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Abstract

Many modern machine translation evaluation
metrics like BERTScore, BLEURT, COMET,
MonoTransquest or XMoverScore are based on
black-box language models. Hence, it is dif-
ficult to explain why these metrics return cer-
tain scores. This year’s Eval4NLP shared task
tackles this challenge by searching for meth-
ods that can extract feature importance scores
that correlate well with human word-level er-
ror annotations. In this paper we show that
unsupervised metrics that are based on token-
matching can intrinsically provide such scores.
The submitted system interprets the similarities
of the contextualized word-embeddings that are
used to compute (X)BERTScore as word-level
importance scores. We make our code avail-
able1.

1 Introduction

In recent years, machine translation evaluation met-
rics constantly improved in their correlation with
human judgements (e.g. Mathur et al., 2020; Spe-
cia et al., 2020). However, this improvement comes
at a loss of understandability. Early metrics such
as BLEU (Papineni et al., 2002) and METEOR
(Lavie et al., 2004; Banerjee and Lavie, 2005) fol-
low a clearly defined algorithm without learnable
weights. Therefore, these metrics are interpretable
by design and could even be computed per hand.
Newer metrics such BERTScore (Zhang et al.,
2020), BLEURT (Sellam et al., 2020), COMET
(Rei et al., 2020a), MonoTransquest (Ranasinghe
et al., 2020a,b), MoverScore (Zhao et al., 2019)
or XMoverScore (Zhao et al., 2020) instead lever-
age transformer (Vaswani et al., 2017) based lan-
guage models. As these base their predictions on
thousands of learned parameters, they are too com-
plex to understand without employing further tech-
niques. Such techniques that aim to support the

1https://github.com/Gringham/
WordAndSentScoresFromTokenMatching

understanding of black-box models are the scope
of XAI (eXplainable Artificial Intelligence) (e.g.
Carvalho et al., 2019; Bodria et al., 2021).

This year’s Eval4NLP shared task (Fomicheva
et al., 2021a) considers to what extend XAI tech-
niques extract feature importance scores from met-
rics that correlate with word-level error annota-
tions. Some embedding based metrics, such as
MoverScore, XMoverScore and BERTScore can
be categorized as unsupervised matching (Yuan
et al., 2021). These metrics are unsupervised, as
they are not fine-tuned on human annotated trans-
lation scores. And they perform matching, as the
sentence-level score is calculated based on how
well each token in one sentence matches to tokens
in the other sentence.

This work evaluates the usage of the token-
level matches of BERTScore and XMoverScore
as feature-importance explanation of the sentence-
level score. It was conducted as part of a master
thesis by Leiter (2021).

2 Related Work

This system paper is related to work in the fields of
machine translation evaluation metrics and explain-
able artificial intelligence.

2.1 Metrics

A large number of metrics has been proposed
to grade the quality of machine translations (e.g.
Mathur et al., 2020; Specia et al., 2020). Reference-
based metrics grade machine translations based on
one or more reference translations. Reference-free
metrics grade machine translations based on the
source sentence. Due to the structure of the shared
task this paper considers reference-free metrics, in
specific BERTScore (Zhang et al., 2020) with multi-
lingual language embeddings (reference-free usage
is proposed by Zhou et al., 2020; Song et al., 2021)
and XMoverScore (Zhao et al., 2020). To differen-
tiate, we will refer to the reference-free BERTScore

https://github.com/Gringham/WordAndSentScoresFromTokenMatching
https://github.com/Gringham/WordAndSentScoresFromTokenMatching
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as XBERTScore. Other reference-free metrics are
for example MonoTransquest (Ranasinghe et al.,
2020a,b) and COMET for quality estimation (Rei
et al., 2020b). Many reference-free metrics have
been enabled by the pre-training of multilingual lan-
guage models on large scale datasets. Examples are
multilingual BERT (Devlin et al., 2018) and XLM-
Roberta (Conneau et al., 2020). The discussed
metrics produce a single score per translation. In
contrast, word-level metrics such as the metrics by
Lee (2020) and Ranasinghe et al. (2021) predict
word-level errors. Word-level metrics are closely
related to the goal of the Eval4NLP shared task, as
the extracted feature importance scores are evalu-
ated with word-level error annotations (Fomicheva
et al., 2021a).

