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Abstract

In this paper, we introduce the Eval4NLP-2021
shared task on explainable quality estimation.
Given a source-translation pair, this shared
task requires not only to provide a sentence-
level score indicating the overall quality of the
translation, but also to explain this score by
identifying the words that negatively impact
translation quality. We present the data, anno-
tation guidelines and evaluation setup of the
shared task, describe the six participating sys-
tems, and analyze the results. To the best of
our knowledge, this is the first shared task on
explainable NLP evaluation metrics. Datasets
and results are available at https://github.
com/eval4nlp/SharedTask2021.

1 Introduction

Recent Natural Language Processing (NLP) sys-
tems based on pre-trained representations from
Transformer language models, such as BERT (De-
vlin et al., 2019) and XLM-Roberta (Conneau et al.,
2020), have achieved outstanding results in a vari-
ety of tasks. This boost in performance, however,
comes at the cost of efficiency and interpretability.
Interpretability is a major concern in modern Arti-
ficial Intelligence (AI) and NLP research (Doshi-
Velez and Kim, 2017; Danilevsky et al., 2020), as
black-box models undermine users’ trust in new
technologies (Mercado et al., 2016; Toreini et al.,
2020).

In the Eval4NLP 2021 shared task, we focus on
evaluating machine translation (MT) as an example
of this problem. Specifically, we look at the task of
quality estimation (QE), where the aim is to predict
the quality of MT output at inference time without
access to reference translations (Blatz et al., 2004;
Specia et al., 2018b).1 Translation quality can be

1While QE is typically treated as a supervised task, a re-
lated research direction is reference-free evaluation, which

assessed at different levels of granularity: sentence-
level, i.e. predicting the overall quality of translated
sentences, and word-level, i.e. highlighting specific
errors in the MT output. Those have traditionally
been treated as two separate tasks, each one requir-
ing dedicated training data.

In this shared task, we propose to address word-
level translation error identification as an explain-
ability task.2 Explainability is a broad area aimed
at explaining predictions of machine learning mod-
els. Rationale extraction methods achieve this by
selecting a portion of the input that justifies model
output for a given data point (Lei et al., 2016; Jain
et al., 2020). A natural way to explain sentence-
level quality assessment is to identify translation
errors. Hence, we frame error identification as
a task of providing explanations for the predic-
tions of sentence-level QE models. We claim that
this task represents a challenging new benchmark
for testing explainability for NLP and provides a
new way of addressing word-level QE.

On the one hand, QE is different from other
explainable NLP tasks with existing datasets (DeY-
oung et al., 2020) in various important aspects.
First, it is a regression task, as opposed to binary
or multiclass text classification explored in previ-
ous work. Second, it is a multilingual task where
the output score captures the relationship between
source and target sentences. Finally, QE is fun-
damentally different from e.g. text classification,
where clues are typically separate words or phrases
(Zaidan et al., 2007) that can often be considered

refers to unsupervised cross-lingual metrics that assess MT
quality by computing distances between cross-lingual seman-
tic representations of the source and target sentences (Zhao
et al., 2020; Song et al., 2021).

2A study on global explainability of MT evaluation metrics,
disentangling them along linguistic factors such as syntax and
semantics, has recently been conducted in Kaster et al. (2021).
In contrast, our shared task addresses local explainability of
individual input instances.

https://github.com/eval4nlp/SharedTask2021
https://github.com/eval4nlp/SharedTask2021
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Figure 1: Distribution of sentence-level scores for each language pair.

independently of the rest of the text. By contrast,
translation errors can only be identified given the
context of the source and target sentences. Thus,
this shared task provides a new benchmark for test-
ing explainability methods in NLP.

On the other hand, treating word-level QE as
an explainability problem offers some advantages
compared to the current approaches. First, we can
potentially avoid the need for supervised data at
word level. Second, gold standard test sets can
be made less expensive and more reliable. As we
will show in Section 2, rationalized sentence-level
evaluation can be a middle ground between rela-
tively cheap but noisy annotations derived from
post-editing (Fomicheva et al., 2020) and very in-
formative but expensive explicit error annotation
based on error taxonomies, such as the Multidimen-
sional Quality Metrics (MQM) framework (Lom-
mel et al., 2014b). For this shared task, we build a
new test set with manually annotated explanations
for sentence-level quality ratings. To the best of our
knowledge, this is the first MT evaluation dataset
annotated with human rationales.

The main objective of the shared task is three-
fold. First, it aims to explore the plausibility of
explainable evaluation metrics (Wiegreffe and Pin-
ter, 2019), by proposing a test set with manually
annotated rationales. It helps the community better
understand how similar the generated explanations

are to the human explanations. Second, the shared
task encourages research on unsupervised or semi-
supervised methods for error identification, so as
to reduce the cost on word-level MT error annota-
tion. Last but not least, the shared task sheds light
on how current NLP evaluation systems arrive at
their predictions and to what extent this process is
aligned with human reasoning.

