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Abstract

Reproducible benchmarks are crucial in driv-
ing progress of machine translation research.
However, existing machine translation bench-
marks have been mostly limited to high-
resource or well-represented languages. De-
spite an increasing interest in low-resource ma-
chine translation, there are no standardized
reproducible benchmarks for many African
languages, many of which are used by mil-
lions of speakers but have less digitized tex-
tual data. To tackle these challenges, we pro-
pose AFROMT, a standardized, clean, and
reproducible machine translation benchmark
for eight widely spoken African languages.
We also develop a suite of analysis tools for
system diagnosis taking into account unique
properties of these languages. Furthermore,
we explore the newly considered case of
low-resource focused pretraining and develop
two novel data augmentation-based strategies,
leveraging word-level alignment information
and pseudo-monolingual data for pretrain-
ing multilingual sequence-to-sequence mod-
els. We demonstrate significant improvements
when pretraining on 11 languages, with gains
of up to 2 BLEU points over strong base-
lines. We also show gains of up to 12 BLEU
points over cross-lingual transfer baselines in
data-constrained scenarios. All code and pre-
trained models will be released as further steps
towards larger reproducible benchmarks for
African languages.1

1 Introduction

Accuracy of machine translation systems in many
languages has improved greatly over the past sev-
eral years due to the introduction of neural ma-
chine translation (NMT) techniques (Bahdanau
et al., 2015; Sutskever et al., 2014; Vaswani et al.,
2017), as well as scaling to larger models (Ott et al.,
2018). However, many of these advances have

1Source code, pretrained models, and data can be found at
https://github.com/machelreid/afromt

been demonstrated in settings where very large
parallel datasets are available (Meng et al., 2019;
Arivazhagan et al., 2019), and NMT systems of-
ten underperform in low-resource settings when
given small amounts of parallel corpora (Koehn
and Knowles, 2017; Guzmán et al., 2019). One
solution to this has been leveraging multilingual
pretraining on large sets of monolingual data (Con-
neau and Lample, 2019; Song et al., 2019; Liu
et al., 2020), leading to improvements even with
smaller parallel corpora. However, this thread of
work has focused on scenarios with the following
two properties: (1) pretraining on a plurality of
European languages and (2) cases in which the
monolingual pretraining data greatly exceeds the
parallel data used for finetuning (often by over 100
times) (Guzmán et al., 2019; Liu et al., 2020).

However, in the case of many languages in the
world, the above two properties are often not satis-
fied. In particular, taking the example of African
languages (the focus of our work), existing (small)
parallel corpora for English-to-African language
pairs often comprise the majority of available
monolingual data in the corresponding African lan-
guages. In addition, African languages are often
morphologically rich and from completely different
language families, being quite distant from Euro-
pean languages. Moreover, despite the importance
of reproducible benchmarks to measuring progress
on various tasks in an empirical setting, there exists
no standardized machine translation benchmark for
the majority of African languages.

In this work, we introduce (1) a new machine
translation benchmark for African languages, and
(2) pretraining techniques to deal with the previ-
ously unexplored case where the size of monolin-
gual data resources for pretraining is similar or
equal to the size of parallel data resources for fine-
tuning, and (3) evaluation tools designed for mea-
suring qualities regarding the unique grammar of
these languages in machine translation systems for

https://github.com/machelreid/afromt
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better system evaluation.
Our proposed benchmark, AFROMT, consists of

translation tasks between English and 8 African lan-
guages — Afrikaans, Xhosa, Zulu, Rundi, Sesotho,
Swahili, Bemba, and Lingala — four of which
are not included in commercial translation systems
such as Google Translate (as of Feb. 2021). In §2,
we describe the detailed design of our benchmark,
including the language selection criterion and the
methodology to collect, clean and normalize the
data for training and evaluation purposes. In §3, we
provide a set of strong baselines for our benchmark,
including denoising sequence-to-sequence pretrain-
ing (Lewis et al., 2020; Liu et al., 2020), transfer
learning with similar languages (Zoph et al., 2016;
Neubig and Hu, 2018), and our proposed data aug-
mentation methods for pretraining on low-resource
languages. Our first method leverages bilingual
dictionaries to augment data in high-resource lan-
guages (HRL), and our second method iteratively
creates pseudo-monolingual data in low-resource
languages (LRL) for pretraining. Extensive ex-
periments in §4 show that our proposed methods
outperform our baselines by up to∼2 BLEU points
over all language pairs and up to∼15 BLEU points
in data-constrained scenarios.

2 AFROMT benchmark

In this section, we detail the construction of our
new benchmark, AFROMT. We first introduce our
criteria for selecting the languages (§2.1), and then
describe the steps to prepare the dataset (§2.2, 2.3).

2.1 Language Selection Criteria

Given AFROMT’s goal of providing a reproducible
evaluation of African language translation, we se-
lect languages based on the following criteria:

Coverage of Speakers & Language Representa-
tion We select languages largely based on the
coverage of speakers as well as how represented
they are in commercial translation systems. In to-
tal, the AFROMT benchmark covers 225 million
L1 and L2 speakers combined, covering a large
number of speakers within Sub-Saharan Africa.

