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Abstract
Product reviews and satisfaction surveys
seek customer feedback in the form of
ranked scales. In these settings, widely used
evaluation metrics including F1 and accu-
racy ignore the rank in the responses (e.g.,
‘very likely’ is closer to ‘likely’ than ‘not at
all’). In this paper, we hypothesize that the
order of class values is important for evalu-
ating classifiers on ordinal target variables
and should not be disregarded. To test this
hypothesis, we compared Multi-class Classi-
fication (MC) and Ordinal Regression (OR)
by applying OR and MC to benchmark
tasks involving ordinal target variables us-
ing the same underlying model architecture.
Experimental results show that while MC
outperformed OR for some datasets in ac-
curacy and F1, OR is significantly better
than MC for minimizing the error between
prediction and target for all benchmarks,
as revealed by error-sensitive metrics, e.g.
mean-squared error (MSE) and Spearman
correlation. Our findings motivate the need
to establish consistent, error-sensitive met-
rics for evaluating benchmarks with ordinal
target variables, and we hope that it stimu-
lates interest in exploring alternative losses
for ordinal problems.

1 Introduction
Organizations have a vested interest in ensuring
customer happiness. To measure this quantity,
analysts often use surveys containing numerical
Likert scales addressing various aspects of the
customer experience (Allen and Seaman, 2007).
One popular question asks customers the like-
lihood that they will recommend a product or
service to others. From these answers, ana-
lysts calculate a “Net Promoter Score” (NPS)
representing the percentage of customers who
will recommend a product or service to others
minus those who will recommend against it (Re-
ichheld, 2003). Additionally, many companies

are also interested in tracking product reviews
(Keung et al., 2020). Collecting, measuring,
and analyzing customer feedback is essential to
the profitability and long-term success of many
companies, but it is prohibitively expensive to
survey the entire customer base and even the
feedback that a company does receive is often
too massive for systematic human evaluation.
Therefore, it is important to develop effective
machine learning models for predicting cus-
tomer satisfaction and to maintain consistent
and accurate methods and metrics for evaluat-
ing their performance.

An important aspect of modeling customer
sentiment is the subjective numerical ranking
of the customer response. Feedback is often
in the form of ranked scales, e.g. rating scales
1-5 or 1-10, or textual “Strongly Agree,” “Dis-
agree,” etc. Crucially, these Likert scales are
ordinal and should not be confused with scalar
values: a rating of 5 or “Strongly Agree” is
not necessarily 5 times greater than a rating of
1 or “Strongly Disagree” (Allen and Seaman,
2007). To predict ordinal target variables from
textual input, we explored a variety of com-
monplace and cutting-edge NLP techniques,
ranging from linear models such as Naive Bayes
and Logistic Regression to Transformer-based
approaches such as BERT (Devlin et al., 2019)
and “Performer” (Choromanski et al., 2021).
One of the most striking observations from our
experiments was that the most impactful exper-
imental variable was not necessarily the model
architecture itself, but rather the loss function
employed and classification scheme, i.e. target
variable encoding. Specifically, we highlight
our use of Ordinal Regression (OR), which is
an approach that is underutilized in the field of
NLP. This approach has a long history (Frank
and Hall, 2001; Graepel and Obermayer, 1999;
Gutiérrez et al., 2016; Baccianella et al., 2009)
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and has recently been applied to deep neural
network models predicting ordinal labels (Cao
et al., 2020). Here, we extend this framework
into the domain of NLP and apply it to train
transformer models as a novel application of
previous work on OR and transformers. Our
results showed that OR produced a distribu-
tion of predictions significantly closer to ground
truth distributions than Multi-class Classifica-
tion (MC) for both NPS and survey ratings (i.e.
lower K-L divergence), while producing similar
accuracies and F1. Additionally, we found that
OR improved the correlation between model
predictions and ground truth. Our findings
highlight that common NLP metrics are insuf-
ficient to distinguish the better model(s) for
our task, which motivated us to explore and
identify error-sensitive metrics more consistent
and effective for evaluating models with ordinal
target variables.

