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Abstract

Automatic readability assessment (ARA) is
the task of automatically assessing readabil-
ity with little or no human supervision. ARA
is essential for many second language acqui-
sition applications to reduce the workload of
annotators, who are usually language teach-
ers. Previous unsupervised approaches man-
ually searched textual features that correlated
well with readability labels, such as perplex-
ity scores of large language models. This pa-
per argues that, to evaluate an assessors’ per-
formance, rank-correlation coefficients should
be used instead of Pearson’s correlation coef-
ficient (ρ). In the experiments, we show that
its performance can be easily underestimated
using Pearson’s ρ, which is significantly af-
fected by the linearity of the output readability
scores. We also propose a lightweight unsu-
pervised readability assessor that achieved the
best performance in both the rank correlations
and Pearson’s ρ among all unsupervised asses-
sors compared.

1 Introduction

Assessing readability plays an essential role in sec-
ond language acquisition; it can be used for many
educational applications such as intelligent reading
support systems and placement tests for language
classes. Readability assessment is a costly task
for educational experts and language teachers. To
perform it, they must read a text and assess its
readability by guessing how difficult the text is for
target learning readers. Hence, to reduce the cost of
the labor required by educational experts, the task
of automatically identifying the readability of texts
for language learners, known as automatic readabil-
ity assessment (ARA), has been extensively studied
in the field of artificial intelligence (AI).

Unsupervised automatic readability assessment
appeared early but has recently been reexamined
as a research focus. Early studies such as the
Dale-Chall formula (1948) (Dale and Chall, 1948),

Figure 1: Overview of the previous and our approaches.

the Flesch Reading Ease formula (Flesch, 1948)
(1948), and the Flesch-Kincaid readability formula
(1975) (Kincaid et al., 1975) were unsupervised,
as they did not use costly annotated readability
labels. Given a text, these formulae calculate its
readability score based on simple superficial tex-
tual features such as the average length of a word in
the given text. However, most of these early formu-
lae are designed to assess readability for children
who are native speakers. Evaluation datasets with
readability labels annotated by language teachers
targeting second language learners appeared much
later, in the 2010s (Feng et al., 2010; Xia et al.,
2016; Vajjala and Lučić, 2018). In these works,
automatic readability assessment tasks using these
evaluation datasets were formalized as a supervised
document classification problem, and substantial
research efforts were invested into the construction
of classifiers by feature engineering to find com-
plicated textual features that correlate well with
readability labels.

Recently, Martinc et al. (2021) revisited the unsu-
pervised approach. They proposed that the perplex-
ity scores of neural language models can also be
used to represent the readability of text for second
language learners and proposed to use them for un-
supervised automatic readability assessment. The
upper part of Fig. 1 show their approach. Given
a text, their method uses no valuable readability
label for training but uses only the language model
trained on other large corpora, their method pre-
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dicts the text’s readability score as an output.
While this idea is sound, however, their evalua-

tion is validated using the correlation coefficient,
or Pearson’s ρ, as illustrated on the right-hand
side of Fig. 1. Pearson’s ρ measures the degree
of linear correlation between two random variables
(Mukaka, 2012). As neither the readability levels
of the evaluation corpora nor the readability scores
output by unsupervised readability assessors are
necessarily linear, the use of Pearson’s ρ can lead
to inaccurate evaluation.

This study investigates how the use of Pearson’s
ρ affects the evaluation of unsupervised readability
assessors. We analyze how unsupervised assessors’
performance can be easily underestimated if the
readability scores are not linear. For this purpose,
we also build a lightweight unsupervised readabil-
ity assessor, denoted by the lower part of Fig. 1.
We show that, alternatively, rank-correlation coeffi-
cients are more robust to the linearity and appropri-
ate for this evaluation.

The contributions of this paper are summarized
as follows.

• We indicate that the previous evaluation of
unsupervised readability assessors by using
Pearson’s ρ is problematic.

• We demonstrate the degree by which Pear-
son’s ρ underestimates the readability score
without linearity on a publicly available reli-
able evaluation dataset.

• We show that, instead of Pearson’s ρ, the use
of rank-correlation coefficients is appropriate.

• We propose a novel lightweight unsupervised
readability assessor that achieves best perfor-
mance in terms of both Pearson’s ρ and rank-
correlation coefficients.