Linguistic Characteristics With the exception
of English and Afrikaans, which belong to the
Indo-European language family, all of the consid-
ered languages belong to the Niger-Congo fam-
ily which is Africa’s largest language family in
terms of geographical area and speaking popula-

tion (see Appendix). Similar to English, the Niger-
Congo family generally follows the SVO word or-
der. One particular characteristic feature of these
languages is their morphosyntax, especially their
system of noun classification, with noun classes
often exceeding 10, ranging from markers denoting
male/female/animate/inanimate and more2. These
noun classes can be likened in some sense to the
male/female designation found in romance lan-
guages. However, in contrast with these languages,
noun markers in Niger-Congo languages are of-
ten integrated within the word, usually as a prefix
(Bendor-Samuel and Hartell, 1989). For exam-
ple: in Zulu, isiZulu refers to the Zulu language,
whereas amaZulu refers to the Zulu people. Ad-
ditionally, these languages also use “verb exten-
sions”, verb-suffixes used to modify the meaning
of the verb. These qualities contribute to the mor-
phological richness of these languages — a stark
contrast with European languages.

2.2 Data Sources
For our benchmark, we leverage existing parallel
data for each of our language pairs. This data is
derived from two main sources: (1) open-source
repository of parallel corpora, OPUS3 (Tiedemann,
2012) and (2) ParaCrawl (Esplà et al., 2019).
From OPUS, we use the JW300 corpus (Agić and
Vulić, 2019), OpenSubtitles (Lison and Tiedemann,
2016), XhosaNavy, Memat, and QED (Abdelali
et al., 2014). Despite the existence of this paral-
lel data, these text datasets were often collected
from large, relatively unclean multilingual corpora,
e.g. JW300 which was extracted from Jehovah’s
Witnesses text, or QED which was extracted from
transcribed educational videos. This leads to many
sentences with high lexical overlap, inconsistent
tokenization, and other undesirable properties for a
clean, reproducible benchmark.

2.3 Data Preparation
Training machine translation systems with small
and noisy corpora for low-resource languages is
challenging, and often leads to inaccurate trans-
lations. These noisy examples include sentences
which contain only symbols and numbers, sen-
tences which only consist of one token, sentences
which are the same in both the source and target
sides, etc. Furthermore, in these noisy extractions

2https://en.wikipedia.org/wiki/Niger%
E2%80%93Congo_languages

3http://opus.nlpl.eu/

https://en.wikipedia.org/wiki/Niger%E2%80%93Congo_languages
https://en.wikipedia.org/wiki/Niger%E2%80%93Congo_languages
http://opus.nlpl.eu/
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Language ISO Code Lang. Family # Noun Classes Sources AFROMT (En→XX) Monolingual Data

Train Valid Test Gold Pseudo

Afrikaans Af Indo-European — J, O 743K 3000 3000 1.3G —
Bemba Bem Niger-Congo 9/6/15 J 275K 3000 3000 38M 1.0G
Lingala Ln Niger-Congo 9/6/15 J 382K 3000 3000 67M 1.4G
Rundi Run Niger-Congo 9/7/16 J 253K 3000 3000 26M 1.1G

Sesotho St Niger-Congo 6/5/11 J 595K 3000 3000 84M 1.0G
Swahili Sw Niger-Congo 9/9/18 J, P 700K 3000 3000 1.8G 1.2G
Xhosa Xh Niger-Congo 8/7/15 J, X, M, Q 610K 3000 3000 203M 1.2G
Zulu Zu Niger-Congo 6/10/16 J 664K 3000 3000 121M 1.4G

Table 1: Language characteristic and dataset statistics for AFROMT. Statistics for AFROMT are measured in term
of sentences. Monolingual data sizes are measured on the raw, pretokenized corpora. We abbreviate the sources
for our benchmark as follows: J=JW300, O=OpenSubtitles, P=ParaCrawl, X=XhosaNavy, M=Memat, Q=QED.
The # Noun Classes column shows the number of singular/plural/total noun classes.

from large multilingual corpora such as JW300,
there is a key issue of large text overlap over sen-
tences. Given the risk of data leakage, this prevents
one from naively splitting the corpus into random
train/validation/test splits.

To mitigate these issues, when preparing our
data, we use a combination of automatic filtering
techniques and manual human verification at each
step to produce clean parallel data for the construc-
tion of our benchmark. For consistency across
language pairs, we perform cleaning mainly based
on the English side of the noisy parallel corpora.
We list the automatic filtering techniques below:

Removal of extremely short sentences Since
we focus on sentence-level machine translation,4

we remove sentences containing less than three
whitespace-tokenized tokens excluding numerical
symbols and punctuation. Additionally, we remove
pairs that contain no source or target sentences.

Removal of non-sentences We remove sen-
tences containing no letters, i.e., pairs that contain
only numbers and symbols.