2 Related work

There has been a longstanding debate (Knapp,
1990; Joshi et al., 2015) within the survey, psy-
chometrics, and crowdsourcing methodology
community regarding the use of Likert scales.
In particular, a debate on whether the level
of measurement in question is interval or or-
dinal (McCall, 2001) and whether paramet-
ric or nonparametric tests should should be
used (Kuzon et al., 1996). In a classification
setting involving ordinal data, a related ques-
tion involves the use of multinomial versus
ordinal modeling for such data. Intuitively,
the inclusion of ordinality in the classification
model should improve performance relative to
a multinomial approach, as shown in Campbell
and Donner 1989. Despite the prevalence of
ordinally-scaled tasks in NLP, such as in sen-
timent analysis (Jiang et al., 2019; Pang and
Lee, 2005), stance classification (Sobhani et al.,
2015), lexical specificity (Gao et al., 2019), po-
litical bias (Baly et al., 2018), and common-
sense inference (Zhang et al., 2017), approaches
to such tasks have tended to ignore the ordinal
nature of the data, treating them as MC tasks.
For example, only 2 of 11 participants in sub-
task C of SemEval 2016 (Rosenthal et al., 2017)
(a 5-point-scale twitter sentiment classification
task) chose to exploit the ordinal nature of
the task in their models. Justifying this choice

would involve systematically comparing the use
of ordinal versus MC models for these tasks,
yet most such comparisons have been reported
as an incidental part of experiments for tasks
such as sentiment analysis in tweets (Saad and
Yang, 2019) and classification of psychiatric
symptom severity in clinical notes (Rios and
Kavuluru, 2017).

3 Methods

3.1 Datasets
We hypothesize that taking ordinal rankings
into account would provide more consistent and
better results. To test this, we experimented on
3 common benchmark datasets for sentiment
analysis, and 1 additional dataset on Twitter
specificity.
Movie Reviews (MR): We used the dataset

named “scale dataset v1.0” (Pang and Lee,
2005). It contains full-length movie reviews
from 4 authors on RottenTomatoes.com, and
we used the 4-class variant, which is obtained
by segmenting the ratings from the authors’
normalized numerical scale into 4 ranks. Each
author a, b, c, and d has 1770, 902, 1307 and
1027 reviews, respectively. The mean number
of words per review for each author is 435, 374,
455 and 292, respectively, but the tail is long,
with some reviews having 3k words or more.
For this dataset, no test data was provided, so
we report results on a test set from an 80%/20%
train/test split of the dataset.
IMDb: This dataset is titled IMDb Large

Movie Dataset, and includes 50k movie reviews
written by users on the website IMDb.com (25k
train, 25k test) (Maas et al., 2011). Each review
had a rating of between 1-4 and 7-10 for low and
high sentiment, respectively. Each movie in the
dataset is reviewed less than 30 times and no
movies reviewed in the training set also appears
in the test set. For our experiments, we make
use of the fine-grained labels, 1-4 and 7-10,
which creates an 8-class classification problem.
The reviews vary greatly by length, with some
as short as 6 words and others up to 2.4k
words.

SST-5: The SST-5 dataset is obtained from
Socher et al. 2013, which consists of 215,154
unique phrases parsed from the corpus of 11,855
sentences (averaging 17 words each) from Pang
and Lee 2005. Each sentence is labeled by 3
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annotators. The labeling interface utilizes a
continuous sliding bar with guiding ticks in-
dicating “Very negative,” “Negative,” “Some-
what negative,” “Neutral,” “Somewhat posi-
tive,” “Positive,” and “Very positive.” For the
SST-5 fine-grained sentiment classification ver-
sion, the slider responses are collapsed down
to 5 ranks.
Specificity: This is a corpus of 7,267 tweets

