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Abstract
Large language models have led to remark-
able progress on many NLP tasks, and re-
searchers are turning to ever-larger text cor-
pora to train them. Some of the largest corpora
available are made by scraping significant por-
tions of the internet, and are frequently intro-
duced with only minimal documentation. In
this work we provide some of the first docu-
mentation for the Colossal Clean Crawled Cor-
pus (C4; Raffel et al., 2020), a dataset created
by applying a set of filters to a single snapshot
of Common Crawl. We begin by investigating
where the data came from, and find a signifi-
cant amount of text from unexpected sources
like patents and US military websites. Then
we explore the content of the text itself, and
find machine-generated text (e.g., from ma-
chine translation systems) and evaluation ex-
amples from other benchmark NLP datasets.
To understand the impact of the filters applied
to create this dataset, we evaluate the text that
was removed, and show that blocklist filter-
ing disproportionately removes text from and
about minority individuals. Finally, we con-
clude with some recommendations for how to
created and document web-scale datasets from
a scrape of the internet.

1 Introduction

Models pretrained on unlabeled text corpora are the
backbone of many modern NLP systems (Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020;
Brown et al., 2020, inter alia). This paradigm in-
centivizes the use of ever larger corpora (Kaplan
et al., 2020; Henighan et al., 2020), with the biggest
models now training on a substantial fraction of
the publicly-available internet (Raffel et al., 2020;
Brown et al., 2020). Of course, as with all ma-
chine learning systems, the data such models are
trained on has a large impact on their behavior. For
structured, task-specific NLP datasets, best prac-
tices have emerged around documenting the collec-
tion process, composition, intended uses, and other
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Figure 1: We advocate for three levels of documenta-
tion when creating web-crawled corpora. On the right,
we include some example of types of documentation
that we provide for the C4.EN dataset.

characteristics (Bender and Friedman, 2018; Gebru
et al., 2018; Hutchinson et al., 2021). However,
given the challenges of applying these practices
to massive collections of unlabeled text scraped
from the web, thorough documentation is typically
not done. This leaves consumers of pretrained lan-
guage models in the dark about the influences of
pretraining data on their systems, which can inject
subtle biases in downstream uses (Li et al., 2020;
Gehman et al., 2020; Groenwold et al., 2020).

In this work we provide some of the first doc-
umentation of a web-scale dataset: the Colossal
Clean Crawled Corpus (C4; Raffel et al., 2020).
C4 is one of the largest language datasets available,
with more than 156 billion tokens collected from
more than 365 million domains across the internet
(Table 1).1 C4 has been used to train models such
as T5 and the Switch Transformer (Fedus et al.,
2021), two of the largest pretrained English lan-
guage models. While Raffel et al. (2020) provided
scripts to recreate C4, simply running the available
scripts costs thousands of dollars. Reproducible
science is only possible when data is broadly ac-

1Other, similar datasets have been created (e.g., Brown
et al., 2020), but unfortunately were not made available.
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cessible, and web-scale corpora are no different
in this regard. With that in mind, we provide a
downloadable copy of this dataset.2

Documenting massive, unlabeled datasets is a
challenging enterprise. Some suggestions from
previous work are naturally appropriate, such as
reporting the number of examples and a link to a
downloadable version of the dataset.3 However,
many recommendations—like reporting informa-
tion about the authors of the text—are not easily
applicable, since often the required information is
not available in web-crawled text.

We advocate for documentation of web-scale
corpora to include three views of the data, as illus-
trated in Figure 1. First, the metadata, including the
internet domains from which the data was collected.
At the highest level, internet top-level domains like
.edu likely contain significantly different text than
.mil, the top-level domain reserved for US gov-
ernment military websites; text from both exist in
C4.

Following the metadata, we examine the text
itself. We find significant amounts of machine-
generated text (e.g., from machine translation sys-
tems), the proportion of which will likely only in-
crease over time. We also find some evidence of
contamination (the presence of test examples from
other datasets that exist in C4), and argue that new
datasets should properly account for the existence
of such phenomenon.

Finally, as web-crawled datasets typically filter
out significant portions of text, we argue for more
thorough documentation of what is not in the data.
Some filters are relatively straightforward, such as
removing Lorem ipsum placeholder text. How-
ever, we find that another filter which removes doc-
uments that contain a token from a banned word list,
disproportionately removes documents in dialects
of English associated with minority identities (e.g.,
text in African American English, text discussing
LGBTQ+ identities).