2 Data

For this shared task, we collected a new test set
with (i) manual assessment of translation quality
at sentence level and (ii) word-level rationales that
explain the sentence-level scores (Section 2.1). For
training and development purposes, the participants
were advised to use existing resources, which are
briefly discussed in Section 2.2.

2.1 Eval4NLP Test Set

Language pairs and MT systems The test set
contains four language pairs: Estonian-English (Et-
En), Romanian-English (Ro-En), Russian-German
(Ru-De) and German-Chinese (De-Zh). For Et-
En and Ro-En, we use the source and translated
sentences from the test21 partition of the MLQE-
PE dataset (Fomicheva et al., 2020). For Ru-De, the
source sentences were extracted from Wikipedia
following the procedure described in Guzmán et al.
(2019) and translated using the ML50 fairseq (Ott
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et al., 2019) multilingual Transformer model (Tang
et al., 2020). For De-Zh, the translations were
produced using the Google Translate API, as the
MT quality of the ML50 model was too low for
this language pair according to our preliminary
experiments.

Language Tokens Sentences
pair Source/Target All/With rationales

Et-En 14,044/19,576 1,000/718
Ro-En 17,359/17,770 1,000/665
De-Zh 24,903/27,027 1,410/911
Ru-De 25,383/28,802 1,180/1,061

Table 1: Total number of source tokens, target to-
kens, sentences and sentences with lower-than-perfect
sentence score (i.e. sentences with rationales) in the
Eval4NLP 2021 test set.

Sentence- and word-level annotation For this
annotation effort, we adapted the Appraise man-
ual evaluation interface (Federmann, 2012). For
sentence-level annotation, we follow the guide-
lines from the MLQE-PE dataset (Fomicheva et al.,
2020), a variant of the so called direct assessment
(DA) scores proposed by Graham et al. (2016). As
illustrated in Figure 2, the annotators were asked to
provide a sentence rating by moving a slider on the
quality scale from left (worse) to right (best). They
were additionally provided with instructions on
what specific quality ranges represent. Following
Graham et al. (2016), the numeric values were not
visible to the annotators, but the scale is interpreted
numerically as follows: 1-10 range represents a
completely incorrect translation; 11-30, a transla-
tion that contains a few correct keywords, but the
overall meaning is different or lost; 31-50, a trans-
lation that preserves parts of the original meaning;
51-70, a translation which is understandable and
conveys the overall meaning of the source but con-
tains a few errors; 71-90, a translation that closely
preserves the semantics of the source and has only
minor mistakes; and 91-100, a perfect translation.

Crucially, besides the sentence-level rating,
the annotators were asked to provide a rationale
for their decisions. Specifically, for all transla-
tions except those they considered perfect, the
annotators were required to highlight the words
in the MT sentence corresponding to translation
errors that would explain the assigned sentence
score.3 They were also asked to highlight the

3For all languages except for Chinese, the source sen-

source words that caused the errors in the MT
output, as shown in Figure 2. The missing contents
was annotated by highlighting the source words
that were not translated, whereas for the added
(hallucinated) contents the annotators were only
required to highlight the corresponding target
words. We interpreted the highlighting as binary
labels, indicating whether a given word is part of
the rationale (positive class), or not (negative class).
The annotators were provided with detailed anno-
tation guidelines, which are available at https:
//github.com/eval4nlp/SharedTask2021/

tree/main/annotation-guidelines.
The annotation was conducted by 3 annotators

for Et-En and Ro-En, and by (up to) 4 annotators
for Ru-De and De-Zh.4 Et-En and Ro-En data was
annotated by Estonian and Romanian native speak-
ers with near native proficiency in English. De-
Zh data was annotated by Chinese native speakers
with strong proficiency in German. Finally, Ru-De
data was annotated by native speakers of Russian
with near native proficiency in German. The anno-
tators for Ro-En, Et-En, and Ru-De are students
specializing in Linguistics and Translation or are
professional translators; the annotators for De-Zh
are students specializing in computer science. The
cost of annotation was approximately 4,000 Euro,
with working times of 15 to 25 hours per annotator
for De-Zh and Ru-De (Et-En and Ro-En annotators
were compensated for the whole work, instead of
on an hourly basis, and not all of them noted down
their working times).

To produce a single sentence-level score, we
take an average across the scores from individual
annotators. To obtain a single binary label for each
token, we use a majority voting mechanism, where
the token is considered as part of the rationale if it
was highlighted by the majority of the annotators.5

Inter-annotator agreement Table 2 shows aver-
age agreement levels between our annotators (on
common sets of annotated data instances). We use
Pearson correlation for sentence-level scores and

tences and MT outputs were tokenized with Moses tokenizer
available at https://github.com/moses-smt/
mosesdecoder. For Chinese, the jieba tokenizer was used:
https://github.com/fxsjy/jieba.

4Not all annotators annotated all sentences for Ru-De and
De-Zh. Individual annotators did 1411, 871, 1101, 1026 sen-
tences for De-Zh, and 601, 1002, 1181, 1001 sentences for
Ru-De.