2.2 Explainable Artificial Intelligence

As summarized in related surveys (e.g. Carvalho
et al., 2019; Lertvittayakumjorn and Toni, 2021;
Linardatos et al., 2021), explainability techniques
can be categorized along several dimensions. In-
trinsic (self-explaining) models explain their output
during the original computation, while post-hoc
methods are applied afterwards. Model-agnostic
techniques can be applied to any model, while
model-specific techniques are specific to certain
architectures. Also, global methods try to explain
a model as a whole, while local methods give in-
sights into single pairs of input/output.

The goal of the Eval4NLP shared task is the
extraction of feature importance scores as word-
level error indications (Fomicheva et al., 2021a),
i.e. each input feature (here tokens) should be as-
signed a score of how important it is for a predicted
output. As these are assigned per input, they can be
counted towards the local techniques. Further, the
methods proposed in this paper are intrinsic and
model specific. Note that even though the model
itself produces the explanation, i.e. a token level
output, the approaches we present do not explain
the internal workings of the underlying language
model.

Other model-specific post-hoc feature impor-
tance methods are, for example, Integrated Gradi-
ents (Sundararajan et al., 2017), DiffMask (De Cao
et al., 2020) and (Guan et al., 2019). Model-
agnostic post-hoc feature importance methods are
for example LIME (Ribeiro et al., 2016), SHAP
(Lundberg and Lee, 2017) and Input Marginaliza-
tion (Kim et al., 2020). Fomicheva et al. (2021b)

present the first evaluation of explainabilitiy tech-
niques in the same context as the shared task.

3 Feature Importance from
Token-Matching

In this section we describe the extraction of word-
level importance scores from XBERTScore and
XMoverScore. In specific, we consider that words
that are well aligned between source and transla-
tion are important for the sentence-level score and
are likely to be correct translations. If a word does
not align well, it is likely to be an error. Hence,
the maximal similarity (or minimal dissimilarity)
of each word between source and translation can
be interpreted as word-level (importance) score.
We choose x = (x1, ..., xn) to represent a source
sentence and y = (y1, ..., ym) to represent a trans-
lation where xi and yj refer to arbitrary token em-
beddings in x and y.

3.1 XBERTScore
XBERTScore computes a reference-free sentence
score as follows (Zhang et al., 2020; Zhou et al.,
2020; Song et al., 2021):

1. A multilingual pre-trained transformer model
is chosen and contextualized embeddings are
extracted for each word in translation and
source. These are obtained by performing a
forward pass and extracting the hidden states
at a layer of choice.

2. A matrix S ∈ IRn×m of cosine similarities
between each embedding of source and trans-
lation is constructed. In other words, entries
in S are computed as Sij =

xT
i yj

||xi|| ||yj || .

3. Two vectors xmax and ymax are determined.
xmax contains the maximum similarity of
each token in x to tokens in y:

xmax = (max S1,∗, ...,max Sn,∗)

Respectively ymax contains the maximum
similarity to each token in y to tokens in x:

ymax = (max S∗,1, ...,max S∗,m)

4. Zhang et al. (2020) propose three differ-
ent scores: RBERT , PBERT and FBERT .
RBERT computes the recall RBERT =
mean(xmax). PBERT computes the preci-
sion PBERT = mean(ymax). The FBERT -
Score is computed as 2 PBERT ∗RBERT

PBERT+RBERT
.
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Hypothesis Source
System AUC AP RtopK AUC AP RtopK Pearson
XBERTScore(XLMR) 0.741 0.600 0.485 0.734 0.579 0.448 0.520
XBERTScore(XLMRNLI1) 0.772 0.640 0.523 0.753 0.606 0.475 0.575
XBERTScore(XLMRNLI2) 0.757 0.628 0.518 0.747 0.597 0.464 0.575
XBERTScore(XLMREnsemble) 0.778 0.655 0.540 0.755 0.608 0.481 0.582
XBERTScore(mBERT) 0.673 0.506 0.396 0.683 0.514 0.377 0.303
XBERTScore(mBART) 0.648 0.504 0.392 0.664 0.503 0.378 0.255
XMoverScore(mBERT) 0.676 0.528 0.425 0.660 0.503 0.372 0.530
XMoverScore(mBERT)-KEEP 0.746 0.608 0.497 0.731 0.571 0.432 0.52
XMoverScore(XLMREnsemble)-KEEP 0.781 0.658 0.544 0.759 0.609 0.479 0.543
XMoverScore + SHAP (Baseline) 0.593 0.444 0.338 0.513 0.394 0.262 0.415

Table 1: Results on the et-en dev set of the shared task. Metrics for word level outputs are Area Under the Curve,
Average Precision and Recall at top K. The sentence-level correlation to human judgements is denoted as Pearson.