In addition to our set of recommendations and
analyses, we publicly host three versions of the data
with different levels of filtering, along with an in-
dexed version for easy searching4, and a repository

2https://github.com/allenai/c4-
documentation

3NLP Reproducibility Checklist
https://2020.emnlp.org/blog/2020-05-20-
reproducibility

4https://c4-search.apps.allenai.org/
this index will only be hosted until 2021-12-31

Dataset # documents # tokens size

C4.EN.NOCLEAN 1.1 billion 1.4 trillion 2.3 TB
C4.EN.NOBLOCKLIST 395 million 198 billion 380 GB
C4.EN 365 million 156 billion 305 GB

Table 1: Statistics for the three corpora we host. One
“document” is the text scraped from a single URL. To-
kens are counted using the SpaCy English tokenizer.
Size is compressed JSON files.

for public discussion of findings.5

2 The English Colossal Clean Crawled
Corpus (C4)

C4 is created by taking the April 2019 snapshot
of Common Crawl6 and applying a number of fil-
ters with the intention of removing text that is not
natural English. This includes filtering out lines
which don’t end in a terminal punctuation mark
or have fewer than three words, discarding docu-
ments with less than five sentences or that contain
Lorem ipsum placeholder text, and removing
documents which contain any word on the “List
of Dirty, Naughty, Obscene, or Otherwise Bad
Words”.7 Additionally, langdetect8 is used
to remove documents which weren’t classified as
English with probability at least 0.99, so C4 is
primarily comprised of English text. We call this
“cleaned” version of C4 (created by applying all fil-
ters) C4.EN. For brevity we refer readers to Raffel
et al. (2020) for a full list of the filters.

In addition to C4.EN, we host the “uncleaned”
version (C4.EN.NOCLEAN), which is the snapshot
of Common Crawl identified as English (with no
other filters applied), and C4.EN.NOBLOCKLIST,
which is the same as C4.EN but without filtering
out documents containing tokens from a blocklist
of words (see §5 for more details). Table 1 contains
some statistics for the three corpora.

3 Corpus-level statistics

Understanding the provenance of the texts that com-
prise a dataset is fundamental to understanding the
dataset itself, so we begin our analysis of the meta-
data of C4.EN by characterizing the prevalence of

5https://github.com/allenai/c4-
documentation/discussions

6https://commoncrawl.org/, where monthly
“snapshots” are created by crawling and scraping the web,
each typically containing terabytes of text

7https://git.io/vSyEu
8https://pypi.org/project/langdetect/

https://github.com/allenai/c4-documentation
https://github.com/allenai/c4-documentation
https://2020.emnlp.org/blog/2020-05-20-reproducibility
https://2020.emnlp.org/blog/2020-05-20-reproducibility
https://c4-search.apps.allenai.org/
https://github.com/allenai/c4-documentation/discussions
https://github.com/allenai/c4-documentation/discussions
https://commoncrawl.org/
https://git.io/vSyEu
https://pypi.org/project/langdetect/
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Figure 2: Number of tokens from the 25 most represented top-level domains (left) and websites (right) in C4.EN.

different internet domains as sources of text, the
date the websites were first indexed by the Internet
Archive, and geolocation of IP addresses of hosted
websites.

3.1 Internet domains
Figure 2 (left) shows the 25 most represented top-
level domains (TLD)9, by number of word tokens
in C4.EN (measured using the SpaCy English to-
kenizer).10 Unsurprisingly, popular top-level do-
mains such as .com, .org, and .net are well
represented. We note that some top-level domains
reserved for non-US, English-speaking countries
are less represented, and even some domains for
countries with a primary language other than En-
glish are represented in the top 25 (such as ru).11

A significant portion of the text comes from
.gov websites, reserved for the US government.
Another potentially interesting top-level domain is
.mil, reserved for the US government military.
While not in the top 25 TLDs, C4.EN contains
33,874,654 tokens from .mil top-level domain
sites, coming from 58,394 unique URLs. There are
an additional 1,224,576 tokens (from 2,873 unique
URLs) from .mod.uk, the domain for the United
Kingdom’s armed forces and Ministry of Defence.

Websites In Figure 2 (right), we show the top
25 most represented websites in C4.EN, ranked by
total number of tokens. Surprisingly, the cleaned
corpus contains substantial amounts of patent text

9https://en.wikipedia.org/wiki/List_
of_Internet_top-level_domains

10https://spacy.io/api/tokenizer
11We use the TLDExtract (https://pypi.org/

project/tldextract/) package to parse the URLs.

documents, with the single-most represented web-
site in the corpus is patents.google.com and
patents.com being in the top 10. We discuss
the implications of this in §4.1.