5When there is an even number of annotators, we weight
the annotations by annotator reliability measured using their
average agreement with the other annotators.

https://github.com/eval4nlp/SharedTask2021/tree/main/annotation-guidelines
https://github.com/eval4nlp/SharedTask2021/tree/main/annotation-guidelines
https://github.com/eval4nlp/SharedTask2021/tree/main/annotation-guidelines
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/fxsjy/jieba
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Figure 2: Screenshot of the annotation interface.

Cohen’s kappa coefficient for word-level annota-
tions. To be more precise, we measure Pearson
correlation among all common instances between
two annotators and then report the average across
annotators; we measure average kappa agreement
(averaged over all sentences) between any two an-
notators and then report the average across all anno-
tators. We observe that Ro-En and Ru-De are most
consistently annotated and De-Zh and Et-En have
least agreement on average. Overall, our agree-
ments are acceptable, however, in all cases, ranging
from 0.42 to 0.67 kappa on word-level and ∼0.6 to
0.8 Pearson on sentence-level. For comparison, the
average kappa reported by Lommel et al. (2014a)
for the fine-grained MQM error annotation ranges
from 0.25 to 0.34.

Sentence-Level Word-Level
Source Target

De-Zh 0.59 0.48 0.55
Ru-De 0.71 0.56 0.59
Ro-En 0.81 0.54 0.67
Et-En 0.68 0.42 0.45

Table 2: Sentence-level (Pearson) and word-level
(kappa) agreements for different language pairs.

Data statistics The number of annotated sen-
tences, as well as the number of the source and
target tokens in the test set are shown in Table 1.
In addition, we show the number of sentences with
lower-than-perfect translation quality. This is the fi-
nal subset of sentences that was used to evaluate the

submissions to the shared task, since in our manual
evaluation setup no rationales were required for the
MT outputs with perfect quality. As shown in Ta-
ble 1, for all the language pairs the vast majority of
translations has a lower-than-perfect score, where
the percentage of such sentences is the lowest for
De-Zh (65%) and the highest for Ru-De (90%).

Figure 1 shows the distribution of sentence-level
scores for each language pair. The language pair
with the highest average quality is De-Zh, whereas
Ru-De has the lowest average score. For Et-En, Ro-
En and Ru-De, the scores cover the whole quality
range, while the distribution for De-Zh is highly
skewed, which makes the task more challenging
for this language pair (see Section 6).

Table 4 shows the proportion of words annotated
as rationales. The numbers in Table 4 are consistent
with the average sentence-level quality, as De-Zh
and Ru-De have the lowest and the highest percent-
age, respectively. This is expected given that lower
quality translations should contain a higher num-
ber of errors. In general, the proportion of tokens
considered relevant for explaining sentence-level
ratings is fairly low. This is consistent with the
annotation guidelines which stipulate that all and
only the words necessary to justify the sentence
score must be highlighted. Finally, we observe that,
for Et-En and Ro-En, the percentage of annotated
tokens is higher for the target than for the source
sentences. This can be related to the presence of
hallucinations, where the target contains words that
do not have a clear correspondence with any part
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Src Pe 20 august , trupele sârbe au ı̂nceput urmărirea austriecilor ı̂n retragere .
PE On 20 August , the Serbian troops began pursuing the retreating Austrians .

MT Serbian troops started pursuing Austria on 20 August in withdrawal .

Ann-EXPL Serbian troops started pursuing Austria on 20 August in withdrawal .

Ann-EXPL* Serbian troops started pursuing Austria on 20 August in withdrawal .

Predictions Serbian troops started pursuing Austria on 20 August in withdrawal .

Ann-PE Serbian troops started pursuing Austria on 20 August in withdrawal .

Color scale 0.0 0.5 1.0

Table 3: Example of the target-side annotation from the Ro-En test set and the output expected from the participants.
“Src” stands for the source sentence, “MT” is the MT output, “PE” is the post-edited version of the MT output taken
from the MLQE-PE dataset. “Ann-EXPL*” is the mean of the binary scores for each word averaged across the
annotators. “Ann-EXPL” corresponds to the binary scores obtained by aggregating individual annotations through
majority voting (official gold standard of the shared task). “Ann-PE” is the word-level annotation derived from
post-editing. “Predictions” contains the predictions (after min-max normalization) for this sentence from the IST-
Unbabel submission to the constrained track.

Et-En Ro-En De-Zh Ru-De

O
ur

s Source 0.14 0.09 0.11 0.21
MT 0.18 0.13 0.12 0.21

M
L

Q
E

Source 0.22 0.20 - -
MT 0.26 0.22 - -

Table 4: Percentage of source and MT tokens annotated
as rationales. For comparison, the percentage of source
and target tokens annotated as errors in the same test
partition of the MLQE-PE dataset is provided.

of the source sentence, as well as to typological dif-
ferences between languages, whereby there tends
to be a one-to-many correspondence between the
source and target words.