Tokenization normalization We perform detok-
enization on all corpora using the detokenization
script provided in the Moses (Koehn et al., 2007)
toolkit5. Given that we collect data from various
sources, this step is important to allow for consis-
tent tokenization across corpora.

Removal of sentences with high text overlap
To prevent data leakage, we remove sentences with

4While document-level translation is undoubtedly impor-
tant, accuracy on the languages in AFROMT is still at the level
where sentence-level translation is sufficiently challenging.

5https://github.com/moses-smt/
mosesdecoder/

high text overlap. To do this, we use Levenshtein-
based fuzzy string matching6 and remove sentences
that have a similarity score of over 60. Given
that measuring this score against all sentences in
a corpus grows quadratically with respect to cor-
pus length, we use the following two heuristics
to remove sentences with high overlap in an effi-
cient manner: (1) scoring similarity between the 50
alphabetically-sorted previous sentences, (2): ex-
tracting the top 100K four-grams and performing
the similarity score within each group of sentences
containing at least one instance of a certain four-
gram.

Data Split The resulting benchmark is con-
structed using the data that passes our automatic
filtering checks, and we further split the data into
train, validation, and test for each language pair.
We select 3,000 sentences with the least four-gram
overlap (with the corpus) for both validation and
testing while leaving the rest of the corpus to be
used for training. Validation and test sentences
are all further verified for quality. The resulting
dataset statistics for each language pair can be seen
in Table 1.

2.4 Impact of Cleaning Process

Given the non-trivial cleaning process and stan-
dardization of key components, such as tokeniza-
tion/splits/data leakage, this cleaning provides a
better representative corpus for the languages con-
sidered. We demonstrate this with an experiment
comparing a randomly initialized English-Zulu
models trained on (a) the original noisy data (in-
cluding some test data leakage), (b) a model trained

6https://github.com/maxbachmann/
RapidFuzz

https://github.com/moses-smt/mosesdecoder/
https://github.com/moses-smt/mosesdecoder/
https://github.com/maxbachmann/RapidFuzz
https://github.com/maxbachmann/RapidFuzz
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on noisy data (without data leakage) similar to the
cleaning process used by Nekoto et al. (2020), and
(c) a model trained on the AfroMT data. Scores for
each setting are measured in BLEU on the clean
test set: (a) 38.6, (b) 27.6, (c) 34.8.

Comparing the noisy model and the AfroMT
model, we find that not filtering the data for leakage
leads to misleading results, unreliably evaluating
models on these LRLs. Additionally, as shown by
(b) vs (c), not filtering for other artifacts hinders
performance leading to unrealistically weak perfor-
mance. Additional quantification of data leakage
can be found in the Appendix.

3 AfroBART

Given that we aim to provide strong baselines for
our benchmark, we resort to multilingual sequence-
to-sequence training. However, existing pretraining
techniques have often been focused on the situa-
tion where monolingual data can be found in a
larger quantity than parallel data. In this section
we describe our proposed multilingual sequence-
to-sequence pretraining techniques developed for
the novel scenario where even monolingual data is
scarce.

3.1 Existing Methods

The most widely used methods for multilingual
sequence-to-sequence pretraining (Song et al.,
2019; Xue et al., 2020; Liu et al., 2020) make a
core assumption that the amount of monolingual
data in all languages exceeds the amount of par-
allel data. However, in the case of many African
languages, digitized textual data is not widely avail-
able, leading this approach to be less effective in
these scenarios as shown in Table 2. To mitigate
this issue, we build on existing denoising pretrain-
ing techniques, particularly BART (Lewis et al.,
2020; Liu et al., 2020) and propose two data aug-
mentation methods using dictionaries to augment
high-resource monolingual data (§3.2), and lever-
aging pseudo monolingual data in low-resource
languages (§3.3). Finally, we iterate the data aug-
mentation with the model training (§3.4) as shown
in Figure 2.

3.2 Dictionary Augmentation

Given that existing monolingual corpora in low-
resource languages are small, we aim to increase
the usage of words from the low-resource language
in diverse contexts. To do so, we propose to take

Bob was eating a sandwich .

kula sandwichi

Bob was kula a sandwichi .

High Resource
Sentence

Dictionary
Augmentation

Augmented
Sentence

Figure 1: Transforming monolingual high-resource
data to augmented code-switched data using an
English-Swahili bilingual dictionary

sentences from a high-resource language, and re-
place the words by their corresponding translations
that are available in a dictionary extracted from our
parallel corpora.

Dictionary Extraction As our data augmenta-
tion technique requires a dictionary, we propose to
extract the dictionary from parallel corpora using
a statistical word aligner, eflomal7 (Östling and
Tiedemann, 2016). Once we produce word align-
ments between tokens in our parallel corpora, we
simply take word alignments that appear over 20
times to produce our bilingual dictionary.

