely-used benchmarks, including DocRED (Yao
et al., 2019), CDR (Li et al., 2016) and GDA (Wu
et al., 2019). The results show that our MRN model
outperforms the current best model by a large mar-
gin, demonstrating its advances. In summary, we
make the following contributions:

• We propose a mention-based reasoning net-
work (MRN), to distinguish the impacts of
close and distant entity mentions in relation
extraction and meanwhile consider the interac-
tions between local and global contexts, which
we call locally and globally mention-based
reasoning.

• We also propose a co-predictor to work in
concert with the mention reasoning block, and
predict the relation of a pair of entities using
local and global features simultaneously.

• Our model achieves the state-of-the-art per-
formances on three benchmark datasets for
document-level RE. We also conduct exten-
sive analyses of our model to better under-
stand its working mechanism.2

2Codes are publicly available at https://github.
com/ljynlp/MRN

2 Related Work

Relation extraction (RE), including sentence-level
RE and document-level RE, plays a crucial role in a
wide variety of knowledge-based applications, such
as question answering (Hixon et al., 2015), dia-
logue generation (He et al., 2017), etc. Recent stud-
ies largely focus on sentence-level RE by various
neural network methods, such as CNN (Zeng et al.,
2014; dos Santos et al., 2015), BiLSTM (Zhang
et al., 2015; Cai et al., 2016), attention mechanism
(Wang et al., 2016; Lin et al., 2016), and neural
graph models (Zhang et al., 2018; Zhu et al., 2019).
However, in practice, many relational facts need
to be inferred across multiple sentences in a docu-
ment, so researchers have shown a growing interest
in document-level RE.

Compared with sentence-level RE, document-
level RE needs to consider the complicated inter-
actions between entities across multiple sentences.
With this in mind, researchers begin to use graph
neural networks to reason intra- and inter-sentence
relations and make certain progress in extracting
inter-sentence relations with document-level graph
convolutional neural network (Peng et al., 2017;
Velickovic et al., 2018; Christopoulou et al., 2019).
Sahu et al. (2019). For example, Zhou et al. (2020)
use entities as nodes and the context between en-
tity pairs as edges to construct graphs. Nan et al.
(2020) treat the graph as a latent structure and per-
form relational reasoning. However, most existing
approaches only use entity-level information and
ignore mention-level information.

Some studies also take mentions into account by
adding mention nodes in the graph. For instance,
Christopoulou et al. (2019) put mentions and en-
tities in the same graph. Li et al. (2020) utilize
a dual-tier heterogeneous graph to propagate re-
lational information among entity mentions, and
then summarize them into corresponding entities.
More recently, Wang et al. (2020) use multi-head
attention to aggregate multiple mentions of spe-
cific entities. Different from the above methods,
Zeng et al. (2020) propose a graph aggregation and
inference network that includes two graphs, one
for capturing complex interactions among different
mentions, and the other for integrating mention-
level information of the same entities. Although
these methods introduce mention-level nodes or
graphs, none of them consider local mention-based
contextual information or mention-level relative
distances, which are all considered in our model.

https://github.com/ljynlp/MRN
https://github.com/ljynlp/MRN
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Figure 2: The overall architecture of our MRN, including three key components: encoder (§ 3.1), interactive
mention-based reasoning (§ 3.2) and co-predictor (§ 3.3).

3 Methodology

Task Formulation Given an input document
consisting of N tokens D = {wi}Ni=1 and P en-
tities E = {ei}Pi=1, the task aims to extract a sub-
set of relations from R between the entity pairs
(esi , e

o
j), whereR is a pre-defined relation type set,

esi and eoj are identified as subject and object enti-
ties. An entity ei can appear multiple times in the
document via Kei mentionsMei = {mj}

Kei
j=1.