that were sampled by taking 2 tweets (exclud-
ing re-tweets) from users who have posted at
least 4 tweets (3,665 users) (Gao et al., 2019).
The specificity annotations were based on a
sliding-scale with 5 guiding options: “1 - Very
General,” “2 - General,” “3 - Specific,” “4 - Very
Specific,” and “5 - Extremely Specific,” where
general refers to posts that do not make refer-
ences to any specific person, object or event,
and specific refers to posts that do. Each tweet
was annotated by at least 5 workers on Amazon
Mechanical Turk after filtering for low quality
labels, with a resulting intra-class correlation
coefficient of 0.575. In order to arrive at ordi-
nal labels, we bin and collapse the specificity
ratings from a continuous 1-5 scale down to
ranks of 1, 2, 3, and 4, where each continu-
ous numerical value, i, is rounded down, i.e.
floor(i), in order to reduce class imbalance.

3.2 Model architectures and
parameters

All our models share the same underlying archi-
tecture in order to minimize differences result-
ing from model parameterization and feature
generation. Model sizes (i.e. # of parameters)
differ for each dataset, as the average input
sequence lengths are different (e.g. Tweets vs.
movie reviews). In general, the model parame-
ters of “sequence length,” “embedding dimen-
sion,” and “feature size” are scaled to the max-
imum number of tokens contained in any given
input text from that particular dataset. Be-
cause both the MR and IMDb datasets contain
reviews that are longer than typical pre-trained
Transformer input sequence sizes, we leverage
the “Performer” model architecture (Choro-
manski et al., 2021) for all models in order to
accommodate these inputs without modifying
the underlying model architecture. Finally, we
train our models without any pre-training and
without pre-trained embeddings so that we can
have meaningful comparisons between the OR

and MC methodologies with fewer confounding
variables, as adding pre-training or pre-trained
embeddings may change how effectively each
methodology learns from the data.

3.3 Loss functions and label encodings
For MC models, we use the Performer archi-
tecture with cross-entropy loss. The ordinal
labels are encoded as one-hot vectors of length
K, where K is the number of classes, i.e. rat-
ings. For OR models, we also use the Performer
architecture with cross-entropy, but over K− 1
classes, where each class represents a thresh-
old decision of whether the rating is predicted
to be greater than a value, e.g. is the rat-
ing greater than 2. To accommodate the OR
loss function, which we adopt from COnsis-
tent RAnk Logits (CORAL) (Cao et al., 2020),
we encode the ordinal target variables as vec-
tors, vvv, with length N − 1, and each index vk

represents a binary indicator of rank thresh-
old, i.e. v1 = 1 if ŷ1 > 0.5 and v2 = 1 if
ŷ2 > 0.5, etc. CORAL seeks to optimize the
ordinal rank by penalizing misclassifications of
thresholds, and it has theoretical guarantees
for rank-consistency (rank-monotonicity), e.g.
in order to predict 5 (i.e. >4), the model must
also predict >1, >2, >3. This is achieved by al-
lowing the K−1 binary thresholds to share the
same weight parameters, WWW , but independent
biases, bk. Specifically, we seek to minimize:

L(WWW,bbb) =

−
N∑

i=1

K−1∑
k=1

λk(log(ŷk
i )yk

i + log(1 − ŷk
i )(1 − yk

i ))

where N is the number of training examples,
λk is the weight associated with the kth rank
threshold, and ŷk

i = σ(g(xi,W ) + bk). Here,
σ() is the logistic sigmoid function, xi is the
input example,WWW are the model weight param-
eters, which are shared for all the binary rank
thresholds, and bk is the independent bias unit
for threshold at rank k. In optimizing this loss
function, one can prove that the independent
bias units will rank order and result in overall
rank-monotonicity, i.e. b1 ≥ b2 ≥ b3, etc. (see
Theorem 1 in Cao et al. 2020). Due to this rank-
consistency, a model prediction of ŷ3 > 0.5 is
always accompanied by both ŷ2 > 0.5 and
ŷ1 > 0.5. In other words, for v3 = 1, both
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Dataset Scheme MSE Spearman Rho K-L divergence Accuracy F1(macro) F1(weighted)

