
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1280–1287
August 1–6, 2021. ©2021 Association for Computational Linguistics

1280

Enhanced Metaphor Detection via Incorporation of External Knowledge
Based on Linguistic Theories

Chang Su, Kechun Wu, Yijiang Chen*

School of Informatics, Xiamen University, Xiamen, China
{suchang,cyj}@xmu.edu.cn, wukechun@stu.xmu.edu.cn

Abstract

Use of external knowledge is an important and
effective method applied widely in metaphor
detection. Although existing knowledge-based
methods perform well, when leveraging ex-
ternal knowledge, they take little considera-
tion on linguistic theories of metaphor detec-
tion. Based on Metaphor Identification Pro-
cedure (MIP) and Select Preference Violation
(SPV), directly using examples and definitions
of words from the Oxford Dictionary1, we pro-
pose two BERT-based models for metaphor de-
tection: ExampleBERT and DefinitionBERT.
Experimental results show that our methods
achieve state-of-the-art performance on two es-
tablished metaphor datasets. Furthermore, we
show that our DefinitionBERT is highly inter-
pretable.

1 Introduction

Metaphor Detection (MD) is a high-level natural
language processing (NLP) task, which aims to
identify the metaphorical expressions/words in the
text. Identifying metaphors, a cognitive activity
in which humans use their experience in one field
to explain or understand another field (Shutova
et al., 2016), is a challenging task that requires
rich prior knowledge and a high level of semantic
understanding.

In earlier studies, many resources were ex-
ploited to develop rule-based and machine learn-
ing systems, such as domain types,word abstract-
ness/concreteness(Turney et al., 2011; Tsvetkov
et al., 2014). Recently, many deep learning based
methods have been applied to metaphor detection
(Kehat and Pustejovsky, 2020; Le et al., 2020; Ro-
hanian et al., 2020), which achieve the current state-
of-the-art performance. They also make use of ex-
ternal knowledge. Hence, we can infer that incor-

1https://www.lexico.com/
*Corresponding author.

porating external knowledge is indeed important.
In this paper, we show that some level of lexical
semantic information, even if its just dictionary
entries, can improve performance in identifying
verbal metaphor.

A recent study (Mao et al., 2019) shows the ef-
fectiveness of taking advantage of linguistic the-
ories when identifying metaphors. According to
one of the linguistic theories, Metaphor Identifica-
tion Procedure(MIP) (Semino et al., 2007; Steen
et al., 2010), a metaphor is identified if the literal
meaning of a word contrasts with the means that
word takes in this context. For example, in the
metaphorical sentence, the deep learning model
is flying during training, the context meaning of
’flying’ is ’the loss of the model is getting bigger
and even become indefinite’, which contrasts with
its literal meaning of ’move through the air using
wings’ according to Oxford Dictionary. An alterna-
tive approach is Select preference Violation(SPV)
(Wilks, 1975, 1978), wherein a metaphor is iden-
tified by noticing a semantic contrast between a
target word and its context. For example, in the
deep learning model is flying during training, ‘fly’
is unusual in the context of ‘model’ and ‘training’:
a model cannot fly.

To incorporate external knowledge, we take ad-
vantage of the linguistic theories of metaphor detec-
tion. Following SPV, we use examples of the word
from Oxford Dictionary, where the literal meanings
of the word are expressed in the contextual exam-
ples for the most of time. Hence, some common
contextual information of the word can be inferred
from examples. In accordance with MIP, we use the
definitions of a word from the Oxford dictionary,
which directly express the literal meanings of the
word. To better use this knowledge and conform
the idea of linguistic theories, we propose (1) Ex-
ampleBERT, which, before it identifies metaphor,
learns the common contextual information of the

https://www.lexico.com/
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target word and (2) DefinitionBERT, which, while
identifying a metaphor, directly takes advantage of
the literal meanings of the target word. In particu-
lar, our contribution is two-fold as follows:

1. We directly use the examples and definitions
of the word from the Oxford Dictionary. To
the best of our knowledge, it is the first time
this knowledge is incorporated into metaphor
detection.

2. We propose ExampleBERT and Definition-
BERT. Experimental results show that both of
our models can outperform the state-of-the-
art models on two verb metaphor detection
datasets. Also, experimental analysis proves
that our DefinitionBERT is indeed effective
and has a strong interpretability.