Framework As illustrated in Figure 2, the over-
all architecture consists of three tiers. An encoder
first yields contextual representations, and then the
mention-based reasoning block (in multiple lay-
ers) performs local-level feature extraction with
a two-dimensional (2D) convolution, and global-
level feature retrieval with a co-attention module.
Afterward, a co-predictor layer that contains a 1D
and 2D dynamic pooling aggregates the entity-level
features from the mention-based reasoning block.
Finally, a multi-layer perceptron and a biaffine clas-
sifier are leveraged for jointly reasoning the rela-
tions between subject and object entities.

3.1 Encoding Layer

We first map each word wi into a vector, and con-
catenate it with its corresponding entity type ti:3

3ti denotes the type of entity mention that contains this
word (e.g. if an entity type is Person, its mention word type
is also Person).

xi = [xwi ;x
t
i] . (1)

Then, we adopt BiLSTM to encode the vectorial
word representations into contextualized word rep-
resentations:

hi = BiLSTM(xi) , (2)

where hi is the token hidden representation. Note
that we also can use the BERT (Devlin et al., 2019)
as an alternative to improve performances. Based
on hi, we can obtain the mention representation:

mi = Max{hj}bij=ai , (3)

where ai and bi are the start and end positions of
the i-th mention, respectively.

3.2 Interactive Mention-based Reasoning
Layer

As we argued earlier, local and global context infor-
mation is closely related to the ubiquitous mentions
in a document. We thus propose a mention-based
module for multi-hop reasoning among the relation-
ships of all the mentions. Considering that there
exist overlapping relations where multiple relations
share the same mention, we distinguish mentions
into subjects and objects by their directions. More-
over, near neighbors are more informative than
distant ones for determining relations. To this end,
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Figure 3: The interactive mention-based reasoning
block.
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we adopt a two-dimensional (2D) windowed con-
volution to capture local interactions between close
subject and object mentions.

As shown in Figure 3, we perform multi-hop
reasoning by stacking multiple layers (i.e., L) of
our interactive mention-based reasoning blocks.
The inputs of the l-th layer block include: (1) a
set of subject mention representations Ml−1,s =
{ml−1,s

i }Ti=1, (2) a set of object mention represen-
tations Ml−1,o = {ml−1,o

i }Ti=1, and (3) a set of
mention relation representations Ql−1, where T is
the number of mentions and Ql−1

ij denotes the type
of implicit relation between the subject i and object
j. For initialization, m0,s

i = m0,o
i = mi, and Q0

denotes relative distance embeddings of mentions
(Zeng et al., 2014).

Local Reasoning To model the interactions be-
tween near subjects and objects, we first build a
relationship tensor Cl from Ml−1,s and Ml−1,o,
in which Cl

ij = [ml−1,s
i ;ml−1,o

j ]. Next, we con-
catenate Cl and Ql−1, and adopt a Feedforward
Network (FFN) to reduce their dimensions. We
then employ a 2D convolution to capture local
contextual interactions, which can be regarded as
extracting subgraph representations from a fully-
connected bipartite graph containing subject and
object nodes. The overall process can be formu-
lated as:

Ql = σ(Conv2d(FFN([Ql−1;Cl]))) , (4)

where σ is a LeakyReLU activation function.

Global Reasoning We introduce a co-attention
mechanism to compute attention coefficients that
indicate the importance of subjects to objects and
vice versa, so that the interaction between each pair
of mentions can be considered. Inspired by the

max max

Figure 4: The 1D and 2D dynamic pooling.

success of graph attention network (GAT) (Velick-
ovic et al., 2018), we apply two learnable linear
transformations to transform subject and object
mention representations Ml−1,s and Ml−1,o into
higher-level features. Then, we leverage the men-
tion relation representation Ql to calculate the co-
efficients and inject them into the co-attention pro-
cess:

m̂l,φ
i =

∑
j∈M l,ψ

αl,ψij Wl,ψml−1,ψ
j , (5)

where Wl,ψ is a learnable parameter matrix, and
αl,ψij = Softmax(FFN(Ql)). Here φ, ψ ∈ {s, o}.
Afterward, the mention representation of the next
layer ml,φ

i is generated by adding the residual of
the last layer ml−1,φ

i and the non-linear transfor-
mation of the co-attention output m̂l,φ

i , which can
be formulated as:

ml,φ
i = σ(m̂l,φ

i +Wl,φml−1,φ
i ) +ml−1,φ

i . (6)