Difference to existing QE datasets with word-
level annotation The test set collected for this
shared task is different from existing QE datasets
with word-level annotation. A popular approach
to building QE datasets is based on measuring
post-editing effort (Bojar et al., 2017; Specia et al.,
2018a; Fonseca et al., 2019; Specia et al., 2020).
This can be done at sentence level, by computing
the so called HTER score (Snover et al., 2006) that
represents the minimum number of edits a human
language expert is required to make in order to cor-
rect the MT output; or at word level, by aligning
the MT output to its post-edited version and an-
notating the misaligned source and target words.
An important limitation of this strategy is that the
annotated words do not necessarily correspond to
translation errors, as correcting a specific error may
involve changing multiple related words in the sen-

tence. This is exacerbated by the limitations of the
heuristics used to automatically align the MT and
its post-edited version. Indeed, as shown in Table
4, the percentage of error tokens on the same data
for Ro-En and Et-En language pairs is considerably
higher in the MLQE-PE dataset, where word-level
annotation is derived from post-editing.

An alternative approach is the explicit annota-
tion of translation errors by human experts. This
is typically done based on fine-grained error tax-
onomies such as the Multidimensional Quality Met-
rics (MQM) framework (Lommel et al., 2014b).
While such annotations provide very informative
labelled data, the annotator agreement for this style
of annotation is fairly low (Lommel et al., 2014a)
and the annotation is very time-consuming.6

The example in Table 3 shows a sample of the
annotated data from the Ro-En test set. The first
three rows correspond to the source (Src), the MT
output (MT), and the post-edited MT output (PE).
“Ann-EXPL*” shows the mean of the binary scores
assigned by each annotator to a given word. Thus,
the words “20” and “August” were included in the
rationale by 1 out of 3 annotators for this example,
the words “Austria” and “in” were highlighted by 2
out of 3 annotators; finally, the word “withdrawal”
was included in the rationale by all 3 annotators.
We can interpret this information as an indirect
indication of error severity, as the most serious
errors are expected to be noted by all of the anno-
tators. “Ann-EXPL” shows the binary scores that

6The interest towards MQM has recently increased due to
a higher overall quality of MT (Freitag et al., 2021), but the
aforementioned issues still remain unsolved.
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we obtain through a majority voting mechanism, as
described above. These binary scores were used for
the official evaluation reported in Section 6. “Pre-
dictions” illustrates the predicted scores from one
of the participants of the shared task.7 The pre-
dictions almost perfectly correspond to the human
rationale, as in both cases the words “Austria” and
“withdrawal” receive the highest scores. Finally,
for comparison, “Ann-PE” shows the word labels
for this sentence taken from the MLQE-PE dataset.
In this case all tokens are considered as errors since
re-orderings (or “shifts”) are not included in the
set of possible edit operations used to compute
minimum edit distance, from which the alignment
between MT output and its PE is derived.

To the best of our knowledge, this test set is the
first MT evaluation dataset annotated with human
rationales. The proposed annotation scheme has
certain advantages for the QE task, as it allows
to explicitly annotate translation errors, and at the
same time results in higher agreement and less
effort than fine-grained error annotation.8

2.2 Training and development data

As discussed above, we use the same sentence-level
annotation scheme as the one used in the MLQE-
PE dataset. Therefore, for Ro-En and Et-En the
participants could use the train and development
partitions of MLQE-PE to build their sentence-
level models. The De-Zh and Ru-De language
pairs represent a fully zero-shot scenario where no
sentence-level training data is available.

3 Task and Evaluation

The task consisted of building a QE system that (i)
predicts the quality score for an input pair of source
text and MT hypothesis, (ii) provides word-level
evidence for its predictions. An example of the test
data used for evaluation is shown in Table 3. The
participants were expected to provide explanations
for each sentence pair in the form of continuous
scores, with the highest scores corresponding to
the tokens considered as relevant by human an-
notators. The participants could submit to either

7We did not ask the participants to normalize the scores,
as we are only interested in the ranking of tokens according to
their relevance for sentence-level quality.

8As shown by McDonnell et al. (2017), rationales increase
the reliability of human annotation when judging the relevance
of webpages for information retrieval. In the future, we plan
to investigate whether this also applies to MT evaluation and
providing word-level explanations increases the consistency
of sentence-level assessments.

constrained or unconstrained track. For the con-
strained track, the participants were expected to
use no supervision at word level, while in the un-
constrained track they were allowed to use any
word-level data for training.

Explanations can be obtained either by building
inherently interpretable models (Yu et al., 2019) or
by using post-hoc explanation methods which ex-
tract explanations from an existing model (Ribeiro
et al., 2016; Lundberg and Lee, 2017; Sundarara-
jan et al., 2017a; Schulz et al., 2020), for example
by analysing the values of the gradient on each in-
put feature. In this shared task, we provide both
sentence-level training data and strong sentence-
level models (see the TransQuest-LIME baseline
in Section 4), and thus encourage the participants
to either train their own inherently interpretable
models or use post-hoc techniques on top of our
existing sentence-level models.