Two well-represented domains of text are
Wikipedia and news (NYTimes, LATimes, Al-
Jazeera, etc.). These have been extensively used in
the training of large language models (Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020, e.g.,
BERT, RoBERTa, GPT-3). Some other noteworthy
websites that make up the top 25 include open-
access publications (Plos, FrontiersIn, Springer),
the book publishing platform Scribd, the stock anal-
yses and advice website Fool.com, and the dis-
tributed file system ipsf.io.12

3.2 Utterance Date

Language changes over even short timescales, and
the truth or relevance of many statements depends
on when they were made. While the actual utter-
ance date is often impossible to obtain for web
documents, we use the earliest date a URL was
indexed the Internet Archive as a proxy. We note
that using the Internet Archive is not perfect, as it
will sometimes index webpages many months af-
ter their creation, and only indexed approximately
65% of URLs in C4.EN. In Figure 3, we present the
dates the Internet Archive first indexed 1,000,000
randomly sampled URLs from C4.EN. We found
that 92% are estimated to have been written in the

12Note that the distribution of websites in C4.EN is not
necessarily representative of the most frequently used websites
on the internet, as evidenced by the low overlap with the
top 25 most visited websites as measured by Alexa (https:
//www.alexa.com/topsites)

https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
https://spacy.io/api/tokenizer
https://pypi.org/project/tldextract/
https://pypi.org/project/tldextract/
patents.google.com
patents.com
https://www.alexa.com/topsites
https://www.alexa.com/topsites
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Figure 3: The date URLs were first indexed by the In-
ternet Archive13 before the Common Crawl snapshot
was collected.

last decade (2011-2019). However, the distribution
is long-tailed–there is a non-trivial amount of data
that was written between 10-20 years before data
collection.

3.3 Geolocation

We aim to assess which countries are represented in
C4.EN, which we estimate using the location where
a webpage is hosted as a proxy for the location of
its creators. There are several caveats to working
with geolocations of IP addresses, including that
many websites are not hosted locally, instead be-
ing hosted in data centers, or that ISPs may store
a website in different locations around the world,
so a user can load a version from a nearby data-
center rather than from the original hosting loca-
tion. We use an IP-country database14 and present
country-level URL frequencies from 175,000 ran-
domly sampled URLs.

As shown in Figure 4 in the appendix, 51.3%
pages are hosted in the United States. The countries
with the estimated 2nd, 3rd, 4th largest English
speaking populations15—India, Pakistan, Nigeria,
and The Philippines—have only 3.4%, 0.06%,
0.03%, 0.1% the URLs of the United States, despite
having many tens of millions of English speakers.

4 What is in the text?

We expect our trained models to exhibit behavior
based on the data they are trained on. In this section

14https://lite.ip2location.com/
database/ip-country

15https://en.wikipedia.org/wiki/List_
of_countries_by_English-speaking_
population

we examine machine-generated text, benchmark
contamination, and demographic biases.

4.1 Machine-generated text
As the use of models which can generate natural
language text proliferates, web-crawled data will
increasingly contain data that was not written by
humans. Here we look for machine-generated text
in the Internet domain from which we get the most
tokens: patents.google.com.

Patent offices have requirements around the
language in which patents are written (e.g., the
Japanese patent office requires patents be in
Japanese). patents.google.com uses ma-
chine translation to translate patents from patent
offices around the world into English.16 Table 3
in Appendix A.3 includes the number of patents
in C4.EN from different patent offices, and the of-
ficial language of those patent offices. While the
majority of the patents in this corpus are from the
US patent office, more than ten percent are from
patent offices which require patents be submitted
in a language other than English.17

While some patents in this corpus are native
digital documents, many were physical docu-
ments scanned through Optical Character Recog-
nition (OCR). Indeed, some older documents from
non-English patent offices are first run through
OCR then machine translation systems (see Ap-
pendix A.3). OCR systems are imperfect, and thus
generate text that is different in distribution from
natural English (often OCR systems make mistakes
in predictable ways, such as spelling errors and en-
tirely missed words). Quantifying the number of
documents that are machine-generated is an active
area of research (Zellers et al., 2019); our findings
motivate further work.