MR MC 0.577 0.611 58.73 50.4 43.9 51.8
OR 0.491 0.684 6.47 56.9 55.3 57.1

IMDb MC 3.878 0.719 324.64 35.0 28.1 36.4
OR 2.855 0.763 179.28 31.2 27.8 30.1

SST-5 MC 2.520 0.308 264.32 33.2 29.9 35.2
OR 2.051 0.362 136.29 31.3 29.4 31.6

Specificity MC 0.438 0.502 1057.67 59.5 37.4 62.6
OR 0.367 0.591 18.16 64.2 50.0 65.0

Table 1: Experimental results for the benchmark datasets comparing OR to MC. Bolded numbers represent
higher values except MSE and K-L divergence, where lower is better.

Figure 1: Across datasets, OR outperforms MC on MSE (purple; lower is better) and Spearman Rho
(blue). The results are mixed for Accuracy (gray) and Weighted-F1 (red).

v2 = 1 and v1 = 1 are also true, and we encode
a rating of 4 out of 5 as vvv = [1110]. The model
prediction, p, is then the first index at which
vi = 0, argmin(vvv), or 5 if vi = 1 for all i in
[1..4].

3.4 Parameter tuning
For all experiments, we use existing train/test
splits for the benchmark dataset. If no
train/test splits exist, we generate a 80%/20%
train/test split and randomly select 20% of
the training split as a validation split for tun-
ing model parameters and early-stopping. To
determine the early-stopping point, we select
the training epoch at the inflection point where
a 5-epoch moving average of the validation loss
no longer improves.

4 Results

Our experiments with MC vs OR classifiers
for benchmark datasets (Table 1 and Figure 1)
show: 1) Performance, measured in accuracy
and F1, varies depending on the underlying
dataset, with IMDb and SST-5 favoring MC
and MR and Specificity favoring OR. Also, ac-
curacy and F1 are correlated across models
and datasets. 2) In contrast, mean-squared

error (MSE), Spearman’s Rho, and K-L diver-
gence consistently favor OR, with OR achieving
the lowest MSE and K-L divergence and high-
est Spearman Rho across all datasets. Here,
MSE could be replaced by mean absolute error
(MAE) or root-mean-squared error (RMSE),
both of which also select OR as the better
methodology over MC (not shown). These
observations suggest that typical model evalua-
tion metrics such as accuracy and F1 score, fre-
quently used in benchmarks and leaderboards
for sentiment analysis (Ribeiro et al., 2016;
Ruder, 2021; Barbieri et al., 2020), may not
successfully select the best performing models
for classifying ordinal target variables.
For all of our experiments, we determined

that our OR models are significantly different
from MC models, with OR and MC predictions
producing statistically distinct distributions as
determined by a paired t-test with p values less
than 0.05.

4.1 Dataset benchmarks

While the goal of our experiments is to compare
OR vs MC in a baseline setting and not to
challenge current state-of-the-art models, we
provide our results against benchmarks on the
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sentiment analysis datasets in order to give
additional context to our models’ performance.
MR: Benchmarks and leaderboards on this

specific dataset are sparse, as most researchers
have opted to use the sentence-level polarity
dataset from the same authors. The best-
performing model we have found is from Bick-
erstaffe and Zukerman 2010, which achieved
author-level accuracies of 65.72%, 52.89%,
66.99%, and 51.87%, respectively (from 10-fold
CV). This, on average, out-performed our best-
performing OR model, which achieved author-
level accuracies of 62.12%, 54.78%, 54.85%,
and 52.29%, respectively (from 20% test split).
Specifically, Bickerstaffe and Zukerman 2010
out-performed on the majority-authors a and
c while OR had a slight edge in the minority-
authors b and d. OR out-performed the original
models shown in Pang and Lee 2005.
IMDb: There is a lack of available bench-