2 Automatic Readability Assessment

This section formalizes the problem of automatic
readability assessment. Let us suppose that we
have N texts to assess: we write the set of texts
as {Ti|i ∈ {1, . . . , N}}. Let Y be the set of
readability labels. Labels are typically ordered in
the order of difficulty. For example, in the On-
eStopEnglish dataset (Vajjala and Lučić, 2018), we
can set Y = {0, 1, 2}, where 0 is elementary, 1 is
intermediate, and 2 is advanced. The number of
levels depends on the evaluation corpus. Using Y ,
we write the label for Ti as yi ∈ Y .

2.1 Goal in Unsupervised Setting
Given each text Ti, an assessor outputs its readabil-
ity score si. In a supervised setting, the assessor
knows the number of levels in the evaluation corpus
from training examples. Hence, si ranges within
Y: si ∈ Y . However, in an unsupervised setting, it
is noteworthy that the assessor does not know Y , or
how many levels the evaluation corpus has, because
no label is given. Hence, even if only integers are
allowed for yi, si can be a real value.

Throughout this paper, we write arrays using
[ and ]. Given N texts [Ti|i ∈ {1, . . . , N}], our
goal is to make an assessor output arrays of read-
ability scores [si|i ∈ {1, . . . , N}] that correlate
well with the array of labels [yi|i ∈ {1, . . . , N}].
Here, there are multiple types of correlation coef-
ficients between the array of scores and the array
of labels, which we explain in the later sections.
Typically, we should use rank coefficients when si
is real-valued.

2.2 Evaluation and Correlation coefficients
In most evaluation datasets, educational experts are
asked to assess text readability by choosing a label
from the set of predefined readability labels, Y .
In contrast, automatic readability assessors output
real-valued scores in an unsupervised setting. How
do we compare readability level labels and real-
valued scores?

A simple but naïve way to make this comparison
is to use the Pearson correlation coefficient ρy,s,
which is defined as follows:

ρy,s =
cov(y, s)

σyσs
(1)

In Eq. 1, cov(y, s) denotes the covariance between
y and s, σy denotes the standard deviation of y,
and σs denotes the standard deviation of s. Eq. 1
ranges [−1, 1], where 1 is the perfect correlation.

However, the Pearson correlation coefficient
measures the degree of linear correlation between
two random variables (Mukaka, 2012). The read-
ability levels of evaluation corpora are not necessar-
ily linearly distributed. Readability scores that the
assessors output are also not necessarily linear. In
these cases, it is usually more appropriate to focus
on the correlation between the rankings of the read-
ability label yis and scores sis. Rank correlation
coefficients measure the correlation between two
rankings with the range of [−1, 1]. Two types of
them are notable: Spearman’s ρ and Kendall’s τ
(Alvo and Philip, 2014).
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Spearman’s ρ is defined as the Pearson’s ρ be-
tween two rankings. We first convert labels into
rankings: rgy, and convert scores into rankings:
rgs. Then, using Eq. 1, Spearman’s ρ is defined
as ρrgyrgs

. When converting labels into rankings,
texts that have the same level are regarded as ties
in a ranking. While there are many ways to handle
ties, the mid-rank method is usually used in calcu-
lating Spearman’s ρ (Amerise and Tarsitano, 2015).
This method simply uses the average of ranks for
the rank of a tie. For example, let us consider an
array of labels [2, 1, 1, 0]. The two 1s in this array
are ties taking the 2nd and 3rd ranks. As the aver-
age of 2 and 3 is 2.5, the mid-rank ranking of this
array is [4, 2.5, 2.5, 1].

We first introduce the definition of Kendall’s τ
when there are no ties as follows.

τ =
nc − nd

Num. of all pairs
(2)

Kendall’s τ focuses on the pairs of the given arrays:
in our setting, (yi, si) and (yi′ , si′) where i < i′. nc
denotes the number of concordant pairs, nd denotes
the number of discordant pairs. The pair is said to
be concordant if either both yi < yi′ and si < si′

hold or yi > yi′ and si > si′ ; otherwise, the pair
is said to be discordant. If yi = yi′ , we call yi and
yi′ ties. The same holds for s. Num. of all pairs =
1
2N(N − 1) when there are no ties.