Hypothesis Source
System AUC AP RtopK AUC AP RtopK Pearson
XBERTScore(XLMR) 0.818 0.685 0.507 0.779 0.599 0.466 0.742
XBERTScore(XLMRNLI1) 0.837 0.710 0.584 0.798 0.632 0.514 0.765
XBERTScore(XLMRNLI2) 0.828 0.705 0.589 0.801 0.658 0.531 0.763
XBERTScore(XLMREnsemble) 0.848 0.730 0.615 0.808 0.652 0.525 0.770
XBERTScore(mBERT) 0.777 0.613 0.491 0.749 0.567 0.433 0.645
XBERTScore(mBART) 0.738 0.587 0.473 0.738 0.591 0.474 0.556
XMoverScore(mBERT) 0.719 0.562 0.450 0.705 0.537 0.427 0.634
XMoverScore(mBERT)-KEEP 0.790 0.636 0.505 0.759 0.584 0.461 0.623
XMoverScore(XLMREnsemble)-KEEP 0.842 0.721 0.607 0.794 0.624 0.497 0.725
XMoverScore + SHAP (Baseline) 0.641 0.462 0.341 0.541 0.384 0.265 0.638

Table 2: Results on the ro-en dev set of the shared task. Metrics for word level outputs are Area Under the Curve,
Average Precision and Recall at top K. The sentence-level correlation to human judgements is denoted as Pearson.

5. They describe further steps such as idf-
weighting and rescaling of scores, which we
don’t apply in this paper. Idf-weighting over
many sentences potentially increases the sen-
tence level scores.

Zhang et al. (2020) compute RBERT and
PBERT from embeddings in a single formula. In
above’s description we describe the construction
of the matrix S and the vectors xmax and ymax as
extra steps, as we interpret these vectors as token-
level importance scores. To explain, we treat xmaxi

as the importance score for embedding xi in x (and
the token at the i-th position of x), the same apply-
ing for y.

Many language-models use sub-word tokeniza-
tion (e.g. Sentencepiece (Kudo and Richardson,
2018)), so that the importance-scores are at a sub-
word level. To receive word-level scores, we parse
the scored tokens to be aligned with the input sen-
tences. Multiple scores that belong to a single word

are averaged. If a token did not receive a score,
e.g. as punctuation was dropped (see XMover-
Score(mBERT) in section 4), we assign the score
of the previous token.

To further improve the correlation to word-level
error annotations, we ensemble word-level and
sentence-level (FBERT ) scores by summing them
across different models:

Fensemble =
z∑

i=1

FBERTi

xmaxensemble
=

z∑
i=1

xmaxi

Here, FBERTi denotes the XBERTScore re-
turned by using the i-th of z models to extract con-
textualized embeddings and xmaxensemble

describes
the element-wise sum of respective xmax vectors.
Again, xmaxensemblei

is treated as importance score
for embedding xi in x. ymaxensemble

is calculated
analogous.
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In section 4, the F-Score is evaluated in terms
of its pearson correlation to sentence-level scores.
xmaxensemble

is evaluated in terms of its correlation
to word-level error annotations of the source and
ymaxensemble

is evaluated in terms of its correlation
to word-level error annotations of the hypothesis.

3.2 XMoverScore
Zhao et al. (2020) propose XMoverScore (XMS),
a metric that matches n-grams of tokens based on
the word mover’s distance (WMD) (Kusner et al.,
2015). In the case of unigrams, they first compute a
matrix C ∈ IRn×m, with Cij = ||xi − yj ||2. Then,
based on C, they minimize the WMD to determine
the optimal alignment between the two sentences.

Using the same notation as for XBERTScore, we
obtain token-level scores as follows:

xmin = (min C1,∗, ...,min Cn,∗)

ymin = (min C∗,1, ...,min C∗,m)

As for XBERTScore, we obtain word-level scores
by aligning the token-level scores based on the
input sentences. Again, word- and sentence-level
scores can be ensembled via summation.

Zhao et al. (2020) further improve the sentence-
level score by remapping the token-embeddings
and employing a target-side language model. The
remapping assumes that tokens in the cross-lingual
embedding space are not fully aligned between lan-
guages. They propose two techniques for mitiga-
tion. Linear cross-lingual projection (CLP) learns a
projection matrix that projects tokens of the source
language such that the distance to tokens of the
target language is minimized. Universal language
mismatch-direction (UMD) determines a global
direction along which the embeddings of two lan-
guages are misaligned. Then the projection along
this direction is subtracted form each embedding.
Both techniques use embeddings that were aligned
using small parallel corpora. Zhao et al. (2020)
employ the target-side language model as an addi-
tional measure of fluency of translations. In our
experiments we do not use this model, as it might
lower the degree to which the word-level scores
explain the sentence-level scores.