mark data on the fine-grained 8-class version of
the IMDb dataset, as most researchers opt to
experiment on collapsing the labels to a binary
classification problem. We obtain 34.98% and
31.19% accuracies for MC and OR, respectively
on the fine-grained 8-class task. In an attempt
to compare our result with previous work on
the binary task, we collapse our predictions
into binary format, by mapping predictions 1-
4 to 0 and 7-10 to 1. With binary-mapping,
we obtain 86.71% and 79.93% accuracies for
OR and MC. The OR binary-mapped accu-
racy is on-par with previous benchmark re-
sults on binary IMDb predictions with vanilla
CNNs and LSTMs (Camacho-Collados and
Pilehvar, 2018). Interestingly, OR outperforms
MC for the binary-mapped accuracy while the
8-class accuracy favors MC. This further sug-
gests that OR is more effective at minimizing
rank-error compared to MC, as errors in the
binary-mapped case represent greater magni-
tudes than in the 8-class case.
SST-5: Our OR and MC models obtained

31.27% and 33.21% accuracy, respectively.
This is substantially lower than baseline results
in the literature, which typically achieve >40%
accuracy (Socher et al., 2013), with current
SOTA in the 50%’s (Khodak et al., 2018). The
most comparable model from the literature is
the “VecAvg” variant in the original SST-5 pa-
per, which is a word-embedding model that has

fine-grained accuracy of 32.7% (Socher et al.,
2013). The poor performance exhibited by our
OR and MC models on SST-5 might be due to
a couple factors: 1) our omitting pre-training
in the form of a pre-trained language model
or word embeddings, whereas typical protocols
for SST-5 train embedding representations on
additional data (Khodak et al., 2018) or on the
sub-phrases in the SST-5 training set (Socher
et al., 2013; Le and Mikolov, 2014), 2) the
Performer architecture may not be ideal for
modeling very short input sequences, as it was
designed to approximate the Attention matrix
in order to have favorable time and memory
scaling for long input sequences (Choroman-
ski et al., 2021), and 3) 56% of the words in
the SST-5 training examples appear only once,
which makes pre-training in the form of lan-
guage models or word embeddings especially
important for improving model performance.
Specificity: This dataset is relatively new,

and to our knowledge, there has not been any
additional published work using this dataset
for benchmarking. In addition, it is difficult to
compare directly with the authors’ results, as
they used continuous target values and trained
a Support Vector Regression model (Gao et al.,
2019).

For our use case of predicting NPS, we
greatly value the accuracy of predicted survey
ratings not only in absolute class agreement,
but also in how closely the predicted ratings
distribution matches the actual distribution.
For accurate NPS prediction, our model rating
distribution needs to reflect the actual distribu-
tion of NPS not just in aggregate, but across
various business segments. To probe deeper
into the performance differences between OR
and MC, we examined the predicted distribu-
tions of Movie Ratings compared to ground
truth.

Overall distributions for the MR and IMDb
datasets (Figure 2) show: 1) OR produces more
accurate rating distributions, as measured by
smoothed K-L divergence (Table 1). 2) MC
over-predicts majority classes in both datasets
(2s and 3s for MR and 1s and 10s for IMDb)
while under-predicting the others (except 2s
and 3s in IMDb). These results are in line
with the common observation that MC models
tend to overfit on the majority classes in im-
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Figure 2: OR (left) outperforms MC (right) with
respect to representing whole distributions of movie
ratings for MR (top) and IMDb (bottom) datasets
as measured by divergence.