2 Related Work

Metaphor identification is a linguistic metaphor
processing task that identifies metaphors in textual
data. Most of the earlier works on metaphor iden-
tification were based on feature-engineering. Un-
igrams, imageability, concreteness, abstractness,
word embedding and semantic classes are fea-
tures commonly employed by supervised machine
learning (Turney et al., 2011; Assaf et al., 2013;
Tsvetkov et al., 2014; Klebanov et al., 2016). Re-
cently, many deep learning based methods have
been proposed, which treat metaphor identification
as a sequence tagging task. Considering whether
to use external knowledge directly, we divide these
methods into the following two categories:
Use of pre-trained word embeddings. The first
methods use only pre-trained word embeddings,
which are commonly used in NLP tasks. (Wu
et al., 2018) proposed a model based on word2vec
(Mikolov et al., 2013) and PoS tags and word clus-
ters, which are encoded by a Convolutional Neural
Network (CNN) and Bi-LSTM. The encoded infor-
mation is directly fed into a softmax classifier. (Gao
et al., 2018) and (Mao et al., 2019) concatenated
Glove (Le et al., 2020) and ELMO (Peters et al.,
2018) as the inputs of Bi-LSTM, the difference is
(Mao et al., 2019), inspired by linguistic theories,
uses attention mechanism to improve performance.
External knowledge. The second methods use dif-
ferent kinds of external knowledge to boost perfor-
mance. (Kehat and Pustejovsky, 2020) use Vision-
Language datasets to derive the concreteness scores
of words and then convert them to Visibility Em-

beddings, which, like with (Gao et al., 2018) , fi-
nally feed to Bi-LSTM. (Le et al., 2020) propose a
multi-mask learning method, which transfer knowl-
edge from Word Sense Disambiguation (WSD); to
improve performance, they also employe Graph
Convolution Neural networks (GCN) with depen-
dency trees. Like (Le et al., 2020), (Rohanian et al.,
2020) also use GCN, but they incorporate annota-
tions for verbal multiword expressions. Obviously,
our methods belong to this second category.

3 Method

3.1 BERT

BERT (Devlin et al., 2019) is a powerful language
representation model, whose architecture is a multi-
layer bidirectional transformer encoder. The BERT
model is pre-trained on a large corpus and two
novel unsupervised prediction tasks, i.e., masked
language model and next sentence prediction tasks
are used in pre-training. Here, it must note that
BERT is chosen as our base model, not only be-
cause of its excellent performance on many other
NLP tasks, but also BERT is a bidirectional lan-
guage model. More specifically, during training,
BERT randomly mask some words in the sentence
and then use all the unmasked words to predict
them based on a self-attention mechanism. Hence,
this procedure allow BERT to learn the common
context of the target word, which is very useful for
our task because if a target word appears in uncom-
mon contexts, then BERT is more likely to predict
it to be a metaphorical word.

3.2 BERT(Token-CLS)

To incorporate BERT to our metaphor detection
task, we take the final hidden state of the token
corresponding to the target word, and then add a
classification layer to predict whether or not the tar-
get word is metaphorical. We compare this model
as our baseline with ExampleBERT and Definition-
BERT mentioned below.

3.3 ExampleBERT

The intuition behind SPV is that metaphoricity is
identified by detecting the incongruity between a
target word and its context. Hence, we assume
that, if a model has learned the common context
information of a target word, then the model works
more effectively. As described in Section 3.1 above,
a bidirectional pre-training model satisfies our re-
quirement. Therefore, our proposed ExampleBERT
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Figure 1: The overall of DefinitionBERT architecture and its context-definitions input pair.

model is built based on the standard BERT ar-
chitecture (Devlin et al., 2019) which is based
on the two-stage ’Pre-training’-then-’Fine-tuning’
pre-training language model approach, that recently
become enormously popular in NLP. During the
pre-training phase, we collect examples of the tar-
get word under its definitions from the Oxford dic-
tionary and use only MaskLM as our pre-training
objective. Here, we continue pre-training based on
the pre-trained uncased BERTBASE model from
(Wolf et al., 2020). The train strategy is the same
as (Devlin et al., 2019). The training data generator
chooses fifteen percent of the token positions at
random for prediction. If the i-th token is chosen,
we replace the i-th token with (1) the [MASK] to-
ken eighty percent of the time, (2) a random token
ten percent of the time, and (3) the unchanged i-th
token ten percent of the time. Here, our hypothesis
is that most of the examples of a target word are
expressing its literal meanings. Thus, whether or
not a target word is selected, the model can also
learn some common context information of a target
word. During fine-tuning phase, we directly use
the pre-trained ExampleBERT to fine-tune on the
metaphor detection datasets as described in Section
3.2 above.