Monolingual Data Augmentation We assume
to have access to three sources of data, i.e.,
high-resource corpus H = {H0, . . . ,HT }, low-
resource corpus L = {L0, . . . , LM}, and bilingual
dictionary D = {(Dh

0 , D
l
0), . . . , (D

h
Nd
, Dl

Nd
)}

with Nd pairs mapping high-resource term Dh
i to

low-resource term Dl
i. Given this, for every high-

resource sentence Hi we replace 30% of the tokens
that match the high-resource terms contained in D
to their respective low-resource terms. In the case
that there exists more than one low-resource term
in Dl

i, we randomly select one to replace the high-
resource term. Notably, with the assumption that
high-resource monolingual data is more diverse in
its content given its greater size, this augmentation
technique is an effective method to increase the
coverage of words from the low-resource lexicon
in diverse settings.

Monolingual
corpora BART pretrainingDictionary

Augmentation

MT FinetuningTranslation of HRL
monolingual corpora

Figure 2: Iterative approach to pretraining using
pseudo monolingual data and dictionaries

7https://github.com/robertostling/
eflomal/

https://github.com/robertostling/eflomal/
https://github.com/robertostling/eflomal/
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3.3 Leveraging Pseudo-Monolingual Data

Although leveraging dictionaries to produce code-
switched monolingual data is a useful technique
to introduce low-resource words in a wider vari-
ety of contexts, the code-switched sentences still
lack the fluency and consistency of pure monolin-
gual data. To further mitigate these fluency and
data scarcity issues in the LRL, we propose to
create fluent pseudo-monolingual data by translat-
ing the HRL monolingual data to the low-resource
language using a pretrained machine translation
model.

Specifically, given a pretrained sequence-to-
sequence model M , we finetune M for the trans-
lation from HRL to LRL on a parallel corpus, i.e.,
Dft = {(Dh0 ,Dl0), . . . , (DhNft

,DlNft
)}, and obtain

a machine translation model Mft. With the pre-
trained translation model Mft, we then proceed to
translate sentences from high-resource corpus H
to our low-resource language l to produce pseudo
LRL monolingual corpus L̃:

L̃ = Mft(H; Θft) (1)

Following this, we concatenate the existing low-
resource corpus L with L̃ and continue training
our pretrained sequence-to-sequence model on this
new pseudo-monolingual corpora.8

3.4 Iterative Multilingual Denoising
Pretraining

Given the pseudo-monolingual data synthesis step
detailed in the previous §3.3, we can simply trans-
form this into an iterative pretraining procedure
(Tran et al., 2020). That is, given the monolingual
data synthesis procedure, we can leverage this pro-
cedure to produce a cycle in which a pretrained
model is used to initialize an MT model to syn-
thesize pseudo monolingual data and the produced
data is used to further train the pretrained model
(depicted in Figure 2).

4 Experimental Setup

In this section, we describe our experimental setup
for both pretraining and finetuning strong base-
lines for our benchmark. Furthermore, we look to
evaluate the efficacy of our proposed pretraining

8Note that while this data generation process results in
pseudo-parallel data, we do not experiment with using it in a
supervised training scenario due to its noisy properties and in
order to keep our benchmark comparable. However, this is an
interesting direction which we leave for future work.

techniques and see whether they provide an impact
on downstream performance on AFROMT.

4.1 Pretraining

Dataset We pretrain AfroBART on 11 languages:
Afrikaans, English, French, Dutch9, Bemba, Xhosa,
Zulu, Rundi, Sesotho, Swahili, and Lingala. To
construct the original monolingual corpora, we use
a combination of the training sets in AFROMT and
data derived from CC10010 (Wenzek et al., 2020;
Conneau et al., 2020). We only perform dictionary
augmentation on our English monolingual data. We
list monolingual and pseudo-monolingual corpora
statistics in Table 1.

Balancing data across languages As we are
training on different languages with widely varying
amounts of text, we use the exponential sampling
technique used in Conneau and Lample (2019);
Liu et al. (2020), where the text is re-sampled ac-
cording to smoothing parameter α as shown below:

qk =
pαk∑N
j=1 p

α
j

(2)

where qk refers to the re-sample probability
for language k, given multinomial distribution
{qk}k=1...N with original sampling probability
pk

11. As we work with many extremely low-
resource languages, we choose smoothing parame-
ter α = 0.25 (compared with the α = 0.7 used in
mBART) to alleviate model bias towards an over-
whelmingly higher proportion of data in the higher-
resource languages.

Hyperparameters We use the following setup to
train our AfroBART models, utilizing the mBART
implementation in the fairseq12 library (Ott
et al., 2019). We tokenize data using Sentence-
Piece (Kudo and Richardson, 2018), using a 80K
subword vocabulary. We use the Transformer-base
architecture of a hidden dimension of 512, feed-
forward size of 2048, and 6 layers for both the
encoder and decoder. We set the maximum se-
quence length to be 512, using a batch size of
1024 for 100K iterations with 32 NVIDIA V100

9We select English and French due to their commonplace
usage on the continent, as well as Dutch due to its similarity
with Afrikaans.