3.3 Co-Predictor Layer
After the last reasoning block (i.e., the L-th block),
we obtain the final mention representations ML,s

and ML,o, as well as the mention relation represen-
tation QL. Since different mentions may belong to
different entities, we apply 1D and 2D max-pooling
to aggregate mention-level features into the entity
level (Figure 4). Then, we apply two predictors to
calculate two relation distributions for entity pair
(ei, ej) and then combine them for obtaining the
final prediction.

Local Predictor Based on the mention relation
representation QL generated from the mention-
based reasoning block, we adopt a 2D dynamic
max-pooling (cf. Figure 4 right) to aggregate
mention-level features into entity-level features:

Gij = Max{QL
kt}k∈Mei ,t∈Mej

, (7)

where Mei and Mej are the mention sets corre-
sponding to the i-th and j-th entities, respectively.



1363

Then we employ a FFN to generate prediction
scores for entity pair:

y′ij = FFN(Gij) . (8)

Global Predictor Based on the mention repre-
sentations ML,s and ML,o, the representations of
the i-th and j-th entities can also be generated by
the 1D dynamic max-pooling (Figure 4 left).

eφi = Max{mL,φ
k }k∈Mei

, (9)

where Mei is the mention set of the i-th entity,
φ can be {s, o} and mL,φ ∈ ML,φ. Then, a bi-
affine classifier (Dozat and Manning, 2017) is used
to compute the relation scores between a pair of
subject and object entities:

zsi = MLPs(esi ) , (10)

zoj = MLPo(eoj) , (11)

y′′ij = zsi
>Uzoj +W[zsi ; z

o
j ] + b , (12)

where U, W and b are trainable parameters.

Joint Prediction The final relation probability
for entity pair (ei, ej) with regards to the relation-
ship r comes from the combination of the scores
from both local and global predictors:

P (r|ei, ej) = Sigmoid(y′ij + y′′ij) . (13)

3.4 Learning
Considering the imbalance of positive and negative
samples in document-level RE, we use asymmetric
loss (ASL) (Ben-Baruch et al., 2020) instead of
binary cross-entropy loss:

L+ =(1− P (r|ei, ej))γ+ log(P (r|ei, ej)) ,
(14)

L− =(Pn(r|ei, ej))γ− log(1− Pn(r|ei, ej)) ,
(15)

where γ+ and γ− are the focusing hyper-
parameters for positive and negative samples,
which aim to emphasize the contribution of posi-
tive samples and meanwhile down-weight the con-
tribution of easy negatives samples (γ− > γ+).
Pn(r|ei, ej) = max(P (r|ei, ej)− n, 0) is a proba-
bility shift mechanism that further filters out easy
negative samples (probability margin n ≥ 0 is a
hyper-parameter). Here, the final loss function can
be formulated as：

L = −
∑
D∈S

∑
i 6=j

∑
r∈R

I (r = 1)L+ + I (r = 0)L−,

(16)
where S denotes the whole dataset, and I(·) refers
to the indicator function.

Statistics DocRED CDR GDA
# Train 3,053 500 23,353
# Dev 1,000 500 5,839
# Test 1,000 500 1,000
# Relations 97 2 2
Relations instances 63,443 3,116 46,343
Avg.# entities per Doc. 19.52 6.82 4.84
Avg.# mentions per Doc. 26.20 19.23 18.45

Table 1: Statistics of the three datasets.

4 Experimental Settings

4.1 Dataset and Evaluation

We conduct experiments on three benchmark
datasets, including DocRED (Yao et al., 2019),
CDR (Li et al., 2016) and GDA (Wu et al., 2019),
and the statistical information is shown in Table 1.
DocRED is a large-scale human-annotated dataset
for document-level RE, including 3,053 documents
for training, 1,000 for development and 1,000 for
test. CDR and GDA are the widely-used document-
level RE in the biomedical domain. CDR contains
1,500 PubMed abstracts with 3,116 relational facts,
and GDA consists of 30,192 MEDLINE abstracts
and 46,343 relational facts.