3.4 DefinitionBERT

Based on MIP, we assume that if we tell the model
directly the literal meanings of the target word, then

the model will work more effectively. Fortunately,
BERT can explicitly model the relationship of a
pair of texts, and this has been proved to be benefi-
cial to many pair-wise natural language understand-
ing tasks. Therefore, to fully leverage the defini-
tions of words, we construct context-definition pair
based on all possible definition of the target word
from the Oxford dictionary, thereby treating MD
task as a sentence pair classification problem seem-
ingly. But, different from (Huang et al., 2019), here
we cannot and don’t need to match multiple defi-
nition and sentence directly one by one, because
the contextual meaning of a metaphorical word is
different from all its definitions. Also, we don’t
know which definition the contextual meaning of a
non-metaphorical word corresponds to. Moreover,
although there are word definition collections in
WordNet (Miller, 1995), we find they cannot ex-
press accurately the literal meaning of words, and
some of them are exactly the metaphorical mean-
ings. For example, in WordNet, one of the defini-
tion for ’drink’ is ’take in liquids’. On one hand,
in the sentence, car drinks gasoline, that definition
does not help us, or a model, identify that ’drink’ is
metaphorical. On the other hand, the Oxford Dic-
tionary definition – ’take (a liquid) into the mouth
and swallow’ – can be of help. A car, which has no
mouth and cannot swallow, is obviously unsuitable
here. Hence, the latter is helpful to us.

As shown in Figure 1, we directly concatenate
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the multiple definitions of the target word, and
use ”[SEP]” to separate them. Finally we use the
context-definitions pair as the inputs for BERT. Af-
ter encoding by BERT, we take the final hidden
state of the target word as its context meaning. To
obtain the literal meaning of its definition, we also
take the final hidden states of the tokens of each
definition, and use Mean-Pooling to average the
hidden states of each definition, which represents
literal meaning expressed by the definition. This is
formulated as follows :

hdi = fm(fb(xdi)) (1)

where fb represents the BERT encoder, and fm :
Rn×d → Rd is a mean pooling function that maps
from output vectors of n tokens to the definition
vector. Then, we concatenate the vectors of the tar-
get word and definitions into one vector and apply
a Feed-Forward Neural Network (FFNN) over the
concatenated representations. This is formulated
as:

hf = FFNN([htt;hdi; ...hdn]) (2)

where htt indicates the hidden state of the target
word from BERT. Then hf is taken as input for a
logistic regression classifier to make the prediction.

4 Experiments

4.1 Dataset
To be compatible with previous work (Gao et al.,
2018; Mao et al., 2019; Le et al., 2020; Rohanian
et al., 2020), we evaluate the proposed models us-
ing three widely used datasets for metaphor detec-
tion.
VUA (Steen and Gerard) It represents the largest
public evaluation dataset for metaphor detection
that is used by the NAACL-2018 Metaphor Shared
Task(Klebanov et al., 2016). It contains 10,567
sentences and the average length of sentences is
19.4. Annotation for this dataset is based on MIP,
for which every word in a sentence is labeled for
metaphor identification. There are two versions of
this dataset: (1) VUA ALL POS, where words of
all types (e.g., nouns, verbs, adjectives) are labeled,
and (2) VUA VERB, which focuses only on the
verbs for metaphor detection. In this paper, we
consider only the VUA VERB version.
MOH-X (Mohammad et al., 2016) Here, the sen-
tences are shorter and simpler than those in the
other datasets, as they are sampled from WordNet.
It contains 647 sentences and the average length of

sentences is 8.0. Only one single verb is labeled in
each sentence in this dataset.
TroFi (Birke and Sarkar, 2006) This dataset con-
sists of sentences from the 1987-89 Wall Street
Journal Corpus Release 1 (Charniak et al., 2000).
It contains 3737 sentences and the average length
of sentences is 28.3. Each sentence has a single
annotated target verb. There are only fifty unique
target verbs in this dataset, which means, that for
one target verb, there are many training samples.