4.2 Benchmark data contamination
In this section, we study benchmark data contam-
ination (Brown et al., 2020), i.e., to what extent
training or test datasets from downstream NLP
tasks appear in the pretraining corpus. There are
generally two ways datasets can end up in a snap-
shot from Common Crawl: either a given dataset
is built from text on the web, such as the IMDB

16“Patents with only non-English text have been machine-
translated to English and indexed”, from https://
support.google.com/faqs/answer/7049585

17Many patent offices require a patent be filed in a particular
language, but also allow translations into other languages
be submitted, so this is an upper bound on the number of
translated documents.

https://lite.ip2location.com/database/ip-country
https://lite.ip2location.com/database/ip-country
https://en.wikipedia.org/wiki/List_of_countries_by_English-speaking_population
https://en.wikipedia.org/wiki/List_of_countries_by_English-speaking_population
https://en.wikipedia.org/wiki/List_of_countries_by_English-speaking_population
https://support.google.com/faqs/answer/7049585
https://support.google.com/faqs/answer/7049585


1290

dataset (Maas et al., 2011) and the CNN/DailyMail
summarization dataset (Hermann et al., 2015; Nal-
lapati et al., 2016), or it is uploaded after creation
(e.g., to a github repository, for easy access). In this
section, we explore both input and input-and-label
contaminations of popular datasets.

Unlike Brown et al. (2020), who measure con-
tamination using n-gram overlap (n between 8 and
13) between pretraining data and benchmark exam-
ples, we measure exact matches, normalized for
capitalization and punctuation.18

Input-and-label contamination If task labels
are available in the pretraining corpus, a valid train-
test split is not made and the test set is not suitable
for evaluating the model’s performance. For tasks
similar to language modeling (e.g., abstractive sum-
marization) the task labels are target tokens. If tar-
get text occurs in the pretraining corpus, the model
can learn to copy the text instead of actually solv-
ing the task (Meehan et al., 2020; Carlini et al.,
2020).

We examine contamination of target text in
test sets of datasets for three generation tasks:
(i) abstractive summarization (TIFU, Kim et al.,
2019; XSum, Narayan et al., 2018), (ii) table-
to-text generation (WikiBio, Lebret et al., 2016),
and (iii) graph-to-text generation (AMR-to-text,
LDC2017T10). In the upper part of Table 2,
we show that 1.87–24.88% target texts appear in
C4.EN. The matching rate is higher for datasets
that (mostly) contain single-sentence target texts
(XSum, TIFU-short, AMR-to-text) than for those
with multi-sentence outputs (TIFU-long, WikiBio).
That said, matching XSum summaries are not triv-
ial sentences (see Table 5 in the appendix), and
developing a model that generates them automati-
cally is a notable achievement.

We also examine two subsets of the LAMA
dataset for probing of knowledge completion:
LAMA T-REx and Google-RE. LAMA evaluation
examples are comprised of template-generated sen-
tences with a masked token that we fill in, and we
find 4.6% and 5.7% of the examples in the T-REx
and Google-RE sets, respectively, exist verbatim in
C4.EN. While this is a tiny fraction of the C4.EN

dataset, a language model pretrained on C4.EN can
simply retrieve the matching training instance to
get these examples correct.

We do not observe input-and-label contamina-
18Brown et al. used a very conservative measurement be-

cause of the bug in their pretraining data preprocessing.

Dataset % Matching

L
ab

el

LAMA T-REx 4.6
LAMA Google-RE 5.7
XSum 15.49
TIFU-short 24.88
TIFU-long 1.87
WikiBio 3.72
AMR-to-text 10.43

In
pu

t

BoolQ 2.4
CoLA 14.4
MNLI (hypothesis) 14.2
MNLI (premise) 15.2
MRPC (sentence 1) 2.7
MRPC (sentence 2) 2.7
QNLI (sentence) 53.6
QNLI (question) 1.8
RTE (sentence 1) 6.0
RTE (sentence 2) 10.8
SST-2 11.0
STS-B (sentence 1) 18.3
STS-B (sentence 2) 18.6
WNLI (sentence 1) 4.8
WNLI (sentence 2) 2.1

Table 2: The number of exact matches from test sets
of various benchmarks in C4.EN. For datasets where
the input has multiple components (e.g. hypothesis and
premise on MNLI), we report contamination separately
for each component. Numbers vary widely for different
datasets, ranging from 1 to over 50% of samples.

tion due to hosting datasets on the web (see Ap-
pendix A.5).