In reality, y has many ties, so Eq. 2 cannot be
used for the evaluation.. There are multiple cor-
rection methods to account for ties in Kendall’s τ ;
they are named τ -a, τ -b, and τ -c. In our setting,
namely unsupervised readability assessment, tau-c
should be used because y and s may have different
scales.
τ -b can be described as follows 1.

τb =
nc − nd√

(n0 − n1)(n0 − n2)
(3)

nc denotes the number of concordant pairs, nd
denotes the number of discordant pairs. n0 =
N(N − 1)/2, n1 is the sum of all possible pairs
within each tied group for the first quantity, n2 is
the sum of all possible pairs within each tied group
for the second quantity.
τ -c can be written as follows2. To obtain m,

we first construct the contingency table made
1https://en.wikipedia.org/wiki/

Kendall_rank_correlation_coefficient#
Tau-b

2https://en.wikipedia.org/wiki/
Kendall_rank_correlation_coefficient#
Tau-c

15. deficit:
The company <had a large deficit>.
a: spent a lot more money than it earned
b: went down a lot in value
c: had a plan for its spending

that used a lot of money
d: had a lot of money stored in the bank

26. malign:
His <malign> influence is still felt.
a: good
b: evil
c: very important
d: secret

Figure 2: Examples of the Vocabulary Size Test. Test-
takers are asked to choose the option that paraphrases
the part between “<” and “>” from a, b, c, and d.

from the first and second quantity. Using the
rows and columns of the table, m is defined as
min(num. of rows, num. of columns).

τc =
2(nc − nd)
N2m−1

m

(4)

3 Proposed Method: Vocabulary Testing

This section describes our unsupervised readability
assessor that employs a novel approach: instead of
using valuable readability labels as the source of
text difficulty for typical second language learners,
our proposed method uses vocabulary tests as the
source of word difficulty for typical second lan-
guage learners and obtains readability scores based
on accurately estimated word difficulty. To this end,
this section explains how to analyze vocabulary test
result data to obtain word difficulty.

Fig. 2 shows example questions from the vocab-
ulary size test, a widely used vocabulary test in ap-
plied linguistics (Beglar and Nation, 2007). Each
question asks about a word in a multiple-choice
question format. The test consists of 100 questions
like those shown in Fig. 2. Ehara (2018) used this
test to have 100 second-language learners take the
test and to collect their responses. Their data were
published and made publicly available. We used
their dataset to train our classifiers.

3.1 Evaluating vocabulary test results: Item
Response Theory

We want to analyze vocabulary test results to obtain
word difficulty values encoding learners’ language
knowledge. To this end, we employed the idea of
item response theory (Baker, 2004), a statistical
model that can estimate learners’ abilities and test

https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient##Tau-b
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient##Tau-b
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient##Tau-b
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient##Tau-c
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient##Tau-c
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient##Tau-c
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questions’ difficulties from the learners’ responses
to the questions.

Let V be the set of vocabulary, and let L be
the set of learners. Let zv,l ∈ {0, 1} be the result
of whether learner l ∈ L correctly answered the
question for word v ∈ V: zl,v = 1 if l answered
correctly for word v; otherwise, zl,v = 0. Correct
answers usually imply that l knows word v.

Then, by using {zv,l} as the training data, we
train the following model:

p(z = 1|v, l) = sigmoid(al − dv) (5)

In Eq. 5, al is the ability parameter of learner l, dv
is the difficulty of word w, and sigmoid denotes
the logistic sigmoid function, i.e., sigmoid(x) =

1
1+exp(−x) . The logistic sigmoid function is the
binary version of the softmax function, which
is frequently used in neural classifiers. It is a
monotonously increasing function ranging within
(0, 1). As sigmoid(0) = 1

1+1 = 1
2 , when a

learner’s ability al is larger than the word diffi-
culty dv, the probability that learner l knows word
v can be written as follows: p(z = 1|v, l) > 1

2 in
Eq. 5. Likewise, by using Eq. 5, we can compare
a learner’s ability and word difficulty in the same
dimension.

To estimate learner ability and word difficulty,
zv,l is given as z in Eq. 5 in the training phase. In
this way, in item response theory, learner ability
and word difficulty are comparable, and these pa-
rameters are to be estimated from the test result
data.