Following previous studies (Yao et al., 2019;
Nan et al., 2020), we adopt F1 and Ign F1 as the
evaluation metrics, where Ign F1 is calculated by
excluding the common relation facts shared by the
training, development and test sets. Depending on
whether relation arguments occur within one sen-
tence or not, F1 can be further split into intra-F1
and inter-F1. The results of our model are pre-
sented after a significant test (p≤0.03).

4.2 Baselines

We make comparisons with the current state-of-the-
art systems, including two categories. 1) Sequence-
based methods, which use different neural archi-
tectures to encode the entire document, include
CNN (Zeng et al., 2014), BiLSTM (Cai et al.,
2016), Context-Aware (Sorokin and Gurevych,
2017) and HIN (Tang et al., 2020). 2) Graph-
based methods, which construct homogeneous or
heterogeneous graphs based on the whole doc-
ument, include GAT (Velickovic et al., 2018),
GCNN (Sahu et al., 2019), EoG (Christopoulou
et al., 2019), LSR (Nan et al., 2020), GAIN
(Zeng et al., 2020) and GLRE (Wang et al., 2020).
Besides, some models leverage BERT (Devlin
et al., 2019) for task improvements, including two-
phase+BERT (Wang et al., 2019) and Coref+BERT
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Dev Test

Ign F1 F1 Intra-F1 Inter-F1 Ign F1 F1
•Without BERT

Sequence-based

CNN (Yao et al., 2019) 41.58 43.45 51.87 37.58 40.33 42.26
BiLSTM (Yao et al., 2019) 48.87 50.94 57.05 43.49 48.78 51.06
Context-Aware (Yao et al., 2019) 48.94 51.09 56.74 42.26 48.40 50.70
HIN-GloVe (Tang et al., 2020) 51.06 52.95 - - 51.15 53.30

Graph-based

GAT (Velickovic et al., 2018) 45.17 51.44 58.14 43.94 47.36 49.51
GCNN (Sahu et al., 2019) 46.22 51.52 57.78 44.11 49.59 51.62
EoG (Christopoulou et al., 2019) 45.94 52.15 58.90 44.60 49.48 51.82
LSR (Nan et al., 2020) 48.82 55.17 60.83 48.35 52.15 54.18
GAIN (Zeng et al., 2020) 53.05 55.29 61.67 48.77 52.66 55.08

Ours MRN 56.62 58.69 65.24 50.91 56.19 58.46
•With BERT

Sequence-based
BERT (Wang et al., 2019) - 54.16 61.61 47.15 - 53.20
Two-Phase+BERT (Wang et al., 2019) - 54.42 61.80 47.28 - 53.92
Coref+BERT (Ye et al., 2020) 55.32 57.51 - - 54.54 56.96

Graph-based
LSR+BERT (Nan et al., 2020) 52.43 59.00 65.26 52.05 56.97 59.05
GLRE (Wang et al., 2020) - - - - 55.40 57.40
GAIN+BERT (Zeng et al., 2020) 59.14 61.22 67.10 53.90 59.00 61.24

Ours MRN+BERT 59.74 61.61 67.74 54.43 59.52 61.74

Table 2: Performances on DocRED. The results of baselines are from their related papers.

(Ye et al., 2020).

5 Results and Analyses

5.1 Results on DocRED

Table 2 shows the experimental results on the Do-
cRED dataset. We can find that MRN achieves
56.19% Ign F1 and 58.46% F1 on the test set, out-
performing the sequence-based models with large
margins. Specifically, MRN outperforms the best
sequence-based model HIN by 5.04% and 5.16%
in terms of Ign F1 and F1, demonstrating the effec-
tiveness of capturing the mention-level contextual
information for document-level RE.