balanced datasets, which motivates the use of
“oversampling” or class balancing(Buda et al.,
2018; Chawla et al., 2002; Tepper et al., 2020;
Gao et al., 2020). OR, in contrast, provides a
better fit for MR (slightly under-predicting for
1s), but significantly under-predicts on IMDb
majority classes, displaying a much flatter dis-
tribution of predictions. 3) Lastly, in MC,
for the IMDb distribution, where there are
a greater number of classes (8 ratings con-
sidered), we observe a tendency to “drop” or
ignore a particular class resulting in signifi-
cant under-prediction, for example the 9s in
the bottom right of Figure 2. We observe this
throughout training, and, depending on the
epoch, have observed the model dropping other
minority classes (2’s, 3’s, 6’s, etc.), where we
observe a recall less than 3%. This suggests
that MC and OR lead to different behaviors
with respect to predictive representation, as we
discuss later.
To explore the performance of our model

with respect to different data subsets, we cal-
culate the smoothed K-L divergence for each
of the four authors in the MR dataset (Figure
3). We find that OR greatly out-performs MC:
while there are modest improvements in K-L
divergence for authors b and d, we observe a
two- to ten-fold increase for authors a and c, re-
spectively. We hypothesize that MC is learning
associations between review text and ratings

Figure 3: OR outperforms MC across authors in
the MR dataset as measured by smoothed K-L
divergence (lower is better). This is particularly
evident in author c (10x) and author a (2x).

as a whole by optimizing for overall accuracy
in the predicted ratings, which may resemble
learning how an amalgamation (or weighted
average) of the 4 authors would rate a given
movie. On the other hand, OR appears more
sensitive to author-specific language, resulting
in far lower K-L divergence values, but this may
simply be due to the lower overall K-L diver-
gence in OR calculated over the entire dataset.
Lower overall and author-specific K-L diver-
gence may be beneficial for applications with
personalized predictions, i.e. in cases where
performance on various data segments is impor-
tant. Notably, authors a and c are the majority
segments of the MR dataset, where each au-
thor a, b, c, and d has 1770, 902, 1307 and
1027 reviews, respectively. This may partially
explain the improved K-L divergence of OR
compared to MC for those segments, as there
are more training examples for how authors a
and c express their opinions on movie ratings.

Table 1 showed that raw accuracy is insuffi-
cient to distinguish better performance when
distribution fit and error distance are impor-
tant. In the SemEval-2016 Task for 5-point sen-
timent analysis of Twitter posts, some contrib-
utors used macro-averaged mean absolute error
(MAEM ) (Rosenthal et al., 2017), which per-
forms a macroaveraging of absolute errors be-
tween prediction and targets across all classes.
This metric breaks down the error across target
classes and can be better-suited for cases of
class imbalance. WhileMAEM , MSE, and cor-
relation are all error-sensitive, they do not give
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Figure 4: To visualize the impact of optimizing
for ordinal rank, we define “accuracy at n” or a@n,
which considers the closeness of predictions to truth.
a@n shows that for all benchmark datasets, OR
outperforms MC for n > 0, where n is the absolute
error.

fine-grained insights into the degree of errors,
e.g. how close did we get to the right answer?
To show this, we extend MAEM and MSE
with a metric that allows us to visualize degree
of error: “accuracy at n” or a@n (Figure 4).
a@n calculates the proportion of predictions
that are within an allowable absolute error, n
(ranging from 0 to K−1), from their targets, y.
In this metric, a@0 represents traditional accu-
racy. Accordingly, the graphs in Figure 4 begin
at the values reported in Table 1 . However, as
we increase n, we observe that across the board
the a@n for n > 0 is higher for OR compared
to MC for all datasets. In other words, while
MC predicts the exact rating correctly more
often than OR for IMDb and SST-5, when OR
predicts incorrectly, it generally gets closer to
the target than MC. This is highly desirable for
tasks where the degree of error is important.