3.2 Obtaining difficulty of words not in the
vocabulary test

In Eq. 5, dv denotes the word difficulty estimated
from the vocabulary tests. Here, in addition to the
word difficulty for the words within the vocabulary
test, we also want to obtain word difficulty values
for all words that may appear in the target lan-
guage. To this end, we calculate dv from the word
frequency in large balanced corpora as follows:

dv = −
K∑
k=1

wk log(freqk(v) + 1) (6)

In Eq. 6, K is the number of corpora to use,
freqk(v) denotes the frequency of word v in the
k-th corpus, and wk is the weight parameter of the
k-th corpus.

In summary, given the vocabulary test results
{zv,l} and corpus frequency features freqk(v), we

can estimate the parameters: namely, the weight
of the k-th corpus wk and learner l’s ability al. By
putting Eq. 5 and Eq. 6 together, we can see that
the inside formula of the sigmoid function is lin-
ear with respect to the parameters to be estimated
because all terms consist of a product of a param-
eter and a constant calculated from features, and
no term has a product of two or more parameters.
As the sigmoid function of a linear combination
of parameters can be reformulated as a logistic re-
gression, we can implement Eq. 5 and Eq. 6 by
using typical logistic regression classifiers such as
scikit-learn 3 and LIBLINEAR 4. We will release
our code upon the acceptance of the paper.

Note that we do not use the valuable readability
label {yi} in the training phase; hence, our method
is categorized as an unsupervised method.

3.3 Proposed Automatic Readability Assessor
After estimating the parameters using the above-
mentioned procedure, we use the following for-
mula to obtain the readability of given Ti. Here,
lavg denotes the test-taker whose estimated ability
parameter is closest to the average of the estimated
ability parameter values {al}s. Intuitively, the fol-
lowing equation calculates the probability that the
average learner knows all the words that appear in
Ti and uses it as the readability score:

si = score(Ti)

= − 1

|Ti|
log

∏
v∈Ti

p(z = 1|v, lavg)

 . (7)

4 Experimental Settings

4.1 Choice of Dataset
We used the OneStopEnglish dataset (Vajjala and
Lučić, 2018) for our evaluation because of the
following reasons. First, it is one of the newest
datasets. Second, it is publicly available and down-
loadable. Third, it is a reliable dataset in the sense
that it has no known pitfalls when used as a corpus
for evaluation.

While Martinc et al. (2021) uses other corpora
such as the WeeBit corpus (Xia et al., 2016) and the
Newsela corpus (Xu et al., 2015), both have known
pitfalls when used for the evaluation of automatic
readability assessment. The WeeBit corpus is not
a parallel corpus, which is explained in the next

3https://scikit-learn.org/stable/
4https://www.csie.ntu.edu.tw/~cjlin/

liblinear/

https://scikit-learn.org/stable/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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subsection. This means that each level consists of
totally different articles covering different topics.
As some topics such as politics tend to use more
difficult phrases than other topics, it is difficult to
see how the topic of content influences the resulting
performance values. The Newsela corpus is a paral-
lel corpus, which removes the influence caused by
topics. However, according to Martinc et al. (2021),
its readability labels can be easily identified from
the average sentence length in a text: the average
sentence length achieved 0.906 in the Pearson’s ρ
correlation. Hence, even if a method works well
on the Newsela corpus, it could be possible that
the method merely inherently calculates and uses
average sentence length.

4.2 OneStopEnglish dataset

Regarding the source of the dataset, Vajjala and
Lučić (2018) says that “onestopenglish.com is an
English language learning resources website run
by MacMillan Education, with over 700,000 users
across 100 countries.”

The dataset has three levels: elementary, inter-
mediate, and advanced. According to Vajjala and
Lučić (2018), the original articles were taken from
the Guardian newspaper. The OneStopEnglish
dataset is a parallel corpus, i.e, language teachers
manually rewrote the original articles into the three
aforementioned readability levels. Hence, one no-
table characteristic of this dataset is that all three
levels have the same content with different read-
ability levels. Hence, by using this dataset, we can
avoid having classifiers learn differences in content
or topic rather than readability levels.