We accommodate the evaluation scheme to be
suitable both for approaches that return continu-
ous scores, and for supervised approaches that can
return binary scores. Namely, we use evaluation
metrics based on class probabilities that have been
previously adapted for assessing the plausibility
of rationale extraction methods (Atanasova et al.,
2020). Since explainability methods typically pro-
ceed on instance-by-instance basis, and the scores
produced for different instances are not necessar-
ily comparable, we compute the evaluation metrics
for each instance separately and average the re-
sults across all instances in the test set. Following
Fomicheva et al. (2021), we define the following
evaluation metrics to assess the performance of the
submissions to the shared task at the word-level:

AUC score For each instance, we compute the
area under the receiver operating characteristic
curve (AUC score) to compare the continuous attri-
bution scores against binary gold labels.

Average Precision AUC scores can be overly
optimistic for imbalanced data. Therefore, we
also use Average Precision (AP). AP summarizes
a precision-recall curve as the weighted mean of
precisions achieved at each threshold, with the in-
crease in recall from the previous threshold used as
the weight (Zhu, 2004).

Recall at Top-K In addition, we report the
Recall-at-Top-K metric commonly used in in-
formation retrieval. Applied to our setting, this
metric computes the proportion of words with the
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Team ID Participating team

NICT-Kyoto National Institute of Information and Communications Technology Rubino et al. (2021)
IST-Unbabel IST/University of Lisbon & Unbabel Treviso et al. (2021)
CLIP-UMD Department of Computer Science, University of Maryland Kabir and Carpuat (2021)

Gringham Technical University of Darmstadt Leiter (2021)
HeyTUDa Technical University of Darmstadt Eksi et al. (2021)

CUNI-Prague Charles University Polák et al. (2021)

Table 5: Participants of the Eval4NLP Shared Task on Explainable Quality Estimation.

highest attribution that correspond to translation
errors against the total number of errors in the MT
output. The code for computing the evaluation
metrics can be found in the shared task github
repository: https://github.com/eval4nlp/

SharedTask2021/tree/main/scripts. The
shared task used CodaLab as the submission
platform.

4 Baseline systems

Random baseline is built by sampling scores
uniformly at random from a continuous [0..1) range
for each source and target token in a given sentence
pair as well as for the sentence-level QE score.

Transquest-LIME uses TransQuest QE models
described in Ranasinghe et al. (2020) to produce
sentence-level scores. TransQuest follows the cur-
rent standard practice of building task-specific NLP
models by fine-tuning pre-trained multilingual lan-
guage models, such as XLM-Roberta, on task-
specific data. For Ro-En and Et-En, the Ro-En and
Et-En TransQuest models are used, whereas for the
zero-shot language pairs we use the multilingual
variant of TransQuest, which was trained on a con-
catenation of MLQE-PE data. The post-hoc LIME
explanation method (Ribeiro et al., 2016) is then
applied to generate relevance scores for the source
and target words. LIME is a simplification-based
explanation technique, which fits a linear model in
the vicinity of each test instance, to approximate
the decision boundary of the complex model. Since
in our sentence-level gold standard higher scores
mean better quality, we invert LIME explanations
so that higher values correspond to errors.

XMover-SHAP uses the reference-free metric
XMoverScore (Zhao et al., 2020) to rate transla-
tions and uses the (likewise post-hoc) SHAP ex-
plainer (Lundberg and Lee, 2017) to explain the
ratings. In particular, given a source-translation
pair, XMoverScore provides a real number to
indicate the quality of the translation, in terms

of its semantic overlapping with the source sen-
tence, using re-mapped multilingual BERT em-
beddings and a target-side language model.9

To explain the contribution of each word in
the rating, SHAP creates perturbations of the
source/translation sentence by masking out some
words and estimates the average marginal contri-
bution of each word across all possible perturba-
tions. The source code for all the baseline systems
is available at https://github.com/eval4nlp/

SharedTask2021/tree/main/baselines.

5 Participants

For this first edition of the shared task, we had a
total of 6 participating teams listed in Table 5.10 Be-
low, we briefly describe the submitted approaches.

NICT-Kyoto use synthetic data to fine-tune the
XLM-Roberta language model for the QE task. To
produce synthetic sentence-level scores, they trans-
late publicly available parallel corpora using SOTA
neural MT systems and compute three reference-
based metrics: ChrF (Popović, 2015), TER (Snover
et al., 2006) and BLEU (Papineni et al., 2002). To
simulate word-level annotation, they derive word-
level labels from the alignment between the MT
outputs and human reference translations. The QE
model is then jointly trained to predict the scores
from different metrics as well as word-level tags.
A metric embedding component is proposed where
each metric is represented with a set of learnable
parameters. An attention mechanism between the
metric embeddings and the input representations is
employed to obtain word-level scores as explana-
tions for the sentence-level predictions.

IST-Unbabel participated in the constrained and
unconstrained tracks of the shared task. For the
constrained track (”IST-Unbabel” in Table 6), they

9Note that XMoverScore is an unsupervised reference-free
metric, in contrast to the supervised TransQuest QE model.