5 Discussion

We have shown that while MC outperformed
OR for some datasets in terms of accuracy and
F1, OR is significantly better than MC for min-
imizing error between predictions and targets
for all datasets, as revealed by error-sensitive
metrics such as mean-squared error and Spear-
man Rho. This can lead to better performance
in terms of representing distributions, as mea-
sured by smoothed K-L divergence, and min-

imizing the magnitude of errors, as shown by
a@n.

We attribute OR’s superiority over MC on
MSE and Spearman correlation to the differ-
ence in their loss functions. While both MC
and OR utilize cross-entropy, the label encod-
ings and model constraints account for ma-
jor differences. MC assumes that each rat-
ing is independent and uses one-hot encodings.
OR encodes the ratings as rank thresholds, v,
where each index, vi, represents a binary indi-
cator of threshold, i.e. v1 = 1 if ŷ1 > 0.5 and
v2 = 1 if ŷ2 > 0.5, etc. This encoding combined
with shared weight parameters and indepen-
dent biases enforces rank-consistency, meaning
a model prediction of ŷ3 > 0.5 is accompa-
nied by both ŷ2 > 0.5 and ŷ1 > 0.5 because
b1 ≥ b2 ≥ b3 (Cao et al., 2020). Consequently,
we have not observed rank-inconsistent predic-
tions in our OR models. This rank-consistency
places a constraint on the model, forcing it to
learn the ordinal information separating differ-
ent ratings. In terms of bias-variance trade-
off, MC results in a lower bias, higher vari-
ance model, while OR produces a higher bias,
lower variance model for ordinal target vari-
ables. Therefore, OR optimizes for rank-error
between prediction and target, leading to lower
MSE and higher Spearman correlations com-
pared to MC.

Despite not directly optimizing for raw ac-
curacy, we observe that OR still outperforms
MC in accuracy and F1 for the MR and Speci-
ficity datasets. We hypothesize that this is
related to the independence assumption that
MC places during training, which may omit
useful ordinal signal. While Likert-like scales
can be highly subjective and inconsistent from
one reviewer to another (Liang et al., 2020) due
to cultural differences (Lee et al., 2002), among
other reasons, there is significant overlap in rat-
ing schemes among reviewers (e.g. all reviewers
should agree that higher ratings are better than
lower). This standardization is particularly ap-
parent when ratings are consistently generated,
as is the case with MR, where all reviews orig-
inate from four authors. Each author, while
unique, has a self-consistent way of expressing
their reviews, which allows their readers to un-
derstand their reasoning for assigning movie
ratings. This intra-author consistency may en-
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hance the ordinal signal contained in the MR
dataset. The Specificity dataset provides a re-
lated explanation. The ranks in the Specificity
and MR datasets derive from labeled ratings
that were collapsed from a more-continuous
scale into 4 ranks. This may help to reduce
the variance among the annotators. Addition-
ally, the creators of the Specificity dataset took
care to ensure that annotators agreed with one-
another, assigning multiple annotators to label
each data point (Gao et al., 2019). OR may
also benefit from having fewer ranks, as more
ranks create more opportunities for inconsis-
tencies among reviewers as to what each rank
represents.

The complement to our previous observation
is that MC outperforms OR in accuracy and
F1 for IMDb and SST-5. For IMDb, we hy-
pothesize that this is related to the granularity
of the ranks (8 total classes), and the large
number of reviewers (likely tens of thousands).
In this case, each person’s different notions of
ratings introduces considerable noise into the
ordinal signal. It seems that OR may be more
sensitive to rater inconsistencies compared to
MC because OR fits the model on the ordinal
signal whereas MC makes a rank-independence
assumption. For SST-5, the answer is less clear,
as each sentence is annotated by 3 judges, and
the labels are collapsed down to 5-classes from
a continuous range obtained from a sliding bar.
It is possible that OR may struggle to make the
generalizations necessary to successfully distin-
guish different ranks when the input sequences
are short, as words may not appear in more
than one example. For SST-5, 56% of the
words in the training split appear in only one
sentence. This may create difficulties in learn-
ing to generalize across ranks. It also highlights
the impact of pre-training either in the form of
language models or word embeddings for per-
formance (Khodak et al., 2018). This pitfall is
not apparent in the Specificity dataset, and we
hypothesize that it is because the specificity
task has significant correlations with the Tweet
length itself (Gao et al., 2019), so that learning
word associations is less important.