All three levels have 189 texts each, 567 texts
in total. We split these texts into a training set
consisting of 339 texts, a validation set consisting
of 114 texts, and a test set consisting of 114 texts.
The training set and validation sets were used to
train solely supervised methods for comparison.
Unsupervised methods did not use the training and
validation sets; they used only the test set.

4.3 Baseline Methods

4.3.1 Supervised methods
First, we introduce the supervised methods that we
used for comparison because it involves the training
data mentioned right above. As the BERT-based
sequence classification has been reported to achieve
excellent results (Devlin et al., 2019), we applied
the standard BERT-based sequence classification

approach involving pretraining and fine-tuning. For
the pretrained model, we used bert-large-cased-
whole-word-masking in the Huggingface models
5.

Then, we fine-tuned the model using the afore-
mentioned 339 training texts. For this fine-tuning,
we used a GeForce RTX 3090 board that has 24
GiB of Graphical Processing Unit (GPU) memory.
The fine-tuning and resulting model took up 16
GiB of GPU memory. This means that it is difficult
to achieve similar performance without GPUs with
large memory. We named this fine-tuned model
spvBERT, in which “spv” denotes being super-
vised. In order to see how the size of training data
has an influence on the performance, we also con-
ducted experiments with 168 training texts, which
amounted to almost half of the total 339 training
texts. We named this model spvBERT_half.

All the fine-tuning procedures were conducted
using the Adam optimizer (Kingma and Ba, 2015)
with a setting of 10 epochs and a 0.00001 training
rate.

4.3.2 Unsupervised methods
For the implementation of conventional readabil-
ity formulae, we used the readability PyPI pack-
age 6. We used almost all readability formulae
implemented in this package for our experiments:
namely, Flesch-Kincaid (Flesch-Kincaid Grade
Level, FKGL) (Kincaid et al., 1975), ARI (Au-
tomated Readability Index) (Senter and Smith,
1967), the Coleman-Liau Index (Coleman and
Liau, 1975), Flesch Reading Ease (Flesch, 1948),
the Gunning Fog Index (Gunning, 1952), LIX
(Björnsson, 1968), the SMOG Index (Mc Laugh-
lin, 1969), the RIX index (Anderson, 1983), and the
Dale-Chall Index (Dale and Chall, 1948). Among
these methods, notably, some formulae such as
the Dale-Chall Index depend on their own list of
easy/difficult words. Others, such as the Flesch-
Kincaid grade level (FKGL), do not require such
a list of difficult words but use superficial features
such as the total number of syllables in a text. For
space limitation, we do not cite all equations, how-
ever, we only cite FKGL as being famous and cite
Dale-Chall as showing good performance in our
evaluation.

FKGL = 0.39
total words

total sentences
(8)

5https://huggingface.co/models
6https://pypi.org/project/readability/

https://huggingface.co/models
https://pypi.org/project/readability/
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+ 11.8
total syllables
total sentences

− 15.59

Dale-Chall = 15.79×
(

difficult words
words

)
(9)

+ 0.0496

(
words

sentences

)
More details of these formulae and their implemen-
tation are described on the project page. All of
these readability formulae are unsupervised in the
sense that they do not require any training data.

For the unsupervised neural language model,
we also used the bert-large-cased-whole-word-
masking pretraining model and used the BertFor-
MaskedLM function to obtain the perplexity of
each sentence of the text of interest. We chose this
pretraining model because Martinc et al. (2021)
reported that they used bert-base-uncased and re-
ported not so good performance, so we chose a
BERT-based model larger than the one that they
used. Note that, unlike neural sequence classifi-
cation, language models are designed to be unsu-
pervised and thus do not require any training data
to fine-tune. All we need to do for the neural lan-
guage model is to input each sentence in the text
of interest and calculate the perplexity score of the
inputted sentence.

For splitting a text into sentences, we used the
sent_tokenize function in the nltk Python package
7. After the split, we simply used the average of the
perplexity scores of each sentence in a text as the
readability score. As the perplexity score of a sen-
tence encodes the fluency of the inputted sentence,
this roughly measures the overall fluency of the
inputted sentence. We call this method BERTL-
Mavg, where LM denotes a language model.