10http://data.statmt.org/cc-100/
11pk is proportional to the amount of data for the language;

in the case that we use dictionary augmented data, we keep pk
proportional to the original data for the language

12https://github.com/pytorch/fairseq

http://data.statmt.org/cc-100/
https://github.com/pytorch/fairseq
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Direction En-Run En-Zu En-Af En-Xh
BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Random 22.92 51.89 34.84 65.54 48.33 68.11 24.36 52.91
mNMT 21.53 50.62 31.53 62.95 43.39 64.73 22.28 54.81
AfroBART Baseline 24.33 52.87 35.59 66.14 49.09 68.54 25.65 58.09
AfroBART-Dictionary 24.42 53.22 35.48 66.16 49.25 68.75 25.77 58.15
AfroBART 24.62 53.24 35.58 66.30 49.80 69.03 25.80 58.22

Direction En-Ln En-Bem En-St En-Sw
BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Random 28.23 52.62 18.96 45.85 43.04 62.68 33.61 58.56
mNMT 27.29 53.16 18.54 46.20 40.26 60.65 30.55 56.44
AfroBART Baseline 29.12 54.31 20.07 47.50 43.79 63.22 34.19 59.08
AfroBART-Dictionary 29.13 54.40 20.48 47.69 43.74 63.33 34.30 59.08
AfroBART 29.46 54.68 20.60 48.00 43.87 63.42 34.36 59.11

Table 2: Results on AFROMT’s En-XX Machine Translation

GPUs for one day. When we continue training us-
ing pseudo-monolingual data, we use a learning
rate of 7 × 10−5 and warm up over 5K iterations
and train for 35K iterations.

4.2 Finetuning
Baselines We use the following baselines for our
benchmark:

• AfroBART Baseline We pretrain a model us-
ing only the original monolingual corpora in
a similar fashion to Liu et al. (2020).

• AfroBART-Dictionary We pretrain a model
using the original data in addition to a dictio-
nary augmented English monolingual corpora
in Afrikaans, Bemba, Sesotho, Xhosa, Zulu,
Lingala, and Swahili.

• AfroBART We continue training the dictio-
nary augmented AfroBART model, using
pseudo monolingual data produce by its fine-
tuned counterparts. Due to computational con-
straints we only perform one iteration of our
iterative approach. Statistics for the pseudo-
monolingual data can be seen in Table 1.

• Cross-Lingual Transfer (CLT) When exper-
imenting on the effect of pretraining with vari-
ous amounts of finetuning data, we use strong
cross-lingual transfer models, involving train-
ing from scratch on a combination of both
our low-resource data and a similar relatively
high-resource language following Neubig and
Hu (2018).

• Multilingual Neural Machine Translation
(mNMT) We also experiment with a vanilla

multilingual machine translation system
(Dabre et al., 2020) trained on all En-XX di-
rections.

• Random As additional baselines, we also pro-
vide a comparison with a randomly initialized
Transformer-base (Vaswani et al., 2017) mod-
els for each translation pair.

Evaluation We evaluate our system outputs us-
ing two automatic evaluation metrics: detokenized
BLEU (Papineni et al., 2002; Post, 2018) and chrF
(Popović, 2015). Although BLEU is a standard
metric for machine translation, being cognizant of
the morphological richness of the languages in the
AFROMT benchmark, we use chrF to measure per-
formance at a character level. Both metrics are
measured using the SacreBLEU library13 (Post,
2018).

5 Results and Discussion

5.1 Performance on En-XX Translation

Table 2 shows the results on En-XX translation on
the AFROMT benchmark comparing random ini-
tialization with various pretrained AfroBART con-
figurations. We find that initializing with pretrained
AfroBART weights results in performance gains
of ∼1 BLEU across all language pairs. Further-
more, we observe that augmenting our pretraining
data with a dictionary results in performance gains
across all pairs in terms of chrF and 6/8 pairs in
terms of BLEU. The gain is especially clear on
languages with fewer amounts of monolingual data

13https://github.com/mjpost/sacrebleu

https://github.com/mjpost/sacrebleu
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Figure 3: Visualization of results using various amounts of parallel data on English-Xhosa and English-Zulu. We
compare AfroBART, random initialization and cross-lingual transfer.

such as Rundi and Bemba, demonstrating the ef-
fectiveness of our data augmentation techniques
on low-resource translation. Moreover we see fur-
ther improvements when augmenting with pseudo
monolingual data, especially on pairs with fewer
data which validates the usage of this technique.

5.2 Performance vs Amount of Parallel Data

We perform experiments to demonstrate the effect
on pretraining with various amounts of parallel
data (10k, 50k, and 100k pairs) on two related lan-
guage pairs: English-Xhosa and English-Zulu. We
compare AfroBART (with both dictionary augmen-
tation and pseudo monolingual data) with randomly
initialized models, and cross-lingual transfer mod-
els (Neubig and Hu, 2018) jointly trained with a
larger amount of parallel data (full AFROMT data)
in a related language.