3.3 Inversion
In the Eval4NLP shared task errors are consid-
ered as important for the sentence-level score
(Fomicheva et al., 2021a), i.e. they should receive
a higher feature-importance than correct words.

Hence, we invert the word-level scores and use
−xmax and −ymax for XBERTScore (likewise
−xmin and −ymin for XMoverScore).

4 Experiment Setup

We calculate word- and sentence- level scores
for the dev sets2 of the Eval4NLP shared task
(Fomicheva et al., 2021a), which are a subset of the
MLQE-PE corpus by Fomicheva et al. (2020b,a).
The organizers provide 1000 samples for the ro-en
(Romanian-English) and et-en (Estonian-English)
language pairs each. For every sample they provide
a source sentence, a translation, a sentence-level
ground truth score and word-level ground truth la-
bels for source and translation. On the word-level
they label a word with 1 if it is erroneous and 0 if
it is correct.

Zhao et al. (2019) show that the usage of lan-
guage models fine-tuned for Natural Language In-
ference (NLI) improves the results of MoverScore.
Therefore, we evaluate models fine-tuned for NLI
for XBertScore and XMoverScore. The results of
the following configurations are reported:

• XBERTScore(XLMR): XBERTScore using
the pre-trained XLMR-large model (Conneau
et al., 2020).

• XBERTScore(XLMRNLI1): XBERTScore
using an XLMR-large model fine-tuned on
XNLI (Conneau et al., 2018) from the Hug-
gingface model hub3.

• XBERTScore(XLMRNLI2): XBERTScore
using another XLMR-large model fine-tuned
on XNLI (Conneau et al., 2018) and ANLI
(Nie et al., 2020) from the Huggingface model
hub4.

• XBERTScore(XLMREnsemble): An ensem-
ble version of the three models above that uses
the ensembling step described in section 3.1.

• XBERTScore(mBERT): XBERTScore using
multilingual BERT (Devlin et al., 2018) to
extract contextualized embeddings.

2https://github.com/eval4nlp/
SharedTask2021/tree/main/data/dev

3https://huggingface.co/joeddav/
xlm-roberta-large-xnli

4https://huggingface.co/vicgalle/
xlm-roberta-large-xnli-anli

https://github.com/eval4nlp/SharedTask2021/tree/main/data/dev
https://github.com/eval4nlp/SharedTask2021/tree/main/data/dev
https://huggingface.co/joeddav/xlm-roberta-large-xnli
https://huggingface.co/joeddav/xlm-roberta-large-xnli
https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli
https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli
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• XBERTScore(mBART): XBERTScore using
mBart-large 50 many-to-many (Tang et al.,
2020).

• XMoverScore(mBERT): We report the
scores for XMS5 with unigrams and CLP
remapping mode. XMS is based on the 12th
layer of multilingual BERT.

• XMoverScore(mBERT)-KEEP: The origi-
nal implementation of XMS by Zhao et al.
(2020) drops embeddings of sub-words that
are not the start of a word as well as punctu-
ation. This configuration keeps them during
the computation.

• XMoverScore(XLMREnsemble)-KEEP:
XMS using the ensemble configuration
described for XBERTScore above. Addi-
tionally, CLP and UMD mappings were
trained on 30k sentences for each ensembled
model and respective layer. The scores were
summed across CLP and UMD mappings.
Embeddings of punctuation and sub-words
were kept.

• XMoverScore+SHAP (Baseline): A baseline
copied from the shared task (Fomicheva et al.,
2021a). The output score of XMS is explained
with SHAP (Lundberg and Lee, 2017).

The result of (X)BERTScore by Zhang et al. (2020)
depends on the choice of the layer to extract em-
beddings from. For the models already included in
their library6, we use the layers they tested perform
best in a reference-based setting. For XLMR-NLI1
we choose layer 16 and for XMLR-NLI2 we choose
layer 17, which we determined to perform best on
a small subset of et-en data from the MLQE-PE
corpus. Appendix A lists hashes produced by the
BERTScore library that summarize the configura-
tions. For XMoverScore(XLMREnsemble)-KEEP
we choose the same layers.

The word-level scores are evaluated with Area
Under the Curve (AUC), Recall at top K (RtopK)
and Average Precision (AP) using the implemen-
tation by the organizers of the Eval4NLP shared
task7.