As BERTLMavg does not use fine-tuning, it
uses less GPU memory compared to spvBERT.
However, BERTLMavg uses 1,793 MiB of GPU
memory to output perplexity scores, which is still
impractical in a low-computational-resource envi-
ronment.

According to Martinc et al. (2021), BERT lan-
guage models do not perform good results. Hence,
while not directly comparable because we could
not obtain their test set, for a rough comparison,
we cited their best model on the OneStopEnglish
dataset, TCN RSRS-simple. The model is tem-
poral convolutional network (TCN) trained on the
Simplified Wikipedia corpus. For space limitations,

7nltk.org

refer to Martinc et al. (2021) for the details of this
method.

Proposed model was trained on a previously
published and publicly available vocabulary dataset
(Ehara, 2018). For the corpus word frequency,
we used the frequencies taken from the British
National Corpus (BNC Consortium, 2007) and
the Corpus of Contemporary American English
(COCA) (Davies, 2008). Both corpora are bal-
anced general corpora used extensively in English
education (Nation, 2006). Especially, the word fre-
quencies of these corpora are important resources
for determining word difficulty in English edu-
cation. For counting text frequencies, we used
nltk.stem.WordNetLemmatizer in the nltk pack-
age to lemmatize words appearing in running texts.

Our Proposed model uses the average of the neg-
ative log likelihood that an average learner knows
each word in the text as presented in Eq. 7. As our
Proposed model uses the BNC and COCA word
frequencies, it could be possible that these word
frequencies have an essential influence on the per-
formance of the Proposed model. To check this,
we also measured the correlation between the gold
labels and the average negative log of the unigram
probability values of the given text in each corpus.
We name these feature-based methods as BNC and
COCA.

4.4 Experimental Results: Pearson’s ρ and
performance

This subsection describes the experimental results
showing the problem of using Pearson’s ρ in evalu-
ation.

Tab. 1 shows the experimental results. The
columns of Tab. 1 show the rank correlation coeffi-
cients introduced in the previous sections. Namely,
they are Spearman’s ρ, Kendall’s τ with tie cor-
rection type b (τ -b), and Kendall’s τ with tie cor-
rection type c (τ -c). Pearson’s ρ is shown in the
rightmost column. As we explained in previous
sections, Pearson’s ρ is affected by the linearity
of scores. To see how Pearson’s ρ is affected by
the linearity of scores, below each unsupervised
method M, we show exp(M) to indicate the re-
sulting performance values when we replaced the
scores of M with the exponentilized the scores of M,
i.e, exp(the score of M) to remove linearity. The
distinction of “unsupervised” and “supervised” is
clearly marked in the leftmost column.

In Tab. 1, we can easily see that, for all unsuper-

nltk.org
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Super-
vision

Method Spearman’s ρ Kendall’s τ -b Kendall’s τ -c Pearson’s ρ

Unsuper-
vised

Flesch-Kincaid 0.324 0.253 0.308 0.359
exp(Flesch-Kincaid) 0.324 0.253 0.308 0.149

ARI 0.317 0.248 0.302 0.351
exp(ARI) 0.317 0.248 0.302 0.136

Coleman-Liau 0.373 0.295 0.359 0.372
exp(Coleman-Liau) 0.373 0.295 0.359 0.185
FleschReadingEase -0.387 -0.301 -0.366 -0.426

exp(FleschReadingEase) -0.387 -0.301 -0.366 -0.169
GunningFogIndex 0.331 0.257 0.313 0.362

exp(GunningFogIndex) 0.331 0.257 0.313 0.151
LIX 0.348 0.273 0.332 0.383

exp(LIX) 0.348 0.273 0.332 0.129
SMOGIndex 0.456 0.360 0.438 0.479

exp(SMOGIndex) 0.456 0.360 0.438 0.306
RIX 0.437 0.340 0.414 0.462

exp(RIX) 0.437 0.340 0.414 0.181
DaleChallIndex 0.495 0.387 0.472 0.506

exp(DaleChallIndex) 0.495 0.387 0.472 0.431
TCN RSRS-simple - - - 0.615(*)