Moreover, we observe that graph-based models
(e.g., LSR and GAIN) generally perform better than
sequence-based models (e.g., BiLSTM and HIN).
This verifies the usefulness of constructing infor-
mative graphs. In particular, our MRN achieves the
best Ign F1 and F1 scores, and outperforms GAIN
by 3.53% and 3.38%, respectively. This shows
the importance of emphasizing local mention-level
interactions for document-level RE.

Furthermore, we observe that the performance
can be substantially boosted with the help of BERT,
where the Ign-F1 and F1 increase by 3.33% and
3.28% on the test set. Notably, MRN with GloVe
embeddings is able to achieve better results than
several BERT-based models, such as CorefBERT
and GLRE. This suggests that our model is more

F1 Intra-F1 Inter-F1
• CDR data
ME-CNN (Gu et al., 2017) 61.3 57.2 11.7
BRAN (Verga et al., 2018) 62.1 - -
C-CHAR (Nguyen and Verspoor, 2018) 62.3 - -
GCNN (Sahu et al., 2019) 58.6 - -
EoG (Christopoulou et al., 2019) 63.6 68.2 50.9
DHG (Zhang et al., 2020) 64.7 68.6 54.1
LSR (Nan et al., 2020) 64.8 68.9 53.1
MRN 65.9 70.4 54.2
• GDA data
EoG (Christopoulou et al., 2019) 81.5 85.2 50.0
DHG (Zhang et al., 2020) 82.2 85.4 52.4
LSR (Nan et al., 2020) 82.2 85.4 51.1
MRN 82.9 86.1 53.5

Table 3: Results on CDR and GDA datasets.

effective in capturing complex interactions between
close and distant mentions even without the help
of pre-trained embeddings.

5.2 Results on CDR and GDA

Table 3 shows the results on two biomedical
datasets. Here, the baselines are also divided into
sequence-based models (ME-CNN, BRAN, and
C-CHAR) and graph-based models (GCNN, EoG,
DHG, and LSR). Similar to the DocRED dataset,
the graph-based models generally outperform the
sequence-based models on CDR, which reveals the
effectiveness of incorporating structural informa-
tion and reasoning mechanisms in document-level
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Model Ign F1 F1 Intra-F1 Inter-F1
MRN 56.62 58.69 65.24 50.91
- entity type 55.70 57.61 64.25 49.74
- relative distance 55.61 57.64 64.33 49.70
- mention-based reasoning 53.71 55.66 61.55 49.14
- global predictor 52.77 54.53 60.81 46.99
- local predictor 53.73 55.70 61.95 49.01
dynamic average pooling 52.43 54.51 60.85 48.02
sharing object and subject 55.76 57.70 64.77 49.40
binary cross-entropy 56.08 58.02 64.52 50.29

Table 4: Ablation studies on the DocRED dataset.

RE. Besides, our MRN model achieves better per-
formances than the state-of-the-art models on CDR
and GDA datasets, outperforming LSR by 1.1%
and the DHG by 0.7% respectively.

5.3 Intra- and Inter-sentence Relation
Extraction

According to recent work (Yao et al., 2019), iden-
tifying 40.7% relations need the information of
multiple sentences, which indicates that the rea-
soning ability of a model plays an important role
in document-level RE. Thus, we also report the
performances of intra- and inter-sentence relation
extraction on three datasets in Table 2 and 3. We
find that our model outperforms the current best
models on all datasets in regard to both intra- and
inter-F1. For example, MRN improves the intra-F1
by 3.57% and inter-F1 by 2.14% compared with
GAIN on the development set of DocRED. This
shows that mention-level reasoning is highly ef-
fective to capture complex interactions between
mention objects and subjects, especially when not
only local contexts but also long-range dependen-
cies are considered.