5https://github.com/AIPHES/
ACL20-Reference-Free-MT-Evaluation/blob/
master/score_utils.py

6https://github.com/Tiiiger/bert_score
7https://github.com/eval4nlp/

SharedTask2021/blob/main/scripts/
evaluate.py

5 Results

Table 1 and 2 show the results for the different
configurations and language pairs. Metrics based
on XLMR-large achieve the highest correlations.
This is expected as it uses 24 layers in contrast
to mBERT and mBART (encoder) with 12 lay-
ers. Also, the models fine-tuned for NLI per-
form better than the pre-trained XLMR model.
Amongst all configurations, the XLMR-Ensembles
perform best. Only for the AP and RtopK of the
source in ro-en a single NLI model performed bet-
ter. XMoverScore(mBERT)-KEEP achieves higher
word-level scores than XBERTScore(mBERT),
which indicates the successfulness of the applied
remapping of embeddings. XMoverScore(mBERT)
is worse at the word-level, as the scores of the
dropped punctuation are inferred from the previ-
ous token. Further, XMoverScore(mBERT) being
worse than XBERTScore(mBERT) on sentence-
level might be caused by XMS using the 12th layer
instead of the 9th. XMoverScore(XLMREnsemble)-
KEEP, which also uses remappings, achieves
slightly higher word-level correlations than
XBERTScore(mBERT) for et-en but not for ro-
en. This indicates that the applied remapping tech-
niques are less effective for XLMR-large. Another
interesting observation is that the sentence-level
scores of XBERTScore with mBERT and mBART
are much lower than the others for et-en, suggest-
ing a weakness of these embeddings when com-
pared with greedy matching rather than XMS’s
word mover’s distance.

In the test-phase of the shared task we submitted
XBERTScore(XLMREnsemble), which achieved its
highest rank for the zero-shot language pair ru-de
(Russian-German) and its lowest rank for de-zh
(German-Chinese). For the latter one, the sentence
scores even had a negative correlation. The cause
of this remains to be investigated in the future.

6 Conclusion

In this paper we have evaluated XBERTScore and
XMoverScore for word-level error annotations in
a reference-free setup. The best reported configu-
rations are based on multiple XLMR models. For
future work it might be interesting to apply XLMR
models that are remapped with novel cross-lingual
alignment techniques. Also, it could be considered
to incorporate the token-probabilities of the target-
side language model of XMS into the word-level
scores.

https://github.com/AIPHES/ACL20-Reference-Free-MT-Evaluation/blob/master/score_utils.py
https://github.com/AIPHES/ACL20-Reference-Free-MT-Evaluation/blob/master/score_utils.py
https://github.com/AIPHES/ACL20-Reference-Free-MT-Evaluation/blob/master/score_utils.py
https://github.com/Tiiiger/bert_score
https://github.com/eval4nlp/SharedTask2021/blob/main/scripts/evaluate.py
https://github.com/eval4nlp/SharedTask2021/blob/main/scripts/evaluate.py
https://github.com/eval4nlp/SharedTask2021/blob/main/scripts/evaluate.py
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A BERTScore Hashes

The BERTScore library by Zhang et al. (2020) pro-
vides a function to generate hashes of the metric’s
configuration to allow better reproducibility8. Here
we list the hashes of the configurations we used:

• XBERTScore(XLMR):
xlm-roberta-large_L17_no-
idf_version=0.3.10(hug_trans=4.4.0)

• XBERTScore(XLMR_NLI1):
joeddav/xlm-roberta-large-xnli_L16_no-
idf_version=0.3.10(hug_trans=4.4.0)

• XBERTScore(XLMR_NLI2):
vicgalle/xlm-roberta-large-xnli-anli_L17_no-
idf_version=0.3.10(hug_trans=4.4.0)

• XBERTScore(XLMR_Ensemble):

– xlm-roberta-large_L17_no-
idf_version=0.3.10(hug_trans=4.4.0)

– joeddav/xlm-roberta-
large-xnli_L16_no-
idf_version=0.3.10(hug_trans=4.4.0)

– vicgalle/xlm-roberta-
large-xnli-anli_L17_no-
idf_version=0.3.10(hug_trans=4.4.0)

• XBERTScore(mBERT):
bert-base-multilingual-cased_L9_no-
idf_version=0.3.10(hug_trans=4.4.0)

• XBERTScore(mBART):
facebook/mbart-large-50-
many-to-many-mmt_L12_no-
idf_version=0.3.10(hug_trans=4.4.0)

8https://github.com/Tiiiger/bert_score
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