In Figure 3, a pretrained AfroBART model fine-
tuned on 10K pairs can almost double the perfor-
mance of other models (with a significant perfor-
mance increase over random initialization of 15+
BLEU on English-Zulu), outperforming both cross-
lingual transfer and randomly initialized models
trained on 5x the data. Furthermore, we notice that
CLT performs than Random on English-Xhosa as
the data size increases. Although we do not have
an exact explanation for this, we believe this has
to do with the other language data adding noise
rather than additional supervision as the data size
increases. We detail these results in Table 3 of the
Appendix.

Comparison on convergence speed In contrast
to the cross-lingual transfer baseline which in-
volves the usage of more data, and the random
initialization baseline which needs to learn from
scratch, AfroBART is able to leverage the knowl-

edge gained during training for fast adaptation
even with small amounts of data. For example,
AfroBART converged within 1,000 iterations when
finetuning on 10K pairs on English-Zulu, whereas
the random initialization and cross-lingual transfer
baselines converged within 2.5K and 12K itera-
tions respectively. This is promising as it indicates
that we can leverage these models quickly for other
tasks where there is much fewer parallel data.

5.3 Fine-grained Language Analysis

We further provide a suite of fine-grained analysis
tools to compare the baseline systems. In partic-
ular, we are interested in evaluating the transla-
tion accuracy of noun classes in the considered
African languages in the Niger-Congo family, as
these languages are morphologically rich and of-
ten have more than 10 classes based on the prefix
of the word. For example, kitabu and vitabu in
Swahili refer to book and books in English, respec-
tively. Based on this language characteristic, our
fine-grained analysis tool calculates the translation
accuracy of the nouns with the top 10 most fre-
quent prefixes in the test data. To do so, one of the
challenges is to identify nouns in a sentence written
in the target African language. However, there is
no available part-of-speech (POS) tagger for these
languages. To tackle this challenge, we propose
to use a label projection method based on word
alignment. Specifically, we first leverage an exist-
ing English POS tagger in the spaCy14 library to
annotate the English source sentences. We then
use the fast_align15 tool (Dyer et al., 2013) to
train a word alignment model on the training data
for the En-XX language pair, and use the alignment

14https://spacy.io/
15https://github.com/clab/fast_align

https://spacy.io/
https://github.com/clab/fast_align
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model to obtain the word-level alignment for the
test data. We assign the POS tags of the source
words in English to their aligned target words in
the African language. We then measure the transla-
tion accuracy of the nouns in the African language
by checking whether the correct nouns are included
in the translated sentences by systems in compar-
ison. Notably, our analysis tool can also measure
the translation accuracy of the words in the other
POS tags, (e.g. verbs, adjectives) which are often
adjusted with different noun classes.

Figure 4 compares the AfroBART and Random
baseline in terms of translation accuracy of nouns
in Swahili. First, we find that both systems per-
form worse on translating nouns with the prefix
“ku-” which usually represent the infinitive form
of verbs, e.g., kula for eating. Secondly, we find
that AfroBART significantly improves translation
accuracy for nouns with prefixes “ki-” (describing
man-made tools/languages, e.g., kitabu for book)
and “mw-” (describing a person, e.g., mwalimu for
teacher). Finally, AfroBART improves the transla-
tion accuracy on average over the ten noun classes
by 1.08% over the Random baseline.

We also perform this analysis on our data-
constrained scenario for English-Xhosa, shown
in Figure 7. It can be seen that leveraging cross-
lingual transfer (trained on both Xhosa and Zulu)
models improved noun class accuracy on classes
such as uku (infinitive noun class), izi (plural for
objects), and ama (plural for body parts) which are
shared between languages. This can be contrasted
with iin (plural for animals) which is only used in
Xhosa, where CLT decreases performance. These
analyses which require knowledge of unique gram-
mar found in these langauges can be used for diag-
nosing cross-lingual transfer for these langauges.
Also, we note that AfroBART almost doubles the
accuracy (improvement of 16.33%) of the cross-
lingual transfer baseline on these noun classes.

5.4 Shortcomings of AFROMT

Although we believe AFROMT to be an important
step in the right direction, we acknowledge it is
far from being the end-all-be-all. Specifically, we
note the following: (1) the lack of domain diversity
among many languages (being largely from reli-
gious oriented corpora) and (2) the corpora may
still contain some more fine-grained forms of noise
in terms of translation given its origin. Given this,
in the future we look to include more diverse data
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Figure 4: Translation accuracy of the AfroBART and
Random baseline systems on Swahili noun classes with
top 10 most frequent 2-character prefixes.
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Figure 5: Translation accuracy of the AfroBART and
Random baseline systems on Xhosa (10k pairs) noun
classes with top 10 most frequent 3-character prefixes.

sources and more languages and encourage the
community to do so as well.

6 Related Work

Machine Translation Benchmarks Previous
work in benchmarking includes the commonly used
WMT (Bojar et al., 2017) and IWSLT (Federico
et al., 2020) shared tasks. Recent work on MT
benchmarks for low-resource languages, such as
that of Guzmán et al. (2019), have been used for
the purpose of studying current NMT techniques
for low-resource languages.