10Initially, there were seven participating teams, but one of
them opted out after the competition ended.

https://github.com/eval4nlp/SharedTask2021/tree/main/scripts
https://github.com/eval4nlp/SharedTask2021/tree/main/scripts
https://github.com/eval4nlp/SharedTask2021/tree/main/baselines
https://github.com/eval4nlp/SharedTask2021/tree/main/baselines


172

used a set of explainability methods to extract
the relevance of the input tokens from sentence-
level QE models built on top of XLM-Roberta and
RemBERT. The explainability methods explored in
this work include attention-based, gradient-based
and perturbation based approaches, as well as ra-
tionalization by construction. The best perform-
ing method which was submitted to the competi-
tion relies on the attention mechanism of the pre-
trained Transformers in order to obtain the rele-
vance scores for each token. In addition, scaling
attention weights by the L2 norm of value vectors
as suggested in Kobayashi et al. (2020) resulted in
a further boost in performance.

For the unconstrained track (”IST-Unbabel*” in
Table 6), they add a word-level loss to the sentence-
level models and train jointly using the annotated
data from the MLQE-PE dataset.

HeyTUDa use the TransQuest QE models
(Ranasinghe et al., 2020) for sentence-level pre-
diction and a set of explainability techniques to es-
timate the relevance of each source and target word.
Specifically, they explore three perturbation-based
methods: LIME, SHAP, and occlusion (Zeiler and
Fergus, 2014), as well as three gradient-based meth-
ods: DeepLift (Shrikumar et al., 2017), Layer Gra-
dient x Activation (Shrikumar et al., 2016) and Inte-
grated Gradients (Sundararajan et al., 2017b). They
further use an unsupervised ensembling method to
combine the different explainability approaches.

Gringham use the reference-free metrics
XBERTScore (i.e., BERTScore (Zhang et al.,
2020) with cross-lingual embeddings) and
XMoverScore and make them inherently inter-
pretable by considering the token alignments
produced by the models. The intuition is that
words that are not well-aligned are most likely
erroneous. Specifically, they explore XBERTScore
and XMoverScore as sentence-level models and
use the corresponding similarity (or distance)
matrices to produce token-level scores.

CLIP-UMD propose an ensemble of two ap-
proaches: (1) the LIME explanation technique ap-
plied to the TransQuest sentence-level model; (2)
Divergent mBERT (Briakou and Carpuat, 2020),
which is a BERT-based model that can detect cross-
lingual semantic divergences. Divergent mBERT
is trained using synthetic data where semantic di-
vergences are introduced automatically following
a set of pre-defined perturbations. To produce a

combination of the two methods, the predictions
from each approach are averaged.

CUNI-Prague participated in the unconstrained
track. They fine-tune the XLM-R model for word-
level and sentence-level QE. To map sentence piece
tokenization from XLM-R to Moses tokenization,
they ignore all sentence piece tokens corresponding
to a given Moses token except the first one.

6 Results

Table 6 shows the results of the shared task. We
report the word-level metrics presented in Section
3, as well as Pearson correlation at sentence level.
The values of the “Rank” columns are computed
by first ranking the participants according to each
of the three word-level metrics and then averaging
the resulting rankings.11 First, we note that all of
the submissions outperform the three baselines for
all the language pairs,12 which indicates that error
detection can indeed be approached as rationale
extraction.

Approaches Overall, the submitted approaches
vary a lot in the way they addressed the task. The
following trends can be identified:

• Following the recent standard in QE and simi-
lar multilingual NLP tasks, all the approaches
rely on multilingual Transformer-based lan-
guage models.

• Submissions to the unconstrained track use
the SOTA approach to word-level supervision
explored previously by Lee (2020).

• The use of synthetic data produced by aligning
MT outputs and reference translations from
existing parallel corpora proves an efficient
strategy to identify translation errors. Super-
vising the predictions based on Transformer
attention weights with the labels derived from
synthetic data was used by the winning sub-
mission to the shared task.

• The approaches that rely on attention weights
to predict human rationales (NICT-Kyoto and
IST-Unbabel) achieve the best results for the
constrained track.

11This ranking is slightly different from the Codalab results,
as one of the teams retracted from the competition.

12The only exception is HeyTUDa, which is outperformed
by XMover-SHAP for De-Zh and by TransQuest-LIME for
Et-En and Ro-En.
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Target Source Sentence
Rank AUC AP Rec Rank AUC AP Rec Pearson

Estonian-English

IST-Unbabel* 1.0 0.92 0.85 0.76 1.3 0.94 0.86 0.77 0.86
CUNI Prague* 2.0 0.92 0.84 0.75 3.0 0.93 0.85 0.76 0.80
NICT Kyoto† 3.0 0.90 0.82 0.73 1.7 0.93 0.85 0.77 0.85
IST-Unbabel 4.3 0.82 0.74 0.63 4.0 0.86 0.76 0.64 0.82
Gringham 4.7 0.84 0.71 0.60 5.0 0.86 0.72 0.59 0.71
CLIP-UMD 6.0 0.74 0.63 0.53 6.0 0.76 0.51 0.45 0.77
Baseline: TransQuest-LIME 7.3 0.62 0.54 0.43 7.0 0.54 0.44 0.31 0.77
HeyTUDa 7.7 0.66 0.52 0.41 10. N/A N/A N/A 0.77
Baseline: XMover-SHAP 9.0 0.62 0.44 0.34 8.0 0.54 0.37 0.23 0.49
Baseline: Random 10. 0.50 0.36 0.25 9.0 0.49 0.34 0.19 -0.03