5.4 Ablation Studies

We ablate each part of our MRN model on the
development set of DocRED, as shown in Table
4. First, without entity type embeddings at the
encoding layer, we observe slight performance
drops. By removing relative distance information,
the performance also decreases in a small degree.
Furthermore, after removing interactive mention-
based reasoning layer, global or local predictors,
the performance goes down significantly. In partic-
ular, we find that the decrease of inter-F1 after re-
moving global predictor (3.92%=50.91%-46.99%)
is obviously higher than that for local predictor
(1.90%=50.91%-49.01%), which verifies the use-
fulness of global features for long-dependency re-
lation reasoning. A significant drop can be found
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Figure 5: F1 scores of different relation types accord-
ing to their entity arguments (e.g., (s)ingle mention and
(m)ultiple mentions).
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when replacing the dynamic max pooling with av-
erage pooling. Finally, sharing object and subject
representations and using binary cross-entropy loss,
the model also has a certain degree of degradation.

5.5 Effect Analysis for Co-Predictor
In this section, we investigate the effect of global
and local predictors for MRN. We divide the rela-
tion instances in the development set of DocRED
into three groups: the one where both subject and
object arguments have single mention, the one
where either subject or object argument has sin-
gle mention, and the one where both subject and
object arguments have multiple mentions. We also
evaluate our model using different predictor config-
urations.

As shown in Figure 5, the model with both lo-
cal and global predictors consistently outperforms
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[S1] Allen Francis Moore (September 30, 1869 – August 18, 1945) was a U.S. Representative from 
Illinois. … [S4] He graduated from the Monticello High School in 1886 and from Lombard College, 
Galesburg, Illinois, in 1889. ...
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Figure 7: A case study for our model MRN and the state-of-the-art model, GAIN (Zeng et al., 2020). Only partial
entities in the document are shown due to the space limitation. The red arrow denotes the wrong prediction.

the other ones. The F1s increase as the times that
subjects and objects are mentioned increase (from
s-s to m-m), indicating that multiple mentions ap-
peared in various positions can provide more infor-
mation to models. When removing the local predic-
tor, we can observe that there is a huge drop for the
s-s group, especially in Intra-F1. This demonstrates
that the s-s group are mostly intra-sentence rela-
tions and they depend on local reasoning mostly.
Moreover, if the global predictor is discarded, inter-
F1 scores for the groups where subjects and ob-
jects are mentioned multiple times (s-m and m-m)
drop the most. This reveals that the global predic-
tor is more beneficial for extracting relations from
multiple-mention entities or inter-sentence entities.

5.6 Effect Analysis for Inter- and
Intra-sentence Training Data

As shown in Figure 6, we analyze the variation of
inter- and intra-F1 scores when increasing or de-
creasing the proportions of intra- and inter-sentence
training instances on the DocRED dataset. Note
that the proportions of intra- and inter-sentence
relation instances are 54.5% and 45.5% in the train-
ing set. The experimental setting is as below: first,
we use 5% of inter-sentence training instances and
observe the intra-F1. Then we gradually increase
the percentage such as 10%, 20%, 50% and 100%.
During this process, all intra-sentence training in-
stances are used. The object for the above steps
is to observe the effect of inter-sentence training
instances on the intra-F1. In addition, we conduct
similar experiments to observe the inter-F1 by grad-
ually increasing the proportion of intra-sentence
training instances.

As the red line shows in Figure 6, the inter-F1 is
influenced slightly by the number of intra-sentence

training instances. In contrast, the number of intra-
sentence training instances has a significant im-
pact on the inter-F1, since the inter-F1 grows dra-
matically (the blue line) when more intra-sentence
training instances are added. This suggests that
the interactions between intra- and inter-sentence
relations indeed exist, and one may be helpful for
reasoning the other.

5.7 Case Study

As shown in Figure 7, we present a case study to
better understand the effect of our proposed MRN,
in comparison with previous state-of-the-art base-
line GAIN. We can observe that Monticello is the
object of the intra-sentence relation triple (‘Moore’,
educated at, ‘Monticello’) and also the subject of
the inter-sentence (‘Monticello’, country, ‘U.S’).
However, GAIN fails to identify the relation be-
tween ‘U.S.’ and ‘Monticello’, while MRN deduces
it successfully. This demonstrates that the effec-
tiveness of distinguishing subjects and objects at
the inference stage, and MRN has strong capability
for inter-sentence reasoning. Meanwhile, GAIN
has made a wrong prediction between ‘Monticello’
and ‘Illinois’ in the 4-th sentence, indicating that
our model has better local inference ability.