4.2 Baselines
RNN-ELMo (Gao et al., 2018) This very repre-
sentative model uses Glove and ELMo as features
for sequential metaphor identification. The ELMO
word vectors they trained has been adopted in many
subsequent works.
RNN-HG & RNN-MHCA (Mao et al., 2019)
These are BiLSTM-based systems grounded in lin-
guistic theories of SPV and MIP, which are the first
to explore using linguistic theories to directly in-
form the design of Deep Neural Networks (DNN)
for metaphor identification. They use the Glove and
ELMO word embeddings as the literal meaning of
a word.
MUL-GCN (Le et al., 2020) This is a multi-task
learning model for metaphor detection that, to im-
prove performance, features graph convolutional
neural networks to appropriately capture the fol-
lowing; important context words, the control mech-
anism to emphasize the target words, and the trans-
ference of knowledge from WSD.
BERT+MWE-Aware GCN (Rohanian et al.,
2020) This is a neural model to classify metaphori-
cal verbs in their sentential context using informa-
tion from the dependency parse tree and annota-
tions for verbal multiword expressions. It evaluates
on the MOH-X and TroFi datasets.

4.3 Setup
For pre-training ExampleBERT, we collect about
40,000 examples of the verb words in all three
datasets (See Section 4.1). The batch size is 128;
the learning rate is 5e-5, and we train over ten
epochs. For DefinitionBERT, because different
words have a different number of definitions and to
achieve batch computing, we choose the most com-
mon three definitions2 for each word. If a word
don’t have three definitions, we simply use ”no

2Although the dictionary doesn’t state that definitions
listed in the page are sorted by frequency, it is basically indeed
this case according to our observation.
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VUA VERB MOH-X TroFi
Models Acc P R F1 Acc P R F1 Acc P R F1
RNN-ELMo (Gao et al., 2018) 69.1 53.4 65.6 58.9 78.5 75.3 84.3 79.1 73.7 68.7 74.6 72.0
RNN-HG (Mao et al., 2019) 82.1 69.3 72.3 70.8 79.7 79.7 79.8 79.8 74.9 67.4 77.8 72.2
RNN-MHCA (Mao et al., 2019) 81.8 66.3 75.2 70.5 79.8 77.5 83.1 80.0 75.2 68.6 76.8 72.4
MUL-GCN (Le et al., 2020) 83.2 72.5 70.9 71.7 79.9 79.7 80.5 79.6 76.4 73.1 73.6 73.2
BERTBaseline (Rohanian et al., 2020) - - - - 78.04 78.38 77.87 77.82 70.38 70.54 68.89 68.84
BERT+MWE-Aware GCN (Rohanian et al., 2020) - - - - 80.47 79.98 80.40 80.19 73.45 73.78 71.81 72.78
BERTbaseline(OURS) 85.48 77.35 72.19 75.07 80.05 80.65 76.70 78.43 75.05 73.02 67.86 70.30
ExampleBERT(OURS) 85.29 75.56 75.30 75.43 82.22 83.21 77.81 80.25 75.38 73.21 68.67 70.84
DefinitionBERT(OURS) 85.65 76.02 76.15 76.09 84.24 82.90 84.09 83.38 75.70 73.32 69.64 71.40

Table 1: Performance on three metaphor detection datasets

definition .” to replace the remaining insufficient
definitions. We believe that three definitions cover
most of the context of words; adding more uncom-
mon definitions could become noise for the model.
Following the settings in the prior work, we per-
form 10-fold cross validation on MOH-X and TroFi
and use the same splits of training, validation and
test sets for VUA VERB datasets. For VUA VERB
datasets, we select the best checkpoint on valida-
tion data as the final model to evaluate test data
performance. For the MOH-X and TroFi datasets,
we train 10 epoch and select the last epoch model
to evaluate the test data for every fold. Finally we
take the 10 fold average for the performance of our
final model.