Romanian-English

NICT Kyoto† 1.0 0.95 0.87 0.78 1.0 0.95 0.85 0.75 0.92
IST-Unbabel* 2.0 0.94 0.84 0.75 2.0 0.93 0.81 0.71 0.87
CUNI Prague* 3.0 0.94 0.83 0.73 3.0 0.93 0.81 0.70 0.89
IST-Unbabel 4.0 0.88 0.78 0.68 4.0 0.86 0.73 0.62 0.90
Gringham 5.0 0.87 0.73 0.61 5.0 0.84 0.61 0.45 0.78
CLIP-UMD 6.0 0.73 0.60 0.49 6.0 0.72 0.41 0.37 0.90
Baseline: TransQuest-LIME 7.7 0.63 0.52 0.42 7.7 0.48 0.35 0.24 0.90
HeyTUDa 7.7 0.68 0.50 0.38 10. N/A N/A N/A 0.90
Baseline: XMover-SHAP 8.7 0.67 0.44 0.30 8.0 0.53 0.29 0.15 0.70
Baseline: Random 10. 0.52 0.31 0.19 8.3 0.50 0.28 0.15 0.02

Russian-German

NICT Kyoto† 1.0 0.93 0.83 0.74 1.0 0.92 0.80 0.71 0.68
IST-Unbabel* 2.0 0.80 0.64 0.52 2.0 0.85 0.71 0.59 0.67
CUNI Prague* 3.3 0.76 0.61 0.50 3.3 0.80 0.67 0.56 0.61
Gringham 4.3 0.79 0.57 0.46 3.7 0.84 0.67 0.56 0.60
IST-Unbabel 4.3 0.75 0.58 0.47 5.0 0.77 0.63 0.52 0.64
CLIP-UMD 6.0 0.65 0.46 0.36 6.3 0.66 0.41 0.37 0.30
HeyTUDa 7.3 0.54 0.33 0.23 10. N/A N/A N/A 0.50
Baseline: XMover-SHAP 7.7 0.52 0.33 0.23 8.0 0.52 0.36 0.26 0.25
Baseline: Random 9.0 0.49 0.31 0.22 9.0 0.51 0.34 0.24 -0.02
Baseline: TransQuest-LIME 10. 0.40 0.26 0.16 6.7 0.53 0.43 0.32 0.50

German-Chinese

NICT Kyoto† 1.0 0.85 0.68 0.57 1.0 0.85 0.64 0.51 0.29
IST-Unbabel 2.3 0.68 0.50 0.37 3.0 0.67 0.47 0.32 0.33
IST-Unbabel* 2.7 0.71 0.47 0.34 2.0 0.73 0.50 0.35 0.27
CUNI Prague* 4.3 0.61 0.44 0.30 5.0 0.62 0.42 0.27 0.25
CLIP-UMD 4.7 0.63 0.40 0.27 6.3 0.61 0.31 0.25 0.50
Gringham 6.3 0.55 0.36 0.22 4.0 0.64 0.42 0.27 -0.04
Baseline: XMover-SHAP 6.7 0.55 0.33 0.22 9.0 0.47 0.29 0.16 0.18
HeyTUDa 8.0 0.51 0.31 0.18 10. N/A N/A N/A 0.34
Baseline: Random 9.0 0.50 0.29 0.17 7.7 0.50 0.30 0.17 0.00
Baseline: TransQuest-LIME 10. 0.46 0.27 0.14 7.0 0.49 0.32 0.20 0.34

Table 6: Official results of the Eval4NLP Shared Task on Explainable Quality Estimation. Submissions to the
unconstrained track are marked with *. We mark the NICT Kyoto submissions with a †, as they submitted to the
constrained track, but use synthetic data for word-level supervision. Submissions not significantly outperformed by
any other submission according to paired t-test for each metric are marked in bold. N/A means that the participating
team did not submit the word-level scores for the source sentences.

• Both IST-Unbabel and HeyTUDa explore a
wide set of explanation methods. The differ-
ences in performance are likely due to the
method used for the final submission. While
IST-Unbabel submission explores normalized
attention weights, HeyTUDa use an ensem-
ble of gradient-based approaches. A possible

reason for the inferior performance of Hey-
TUDa is that the gradient is computed with
respect to the embedding layer. As noted by
Fomicheva et al. (2021), attribution to the em-
bedding layer in the Transformer-based QE
models does not provide strong results for the
error detection task since word representations
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at the embedding layer do not capture contex-
tual information, which is crucial for predict-
ing translation quality.

• Gringham follow an entirely different strat-
egy where they modify an existing reference-
free metric to obtain both sentence score and
word-level explanations in an unsupervised
way. A similar approach is explored in our
XMover-SHAP baseline, but the difference
is that we apply SHAP explainer on top of
XMover, while Gringham makes the XMover-
Score inherently interpretable, which leads to
better results.