BERTLMavg -0.220 -0.173 -0.210 -0.040
exp(BERTLMavg) -0.220 -0.173 -0.210 -0.005

BNC -0.012 -0.009 -0.010 -0.006
exp(BNC) -0.012 -0.009 -0.010 -0.123

COCA -0.018 -0.016 -0.020 -0.039
exp(COCA) -0.018 -0.016 -0.020 -0.121

Proposed 0.730 0.592 0.709 0.715
exp(Proposed) 0.730 0.592 0.709 0.260

Super-
vised

spvBERT_half 0.751 0.729 0.725 0.747
spvBERT 0.866 0.856 0.854 0.864

Table 1: Experimental Results on the OneStopEnglish Dataset. For a method M, exp(M) denotes the correlations
between the array of exp(M’s score) and the gold labels. (*) denotes that the value is cited from other papers.

vised methods except for BNC and COCA, the cor-
relations of the exponentialized scores measured by
Pearson’s ρ are closer to 0 than their original scores.
In contrast, the rank correlation coefficient values
are kept unchanged because exp is a monotonous
function and hence the ranking is not altered by
the use of exp. The reason why the performance
values of BNC and COCA seem slightly increased
is presumably because of noise: BNC and COCA
did not correlate with the readability labels statis-
tically significantly in the first place. Neither did
exp(BNC) and exp(COCA).

The drop in performance scores is enormous for
some methods such as Proposed: its performance
was originally 0.715 but plunges to 0.260 by using
exp. This result indicates the vulnerability of using

Pearson’s ρ in the evaluation: the evaluation by
Pearson’s ρ is strongly affected by how linear the
scores are, suggesting the use of rank correlation
for better evaluation.

TCN RSRS-simple is the best model using the
same dataset in Martinc et al. (2021). As they show
only the performance measured by the Pearson
correlation, we wrote − for other rank correlation
coefficients. Also note that we cannot make di-
rect comparison as we could not obtain their test
set used for their experiments. This is marked by
the (*) after the value. While we can see that
Proposed achieved better correlation than TCN
RSRS-simple, we are not sure if this result indi-
cates the linearity of the methods or the superiority
of Proposed against TCN RSRS-simple. Like-
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wise, the use of Pearson’s ρ only makes followup
papers’ efforts to compare results difficult.

4.5 Performance Comparison

In all unsupervised methods, our Proposed method
achieved the best results in all rank correlation co-
efficients and Pearson’s ρ, although we need to
be careful with the interpretation of Pearson’s rho
as explained in Sec. 2.2. These results were sta-
tistically significant (p < 0.01): all correlation
coefficients can also be used for statistical testing.
In each of the statistical tests, the null hypothesis
is that no association exists between the scores and
the gold labels. When measured using Spearman’s
ρ, Proposed achieved a value of 0.730, which is
close to 0.751, the performance achieved by super-
vised BERT using half of the training data.

BERTLMavg did not achieve good results in
predicting readability labels. This result suggests
that perplexity and readability are different mea-
sures and that, to measure readability, we need to
obtain and make use of the information about what
a typical language learner knows about the target
second language.

Interestingly, BNC and COCA achieved poor
results in predicting readability labels. This re-
sult shows that the reason that Proposed method
outperformed the others is not merely because the
features that Proposed used are excellent. A good
combination of the two features results in signifi-
cant results. The use of only one of the two does
not achieve good results. Hence, we can see that
Proposed works excellently for making the combi-
nation of the two corpus-based features.

For a comparison with supervised models,
Tab. 1 shows their performances: spvBERT and
spvBERT_half. Supervised models output labels
rather than scores in their prediction phase: we
directly used these labels to calculate rank correla-
tion coefficients for a fair comparison with unsu-
pervised models. Leveraging the supervision, they
outperformed most of the unsupervised methods in
all rank correlation coefficients. This means that us-
ing valuable supervision yields great improvement
in the predictive performance of readability.

The performance differences among spvBERT,
BERTLMavg, and Proposed can be interpreted
as follows. BERT is a large model trying to use
as much information as possible from a sentence,
such as syntactic structure. Hence, it is difficult for
the model to find useful information contributing to

readability without supervision. Proposed is a bag-
of-words model that is designed to be lightweight
by sacrificing such complicated factors. Hence,
the performance difference between spvBERT and
Proposed can be regarded as a degree that infor-
mation beyond word difficulty – such as syntactic
information or sentence context – accounts for read-
ability. While this is beyond the focus of this paper,
a detailed error analysis between spvBERT and
Proposed may lead to understanding what kind
of syntactic information or contexts in a sentence
contribute to readability.