6 Conclusion

We propose a novel mention-based reasoning net-
work (MRN) for document-level relation extraction.
Our model is capable of capturing local and global
contextual information as well as close and dis-
tant mention interactions, via multiple mechanisms
such as a multi-hop mention-level reasoning block
and collaborative predictors. Experimental results
show that our proposed model achieves new state-
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of-the-art on three widely-used datasets. Through
empirical analyses, we find that it is reasonable for
document-level RE models to pay more attention
on local context and close mentions. Meanwhile,
global context and distant mention interactions are
also highly important for document-level RE. Last
but not least, joint reasoning with local and global
context information is a reasonable and effective
method for the task.
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A Effect Analysis for Sentence Number

As shown in Figure 8, we display the F1 scores
of MRN and GAIN in the development set of Do-
cRED with regards to the document length. As
seen, we count the document length using the num-
ber of sentences within a document, which varies
from 3 to 13. Results show that MRN attains bet-
ter performances than GAIN, no matter that how
the document length changes. In addition, the per-
formance difference between MRN and GAIN be-
comes larger, when the document becomes longer.
For instance, MRN outperforms GAIN by about
10% with regards to the group where the document
length is 13. This demonstrates that our model is
more robust for long documents.
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Figure 8: Comparisons between MRN and GAIN about
the effect of the document length on the F1.

B Architecture Analysis for MRN Block

We conduct experiments for the interactive
mention-based reasoning block based on the de-
velopment set of DocRED, to understand which
configuration works better. As shown in the left
of Figure 9, our model performs the best when the
kernel size is 3 in terms of all evaluation metrics.
Meanwhile, the right part of Figure 9 shows that 3
seems to be a reasonable choice for the number of
the MRN block.

C Analysis of Loss Functions

To compare the ASL and BCE loss, we compare
their learning curves on DocRED and keep other
settings of our model the same, as shown in Figure
10. With the comparisons of 80 epochs, we observe
that the ASL loss helps our model converge to bet-
ter performance than the BCE loss at a faster speed,
demonstrating the effectiveness of the asymmetric
strategies for positive and negative samples.
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Figure 9: Analysis for the MRN block. The x-axis
denotes the kernel size of 2D convolution in the local
reasoning module (Left) and the number of used MRN
blocks (Right).
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Figure 10: Comparison between the asymmetric loss
(ASL) and binary cross-entropy (BCE) loss.

Hyper-parameter DocRED CDR GDA
Batch size 32 16 32
Learning rate 1e-3 1e-3 1e-3
Gradient clipping 1 1 1
Weight decay 1e-5 1e-5 1e-5
Dropout for MRN block 0.5 0.5 0.5
Dropout for co-predictor 0.33 0.5 0.5
Blocks of MRN 3 3 3
Kernel size 3 3 3
Word embedding size 100 200 256
Entity type embedding size 20 20 20
Relative distance embedding size 20 20 20
LSTM hidden size 256 256 320
Positive focusing parameter 3 3 3
Negative focusing parameter 1 0 0
Probability margin 0.05 0.05 0.02

Table 5: Hyper-parameter settings for three datasets.

D Implementation Details

In this section, we provide more details of our ex-
periments. We implemented MRN with PyTorch
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and trained it with a NVIDIA Tesla V100 GPU.
Hyper-parameter settings for DocRED, CDR and
GDA are listed in Table 5.

We adopt AdamW (Loshchilov and Hutter,
2019) as our optimizer. For fair comparisons, we
utilize the GloVe embeddings (Pennington et al.,
2014) for DocRED, pre-trained PubMed embed-
dings (Chiu et al., 2016) for CDR, and randomly
initialized embeddings for GDA, following Yao
et al. (2019) and Christopoulou et al. (2019). More-
over, we apply the uncased BERT-base model as
our encoder for comparing with some baselines.
We use the initial learning rate 1e-5 to fine-tune
BERT.