Winners The overall winner of the competition
is the submission to the constrained track from
NICT-Kyoto, which wins on 3 out of 4 language
pairs, according to the source and target rank-
ing. Fine-tuning on large amounts of synthetic
data as well as the use of attention mechanism be-
tween the evaluation metric embeddings and the
contextualized input representations seem to be
the key to their performance. We note, however,
that they offer a mixed approach with word-level
supervision on synthetic data. Among the con-
strained approaches that do not use any supervi-
sion at word level, the best performing submis-
sion is IST-Unbabel, which outperforms other con-
strained submissions for all language pairs, except
Ru-De, where they perform on par with Gringham
on the target side and are surpassed by Gringham
on the source side. For the unconstrained track we
received only two submissions, from which IST-
Unbabel* performs the best.

Sentence-level correlation is not predictive of
the performance of the submissions at detecting
relevant tokens. This is due to the fact that sub-
mitted approaches vary in the role played by the
sentence-level model. In fact, if we look at the sub-
missions that follow comparable strategies, we do
observe a correspondence between sentence-level
and token-level results. For example, among the
approaches that build upon a sentence-level QE
model and use post-hoc methods to explain the
predictions, IST-Unbabel tends to achieve higher
performance both in terms of the token-level re-
sults and in terms of the Pearson correlation with
sentence ratings, compared to HeyTUDa and the
TransQuest-LIME baseline.

The performance on zero-shot language pairs
is lower than for Et-En and Ro-En. This is the case

for all approaches except NICT-Kyoto on Ru-De,
where the performance at word-level is comparable
to the results for Et-En and Ro-En, even though
the Pearson correlation for sentence scores is in-
ferior. We attribute this outcome to the use of su-
pervision with synthetic data, which helps boost
performance for word-level QE when no manu-
ally labelled data is available, as has been shown
by Tuan et al. (2021). Performance degradation
for De-Zh is considerably larger than Ru-De. De-
Zh was among the language pairs with the lowest
inter-annotator agreement and, in addition, had a
different distribution of sentence-level scores, with
many high-quality translations, according to the
annotators (see Section 2.1).

Limitations of the evaluation settings Our cur-
rent evaluation settings can be further improved in
various ways. First, the submissions were ranked
according to the global statistics, i.e. by compar-
ing the mean AUC, AP and Rec-TopK scores of
different submissions over a common set of test
instances. However, such aggregation mechanisms
ignore how many of its competitors a given submis-
sion outperforms and on how many test instances.
In the future we plan to follow a more rigorous ap-
proach suggested by Peyrard et al. (2021) and use
the Bradley–Terry (BT) model (Bradley and Terry,
1952), which leverages the instance-level pairing
of metric scores.

Second, the metrics used for evaluation are tai-
lored for unsupervised explainability approaches
that produce continuous scores, but they do not al-
low a direct comparison with the SOTA work on
word-level QE, which is evaluated using F-score
and Matthews correlation coefficient (Specia et al.,
2020). One way to address this would be to require
the participants to submit binary scores, but we dis-
carded this option in this first edition of the shared
task, as it would substantially limit the exploration
of the explainability approaches.

Finally, the binary rationales obtained from our
pool of annotators through majority voting do not
capture the fact that some words are more relevant
for sentence-level quality than others. As shown in
Table 3, an alternative version of the data can be
produced by averaging the scores assigned to each
word by individual annotators, as an indication of
the severity of translated errors. In the future, we
plan to study to what extent such scores agree with
the continuous explanation scores produced by the
participants. Another limitation of our annotation
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scheme is that sometimes a word may be missing
in the machine translation, which can then not be
highlighted (e.g., Russian does often not use deter-
miners and the MT system may wrongly omit it
when translating into English or German).

7 Conclusions

In this paper, we presented the findings of the
Eval4NLP-2021 shared task on explainable Qual-
ity Estimation (QE), where the goal is to not only
produce a sentence-level score for an MT output,
given a source sentence, but also highlight erro-
neous words in the target (and source) sentence ex-
plaining the score. We detailed the data annotation,
involving two novel non-English language pairs,
our baselines (post-hoc explanation techniques on
top of state-of-the-art QE models), as well as the
participants’ approaches to the task. These include
supervised approaches, training on synthetic data
as well as genuine post-hoc and inherent explain-
ability techniques.

The scope for future research is huge: for exam-
ple, we aim to include new language pairs, espe-
cially low-resource ones, address explainability for
metrics in other NLP tasks, e.g. semantic textual
similarity (Agirre et al., 2016) and summarization
(Gao et al., 2020), and identify error categories
of highlighted words, ideally in an unsupervised
manner.
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gies de la traducció, 0(12):455–463.
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and André F. T. Martins. 2020. Findings of the
WMT 2020 shared task on quality estimation. In
Proceedings of the Fifth Conference on Machine
Translation, pages 743–764, Online. Association for
Computational Linguistics.

Lucia Specia, Frédéric Blain, Varvara Logacheva,
Ramón F. Astudillo, and André F. T. Martins. 2018a.
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