To pre-train ExampleBERT and fine-tune Def-
initionBERT, we all use the pre-trained uncased
BERTbase model from (Wolf et al., 2020). The
number of its transformer blocks is 12, the number
of self-attention heads is 12, and the number of
the hidden layer is 768. For the FFNN in Eq. 2
of DefinitionBERT, we simply use a 256 hidden
units of fully connected layer, followed by a clas-
sification layer. The two models are all fine-tuned
with shuffled minibatches of size 32. The Adam
optimizer is used to update the parameters, and the
initial learning rate is set at 5e-5.

4.4 Results

Results in terms of accuracy (Acc), precision (P),
recall (R) and F1-score are given in Table 1. Scores
with the best performances across all models are in-
dicated in bold. Results not reported are indicated
by (-). As shown in Table 1, our ExampleBERT
and DefinitionBERT achieve state-of-the-art per-
formance on VUA VERB and MOH-X datasets.

VUA VERB dataset. For the VUA VERB
datasets, even our proposed BERT-Baseline model
achieves excellent performance, gaining improve-
ment over the best of the other methods (MUL-

GCN) by a large margin: 2.28% and 3.37% on
accuracy (Acc) and F1, respectively. Compared
with our BERTBaseline, regarding F1, our Exam-
pleBERT and DefinitionBERT show improvement
of 0.36% and 1.02%, respectively.

MOH-X dataset. For the MOH-X dataset, our
DefinitionBERT, compared with BERTBaseline
and the best of the other models, achieves signifi-
cant improvement across all results.

TroFi dataset. However,for the TroFi dataset,
the performance of our ExampleBERT and Defini-
tionBERT is somewhat bad than other state-of-the-
art results. Compared with our BERTBaseline, for
F1, ExampleBERT and DefinitionBERT still show
a gain of 0.54% and 1.10%, respectively, indicating
that our method is effective also. The TroFi dataset,
contains fewer samples than the VUA dataset, but
with longer average sequence length (28.3). Thus,
on one hand, it is more difficult for DefinitionBERT
to capture the relationship between the target and
its definitions. On the other hand, because the
dataset contains only fifty unique verbs, there are
many samples for a target verb, and most express
the literal meanings of the word, e.g., the dataset
contains 71 literal sentences and 25 metaphor sen-
tences of the target word ’absorb’. Thus, the mod-
els can learn sufficient common contextual infor-
mation and literal meanings of a target word from
the dataset. That is to say, the prior knowledge
we add provides only limited help. However, tak-
ing a step back, compared with the performances
of other well-designed models, the performance of
our model does not lag too far behind; therefore, we
believe our method is still acceptable. Moreover,
the results of MOH-X and TroFi dataset suggest
that our two models are more useful when there
exists only a small amount of training corpus.

We note that the DefinitionBERT always per-
form expect on precision, the possible reason is ,
when the model cannot obtain the context meaning
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of the target world accurately(i.e.,when the sen-
tence is complex) , or the definitions we get from
the dictionary are highly summarized, there would
exist a gap between the context meaning and literal
meaning, although they express the same mean-
ing actually. So the model could predict the literal
one to metaphorical more likely, then the preci-
sion could be lower(precision=TP/(TP+FP), FP in-
creased). Finally, this could be a inspiration that
how to improve our methods in the future work.

4.5 Analysis
As described in Section 3.4, if DefinitionBERT
works correctly, it should learn the differences and
relationships between the contextual and literal
meanings expressed by the definitions of the target
word during identifying. Therefore, to understand
how DefinitionBERT uses the definitions we pro-
vide, we compute the cosine similarity between htt
and each hdi described in Eq. 2. If a word is pre-
dicted as metaphorical, then the cosine similarity
between its definitions will be very small, and the
definition which expresses the literal sense of its
contextual meaning would always have the smallest
cosine similarity. Inversely, if a word is predicted
as non-metaphorical, the value will be larger, and
the meaning with the greatest cosine similarity will
always be the definition that expresses its contex-
tual meaning.

A specific example is given in Table 2. For ex-
ample, in the sentence, Her husband often abuses
alcohol, ’abuses’ is a metaphorical word; its con-
text meaning is ’a man drinks too much resulting
in a bad effect’. Thus, we infer this metaphorical
meaning is based on the first definition that has
the smallest similarity. In the sentence, This boss
abuses his workers, ’abuse’ is a non-metaphorical
word; its context meaning is ’speaking in a insult-
ing and offensive way’, which obviously is the third
definition that has the greatest similarity. That is
to say, our DefinitionBERT takes advantage of the
definitions during training. The definitions directly
help the model distinguish the contextual and lit-
eral meanings of the target word, which exactly is
our purpose.