In addition to rank-error minimization, OR
avoids the class dropping problem we observe
in MC. We hypothesize that MC drops classes
because probability mass is shared among all

classes via the Softmax activation. This re-
sults in a model bias to take probability mass
away from minority classes to give to majority
classes when it is uncertain, which we observe
in MC over-predicting majority classes (Figure
2). This is likely to happen in cases where the
model cannot find reliable signal for particular
minority class(es). In the extreme case, this
leads to nearly no predictions for those minor-
ity classes, i.e. class dropping. OR, in contrast,
avoids class dropping because its predictions
do not share probability mass, i.e. each rank
threshold represents its own prediction after
Sigmoidal activation, without a Softmax. This
builds inherent robustness into the prediction.
For example, if the model is quite confident
that a review is higher than 2 and less than
5, i.e. ŷ2 >> 0.5 and ŷ5 << 0.5, but unsure
if it is a 3 or a 4, i.e. ŷ3 ≈ 0.5 and ŷ4 ≈ 0.5,
rather than splitting probability mass between
3 and 4 as in MC (thus making other classes
more likely in relation via Softmax), it can
adjust the probability mass of v3 independent
of the other thresholds by adjusting b3. For
inputs near the decision boundary for both
v3 and v4, the model will predict 3 and 4 in
roughly equal proportions, avoiding a drop of
either rank, whereas for MC, the model’s bias
towards majority classes coupled with Softmax
activation may lead to dropping 3 or 4. There-
fore, OR may produce better results in tasks
with data imbalance, e.g. with highly-skewed
or bi-/multi-modal distributions.

While our results are only empirically demon-
strated for OR implemented with CORAL, we
expect that our observations would likely gen-
eralize to other OR implementations, especially
latent-variable models and other variants that
produce rank-ordered thresholds, as the salient
features would be the same.

6 Conclusion

Common model evaluation metrics such as ac-
curacy, precision, recall, and F1 are insufficient
for capturing the degree of error between pre-
diction and target for multi-class prediction
where the target is ordinal. Therefore, select-
ing models based on these traditional metrics
may result in selecting an underperforming
model. Error-sensitive metrics such as MSE
(similarly, MAE and RMSE) and Spearman
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correlation capture the ordinal error, resulting
in selecting models that have more representa-
tive distributions and improved generalization
across data segments, as measured by K-L di-
vergence. This is particularly important in
use cases like predictive NPS, where accurate
scores are necessary not just in aggregate, but
across time and different customer segments
as well. The independence assumption made
by MC can remove useful ordinal signal, espe-
cially in cases where there is greater consistency
across reviewers, their language, or their rat-
ings. For benchmarks involving ordinal target
variables, it is important to evaluate the MSE
(or a similar error-sensitive metric like MAE,
a@n, and MAEM ) and Spearman correlations
in addition to the usual metrics in determin-
ing whether a new model outperforms previous
models. We hope to see these metrics included
in future benchmarks with ordinal target vari-
ables.
Additionally, some of our experimental ob-

servations appear to be tied to the Softmax
activation used in MC compared to the Sig-
moidal activation in OR, such as class drop-
ping in MC and substantially lower author-level
K-L divergence in OR. These observations mo-
tivate exploration into alternative losses and
activations for ordinal problems compared to
traditional classification. For example, it would
be interesting to compare the MC approach to
one that does not involve the Softmax, such
as “One-vs-Rest” or “One-vs-One,” to observe
whether class dropping persists.
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