Multilingual Pretraining Multilingual encoder
pretraining (Devlin et al., 2019; Conneau and Lam-
ple, 2019; Conneau et al., 2020) has been demon-
strated to be an effective technique for cross-lingual
transfer on a variety of classification tasks (Hu
et al., 2020; Artetxe et al., 2020). More recently,
sequence-to-sequence pretraining has emerged as a
prevalent method for achieving better performance
(Lewis et al., 2020; Song et al., 2019) on gener-
ation tasks. Liu et al. (2020) proposed a mul-
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tilingual approach to BART (Lewis et al., 2020)
and demonstrated increased performance on MT.
Building on these works, we extend this to a LRL-
focused setting, developing two new techniques
for improved performance given monolingual data-
scarcity. In concurrent work, Liu et al. (2021);
Reid and Artetxe (2021) also look at using code-
switched corpora for sequence-to-sequence pre-
training.

NLP for African Languages Benchmarking
machine translation for African languages was first
done by Abbott and Martinus (2019) for south-
ern African languages and Abate et al. (2018) for
Ethiopian languages. Recent work in NLP for
African languages has largely revolved around the
grassroots translation initiative Masakhane (Orife
et al., 2020; Nekoto et al., 2020). This bottom-up
approach to dataset creation (Nekoto et al., 2020),
while very valuable, has tended to result in datasets
with somewhat disparate data splits and quality
standards. In contrast, AFROMT provides a cleaner
corpus for the 8 supported languages. We plan to
open source the the entire benchmark (splits in-
cluded) to promote reproducible results in the com-
munity.

7 Conclusion

In this work we proposed a standardized, clean, and
reproducible benchmark for 8 African languages,
AFROMT, as well as novel pretraining strategies
in the previously unexplored low-resource focused
setting. Our benchmark and evaluation suite are
a step towards larger, reproducible benchmarks in
these languages, helping to provide insights on
how current MT techniques work for these under-
explored languages. We will release this bench-
mark, our pretrained AfroBART models, dictionar-
ies, and pseudo monolingual data to the community
to facilitate further work in this area.

In future work we look to use similar method-
ology to advance in both of these directions. We
look to increase the number of language pairs in
AFROMT to be more representative of the African
continent. Additionally, we look to scale up our
pretraining approaches for increased performance.
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A AFROMT

We provide extra information — Script, Language
Family, L1 and L2 speakers, Location as well as
Word Order — in Table 4.

We upload AFROMT as well as the data gen-
erated using the pseudo monolingual data synthe-
sis16.

B Pretraining

Data We use in addition to the monolingual data
for the languages in AFROMT (shown in Table 1
of the main paper), we 14 GB of English data, and
7 GB of French and Dutch data each.

Additional Hyperparameters We optimize the
model using Adam (Kingma and Ba, 2015) using
hyperparameters β = (0.9, 0.98) and ε = 10−6.
We warm up the learning rate to a peak of 3×10−4

over 10K iterations and then decay said learning
rate using the polynomial schedule for 90K itera-
tions. For regularization, we use a dropout value of
0.1 and weight decay of 0.01.

C Finetuning Hyperparameters

Training from scratch When training using ran-
dom initialization (or CLT), we use a batch size
of 32K (or 64K in the case of CLT) tokens and
warmup the learning rate to 5 × 10−4 over 10K
iterations and decay with the inverse square root
schedule. We use a dropout value of 0.3, a weight
decay value of 0.01, and a label smoothing value
of ε = 0.1.

Finetuning from AfroBART We train using a
batch size of 32K tokens, and use a smaller learning
rate of 3 × 10−4. We use a polynomial learning
rate schedule, maximizing the learning rate at 5000
iterations and finishing training after 50K iterations.
We perform early stopping, stopping training if the
best validation loss remains constant for over 10
epochs. We use a label smoothing value of ε = 0.2,
a dropout value of 0.3 and weight decay of 0.01.

D Training Infrastructure

For finetuning models on AFROMT we use be-
tween 1 and 8 NVIDIA V100 16GB GPUs on a
DGX-1 machine running Ubuntu 16.04 on a Dual

16Note that we do not generate pseudo monolingual data
for Afrikaans due to its high similarity with Dutch — a high
resource language.

20-Core Intel Xeon E5-2698 v4 2.2 GHz. For pre-
training we make use of a compute cluster using 8
nodes with 4 NVIDIA V100 16GB GPUs per node.

E Quantification of Potential Data
Leakage

In low-resource machine translation, data-leakage
is a key concern given its pertinence in the mit-
igation of misleading results. We quantify data
leakage for our benchmark We measured the target-
side train-test data leakage using the 4-gram over-
lap between the training/test sets. We take the most
frequent 100k 4-grams from the training set and
compare them with all 4-grams in the test set and
obtain an average 4-gram overlap of 5.01±2.56%
(measured against all test-set 4-grams). To put this
value in context, we ran these on other widely used
low-resource datasets from IWSLT (En-Vi, Ja-En,
Ar-En) and obtained 9.50%, 5.49%, and 5.53%
respectively. We believe this to be reasonable evi-
dence of the lack of train-test data-leakage.