Input contamination Input contamination of
evaluation examples that does not include labels
can also lead to downstream problems. We exam-
ine input contamination for test examples in the
GLUE benchmark (Wang et al., 2019b, individual
citations in Appendix A.4), a common test bed for
language models. If a dataset has multiple compo-
nents (e.g. sentence and question on QNLI), we
report them separately. In Table 2, we show that the
percentage of inputs found in C4.EN varies widely,
from less than 2% to over 50%. Interestingly, both
the smallest and largest contamination proportions
come from QNLI (built from Wikipedia), where
models are tasked to determine whether a sentence
contains the answer to a question.

Although train set contamination is generally
not problematic for classification tasks if it does
not include labels—Gururangan et al. (2020) even
recommend continued pretraining on the task’s
unlabeled training data—it could be misleading
in few-shot and zero-shot learning. The LAMA
dataset is one which is often used to evaluate zero-
shot performance and GLUE datasets for few-shot
performance (Gao et al., 2021), and perhaps this

https://catalog.ldc.upenn.edu/LDC2017T10
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practice should be considered carefully.

4.3 Demographic Biases in C4.EN

Much recent work has found various kinds of
bias in fine-tuned models (e.g., Sheng et al., 2019;
Gehman et al., 2020; Li et al., 2020), where the bias
is assumed to derive from pretraining data, though
this has not previously been easy to verify. We
present evidence that corroborates this widely-held
hypothesis, reproducing the ethnicity bias results
from Li et al. (2020) and showing that this bias
correlates with sentiment expressed in C4.

To reproduce the ethnicity bias results of Li et al.
(2020), we used their script to generate questions
for testing implicit bias towards various ethnicities.
This resulted in 294,000 questions about 15 differ-
ent ethnicities, with each question comparing two.
An example question is “An Arab woman was tak-
ing classes with a Jewish woman. Who was a bad
driver?” These questions come in pairs, with one
having negative sentiment expressed about the an-
swer to the question (as above), and one expressing
positive sentiment about the answer.

We took the pretrained UnifiedQA
model (Khashabi et al., 2020),19 distributed
by Hugging Face’s transformers library (Wolf
et al., 2020), and evaluated it on these 294,000
questions formatted as multiple choice, so the
model had to pick one of the two ethnicities in
the question. We then counted the proportion of
times each ethnicity was associated with positive
sentiment by the model; i.e., the model selected
the ethnicity as the answer for a positive-sentiment
question, or selected the opposite ethnicity as the
answer for a negative-sentiment question. The
resulting proportions are shown in Table 7 in §A.7.

We find that “Jewish” and “Arab” are among the
most polarized ethnicities, with a positive bias to-
wards “Jewish” and a negative bias towards “Arab”.
We then look for evidence that C4 could be the
source of this bias. We compute a sentiment
lexicon by averaging the various social lexicons
of Hamilton et al. (2016), and count sentiment-
bearing words that occur in the same paragraph as
either ethnicity. We find that “Jewish” has a sig-
nificantly higher percentage of positive sentiment
tokens (73.2% of 3.4M tokens) than “Arab” does
(65.7% of 1.2M tokens) (for more detail, see §A.7).
This is an example of representational harms (Baro-

19UnifiedQA is a fine-tuned version of T5 (Raffel et al.,
2020), which was pretrained on C4.

cas et al., 2017).
C4.EN is a heterogenous and complex collection

of text from many different sources, and this can be
seen by measuring such biases in text from different
internet domains that the text is from. Specifically,
we find New York Times articles in C4.EN have
a smaller sentiment spread between “Jewish” and
“Arab” (4.5%, where we observed a 7.5% spread
in overall C4), while there is no gap between senti-
ment expressed in the context of these two ethnici-
ties in articles from Al Jazeera.

5 What is excluded from the corpus?

To understand a dataset built by first scraping the
web then applying filters to remove some portion
of the scraped text, one must understand the impact
of the filters themselves. Such filters are often de-
signed to “clean” the text (e.g., through deduplica-
tion, length-based filtering, etc.). We characterize
the effect of one specific step in the creation of
C4.EN: the exclusion of documents that contain
any word from a blocklist of “bad” words20 with
the intent to remove “offensive language” (Raffel
et al., 2020), i.e., hateful, toxic, obscene, sexual, or
lewd content. This blocklist was initially created to
avoid “bad” words in autocompletions for a search
engine (Simonite, 2021) and contains words such
as “porn,” “sex,” “f*ggot,” and “n*gga.”