4.6 Disscussion
The main reason for the improvements in our exper-
imental results is that we use external knowledge
based on linguistic theories, which is very suitable
and effective for detecting metaphors. The ways
we incorporate the examples and definitions of a

word correspond exactly to the two pre-training
objectives of BERT, which are also its advantages.
However, it seems possible to combine Example-
BERT and DefinitionBERT to attain better perfor-
mance, we can use pre-trained ExampleBERT to
fine-tune DefinitionBERT. But, our experimental
results show that, although its performance can
surpass that of ExampleBERT, but cannot surpass
DefinitionBERT. The possible reason is may due
to the only MaskLM pre-training objective, the
ability of pre-trained ExampleBERT to model the
relationship of a pair-wise is weakened.

RNN-HG and RNN-MHCA proposed by (Mao
et al., 2019), which are inspired also by linguis-
tic theories, focus more on the model architecture
suitable for SPV or MIP; whereas, we focus on ex-
ternal knowledge suited for SPV or MIP. Moreover,
we believe our ExampleBERT and DefinitionBERT
are just base models that can be further improved
by other technology, such as GCN applied in (Ro-
hanian et al., 2020).

Moreover, compared to previous state-of-the-art
models, especially knowledge-based methods like
(Le et al., 2020; Rohanian et al., 2020), our Defini-
tionBERT is highly interpretable while achieving
excellent performance. As described in Section
4.5, because our DefinitionBERT locates the in-
tended meaning of the metaphor in context, it helps
us further interpret metaphors. One approache for
metaphor interpretation is Definition Generation
proposed in (Zayed et al., 2020), which aims to find
the most probable definition/interpretation (if ex-
ists) of the highlighted expression among the given
definitions. Obviously, our DefinitionBERT is very
suitable for this task(dataset). Another approach is
Lexical Substitution explored in (Mao et al., 2018),
where the metaphoric word/phrase is replaced with
its literal counterpart to clarify its semantic mean-
ing. We also believe our DefinitionBERT can be
an alternative method for (Mao et al., 2018).

5 Conclusion

We proposed two simple, but effective, methods
for metaphor detection, which achieve state-of-the-
art performance on two verb metaphor detection
datasets. More importantly, we showed that our
DefinitionBERT is highly interpretable and can be
further applied to metaphor interpretation. For fu-
ture work, we will explore how to use the external
knowledge of words for a sequential task, such as
the VUA ALL POS dataset, which is not evaluated
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Abuse (definitions according to the Oxford Dictionary)
d-1 : use (something) to bad effect or for a bad purpose;misuse.
d-2 : treat with cruelty or violence, especially regularly or repeatedly.
d-3 : speak to (someone) in an insulting and offensive way.

Abuse (samples and cosine similarity between the three definitions)
samples label predict d-1-s d-2-s d-3-s
1.Her husband often abuses alcohol . 1 1 0.1632 0.1948 0.1800
2.This boss abuses his workers . 0 0 0.6448 0.6457 0.6478
3.The actress abused the policeman who gave her a parking ticket . 0 0 0.7344 0.7312 0.7403
4. Do n’t abuse the system . 1 1 0.0274 0.0267 0.0330

Table 2: Examples for the word ’abuse’ from the MOH-X dataset. ’d-1-s’ indicates the cosine similarity between
the feature vector of the first definition and the feature vector of the target word extracted from DefinitionBERT.

in this paper. A simple, crude way is to collect
all the examples of words in the datasets and then
continue to use ExampleBERT according to SPV.
If based on MIP, combining the definitions of all
words into one sentence like this paper do seems
to be a terrible implementation. Moreover, there
are several dictionaries (Zayed et al., 2020) giving
examples and definitions of the word, and the ex-
amples or definitions from different dictionaries are
somewhat different in types and contents, which
may cause a different result when combined with
our methods. Therefore, to obtain better perfor-
mance, we will try resources from different dictio-
naries, where the premise is the definitions of the
words must be non-metaphorical.
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