Furthermore, we also show improvements on
source-target leakage as follows: we compute
BLEU between the source and target over all train-
ing sets, we obtain an average of 4.5±1.3 be-
fore cleaning (indicating heavy overlap in certain
source-target pairs in the corpus), and after clean-
ing 0.7±0.2 indicating a significant decrease in
such overlap.

F Parameter Count

We keep the parameter count of 85M consistent
throughout our experiments as we use the same
model architecture. We ran experiments on scaling
up randomly initialized models with a hidden size
of 768 and feed forward dimension of 3072 with
6 layers in both the encoder and decoder on three
language pairs. The results of these experiments
can be seen in Table 3.

Lang. Pair Model Param. Count BLEU chrF

En-Run Random 85M 22.92 51.89
Random 160M 22.12 51.22

En-Sw Random 85M 33.61 58.56
Random 160M 33.62 58.65

En-Ln Random 85M 28.37 53.65
Random 160M 27.58 53.29

Table 3: Scalability comparison

It can be seen that increasing parameter count of
AfroMT for random initialization doesn’t provide
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Languages ISO 639-2 code Script Language Family Population
L1 L2

Afrikaans Afr Latin, Arabic Indo-European: Germanic 7.2M 10.3M
Bemba Bem Latin Niger-Congo: Bantu Zone M 4M 2M
Lingala Lin Latin Niger-Congo: Bantu Zone C 20M 25M
Rundi Run Latin Niger-Congo: Bantu Zone D 11.9M —
Sotho Sot Latin Niger-Congo: Bantu Zone S 5.6M 7.9M

Swahili Swa Latin Niger-Congo: Bantu Zone G 150M 90M
Xhosa Xho Latin Niger-Congo: Bantu Zone S 8.2M 11M
Zulu Zul Latin Niger-Congo: Bantu Zone S 12M 16M

Languages Location Noun Classes Word Order
Singular/Plural/Total

Afrikaans South Africa, Namibia — SVO
Bemba North-Eastern Zambia 9/6/15 SVO
Lingala DR Congo, Congo 9/6/15 SVO
Rundi Burundi 9/7/16 SVO
Sotho Lesotho, South Africa, Zimbabwe 6/5/11 SVO

Swahili African Great Lakes region, East/Southern Africa 9/9/18 SVO
Xhosa South Africa 8/7/15 SVO
Zulu South Africa, Lesotho, Eswatini 6/10/16 SVO

Table 4: Extra information on all the languages contained within AFROMT

an effective performance/compute tradeoff, harm-
ing performance on English-Rundi and English-
Lingala, while minmally improving performance
on English-Swahili. This being said, we believe
that if we scale up AfroBART, given the insights
from Liu et al. (2020); Gordon et al. (2021), we can
provide a good initialization to allows us to scale
to these model sizes for greater performance.

G Fine-grained morphological analysis
in a data constrained regime

iz uk ab ng um in am ez is kw Avg
Noun class (Top 10 Most Frequent Prefixes)
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Figure 6: Translation accuracy of the AfroBART and
Random baseline systems on Zulu (10k pairs) noun
classes with top 10 most frequent 2-character prefixes.

We perform our fine grained morphological analay-
sis (described in Section §5.3 of the main paper) on
the data constrained scenario (described in Section
§5.2 of the main paper). We perform the analysis
on English-Xhosa and English-Zulu (10k parallel
sentence pairs) side by side and visualize them in
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Figure 6 and Figure 7. It can be seen that cross
lingual transfer improves accuracy in this data con-
strained scenario over a random baseline, which is
inturn improved upon by AfroBART.

aba uku kwi ama ezi ngo iin izi nge nga Avg
Noun class (Top 10 Most Frequent Prefixes)
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Figure 7: Translation accuracy of the AfroBART and
Random baseline systems on Xhosa (10k pairs) noun
classes with top 10 most frequent 3-character prefixes.
(Same as Figure 5 of the main paper)

Additionally, we report the BLEU and chrF
scores of the data constrained experiments (shown
in Figure 3 of the main paper) in Table 5.

Lang. Pair # Data Model BLEU chrF

En-Zu

10k
Random 4.06 28.26

CLT 8.08 37.9
AfroBART 20.44 51.35

50k
Random 18.01 50.55

CLT 20.41 51.52
AfroBART 26.95 58.56

100k
Random 23.09 55.63

CLT 24.50 55.81
AfroBART 29.41 60.81

En-Xh

10k
Random 2.82 26.29

CLT 6.35 32.31
AfroBART 13.98 43.19

50k
Random 11.94 42.62

CLT 10.12 39.73
AfroBART 18.54 49.70

100k
Random 16.00 47.92

CLT 11.64 41.19
AfroBART 20.45 52.35

Table 5: Comparing performance with various amounts
of parallel data