4.6 Memory and Speed

We used a Core i7-10700K (3.80 GHz) machine
with a GeForce RTX 3090 board for all experi-
ments. The BERTLMavg, which is an unsuper-
vised BERT language model, uses 1, 793 MiB
GPU memory. In contrast, Proposed is merely a
logistic regression and does not require as GPU
for practical use. In addition, the model’s fea-
tures are smaller than those of the BERT models.
Proposed uses the BNC and COCA frequencies,
which amount to 10 MiB of CPU memory, which
is roughly 1

100 of that used by the unsupervised
BERT models. In terms of speed, to classify all
texts in the test set, while BERTLMavg utilizes
368 s, Proposed utilizes only 5.37 s. This indi-
cates that the Proposed is 68.5 times faster than
BERTLMavg.

5 Discussion

In this paper, we discussed the necessity to use
rank correlation coefficients to evaluate automatic
readability assessment. The problem that Pearson
correlation coefficients reflect not only the corre-
lation between two scores but also the linearity of
the scores is not particularly novel and has been
pointed out for a long time. This study showed
that this problem has a significant impact in the
evaluation of the ARA task. In fact, in the recent
evaluation of the ARA task (Martinc et al., 2021),
the problem of linearity in the Pearson coefficients
was not addressed and its evaluation simply uses
the Pearson correlation coefficients. To the best
of our knowledge, this is the first study to demon-
strate the effect of this problem on the performance
values in the ARA task and examine the extent to
which the linearity of the scores affects the scores
in Tab. 1.

In this paper, we termed the Proposed method as
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“unsupervised,” according to (Martinc et al., 2021).
They termed methods that do not use manually an-
notated readability labels as “unsupervised” even
if the methods use supervised machine learning. In
fact, the proposed method is trained using the vo-
cabulary test dataset (Ehara, 2018). Phrases, such
as “the most average learner” and “learner abil-
ity, all refer to the learners on this vocabulary test
dataset. In this study, knowing that the term super-
vised/unsupervised is misleading, we deliberately
described the proposed method as “unsupervised”
for easy comparison with previous studies.

In NLP, the Proposed method is closely related
to complex word identification (CWI) tasks (Yi-
mam et al., 2018; Paetzold and Specia, 2016). CWI
is a task that aims to discover difficult words in
a text. The relationship between CWI and per-
sonalized text readability was previously studied
in (Ehara, 2019). The task of obtaining the diffi-
culty of an English word for each individual ESL
learner, as we did in this study, can be regarded
as personalized CWI (Ehara et al., 2012, 2014) 8.
Personalized CWI has many downstream applica-
tions in NLP such as lexical simplification (Lee and
Yeung, 2018, 2019), text recommendation for lan-
guage learners (Ehara et al., 2013; Yeung and Lee,
2018; Lee, 2021), and translator selection in crowd-
sourcing (Ehara et al., 2016). Some studies focus
on the relationship between word semantics and
word difficulty (Ehara et al., 2014; Beinborn et al.,
2016; Ehara, 2020b). Regarding the interpretability
of CWI classifiers, Ehara (2020a) studied the rela-
tionship CWI classifiers’ weights and vocabulary
sizes.

6 Conclusions

In this paper, we investigated the correlation coeffi-
cients to evaluate the performance of unsupervised
automatic readability assessors. The experimental
results showed that the readability performances
measured by Pearson’s ρ are strongly affected by
the linearity of the output scores, whereas those
measured by rank correlations are not affected.
This indicates the appropriateness of using rank
correlation coefficients to evaluate unsupervised
automatic readability assessors. We also proposed
a lightweight unsupervised assessor based on word
difficulty for typical second language learners cal-
culated from a vocabulary test result dataset. This

8The journal version of (Ehara et al., 2012) is (Ehara et al.,
2018).

assessor could achieve the best score among all the
compared unsupervised assessors.

In the future, we plan to conduct a more detailed
analysis to investigate which rank correlations, in-
cluding those not introduced in this paper, are more
appropriate for the evaluation.
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