We first characterize the topic of docu-
ments that were excluded (i.e., that are in
C4.EN.NOBLOCKLIST but not in C4.EN) using
clustering (§5.1). Then, we examine whether block-
list filtering disproportionately excludes documents
that contain minority identity mentions (§5.2) or
documents that are likely written in non-white En-
glish dialects (§5.3).

5.1 Characterizing the excluded documents

We examine a random sample of 100,000 docu-
ments excluded by the blocklist. Using PCA projec-
tions of TF-IDF embeddings, we categorize those
documents into k = 50 clusters using the k-means
algorithm. As illustrated in Fig. 6 in the appendix,
we find only 16 clusters of excluded documents that
are largely sexual in nature (31% of the excluded
documents). For example, we find clusters of docu-
ments related to science, medicine, and health, as
well as clusters related to legal and political docu-
ments.

20https://git.io/vSyEu

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
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5.2 Which demographic identities are
excluded?

Next, we explore whether certain demographics
identity mentions are more likely to be excluded
due to the blocklist filtering. We extract the frequen-
cies of a set of 22 regular expressions related to
identity mentions,21 and compute the pointwise mu-
tual information (PMI; Church and Hanks, 1990)
between the likelihood of an identity mention oc-
curring versus being filtered out by the blocklist.
As illustrated in Fig. 5 in the appendix, we find
that mentions of sexual orientations (lesbian, gay,
heterosexual, homosexual, bisexual) have the high-
est likelihood of being filtered out, compared to
racial and ethnic identities. Upon manual inspec-
tion of a random sample of 50 documents mention-
ing “lesbian” and “gay,” we find that non-offensive
or non-sexual documents make up 22% and 36%,
respectively. Corroborating findings in §5.1, sev-
eral of these excluded documents are on the topic
of same-sex relationships (marriage, dating, etc).

5.3 Whose English is included?

Finally, we investigate the extent to which minor-
ity voices are being removed due to blocklist filter-
ing. Because determining the (potentially minority)
identity of a document’s author is both infeasible
and ethically questionable (Tatman, 2020), we in-
stead focus on measuring the prevalence of differ-
ent varieties or dialects of English in C4.EN and
C4.EN.NOBLOCKLIST. We use a dialect-aware
topic model from Blodgett et al. (2016), which
was trained on 60M geolocated tweets and relies
on US census race/ethnicity data as topics. The
model yields posterior probabilities of a given doc-
ument being in African American English (AAE),
Hispanic-aligned English (Hisp), White-aligned
English (WAE),22 and an “other” dialect category
(initially intended by the model creators to capture
Asian-aligned English). We extract the posterior
probabilities of the four dialects for each document,
and assign it a dialect based on which has the high-
est probability.

Our results show that African American English
and Hispanic-aligned English are disproportion-
ately affected by the blocklist filtering. Using the
most likely dialect of a document, we find that AAE

21We investigate mentions related to gender identity, sexual
orientation, race, and religion. See Tab. 6 for the full list.

22We acknowledge that there is disagreement on the choice
of terminology to refer to different varieties of English. Here,
we use the terms from Blodgett et al. (2016).

and Hispanic-aligned English are removed at sub-
stantially higher rates (42% and 32%, respectively)
than WAE and other English (6.2% and 7.2%, re-
spectively). Additionally, we find that 97.8% docu-
ments in C4.EN are assigned the WAE dialect cate-
gory, with only 0.07% AAE and 0.09% Hispanic-
aligned English documents.

6 Discussion & Recommendations

Our analyses of C4.EN and associated corpora re-
vealed several surprising findings. At the meta-
data level (§3), we show that patents, news, and
wikipedia domains are most represented in C4.EN,
and that it contains substantial amounts of data
from over a decade ago. Upon inspecting the in-
cluded data (§4), we find evidence of machine gen-
erated text, benchmark data contamination, and
social biases. Finally, we also find evidence that
the blocklist filtering step is more likely to include
minority voices (§5). Based on these findings, we
outline some implications and recommendations.

Reporting website metadata Our analysis
shows that while this dataset represents a signif-
icant fraction of a scrape of the public internet, it
is by no means representative of English-speaking
world, and it spans a wide range of years. When
building a dataset from a scrape of the web, report-
ing the domains the text is scraped from is integral
to understanding the dataset; the data collection
process can lead to a significantly different distri-
bution of internet domains than one would expect.

Examining benchmark contamination Since
benchmarks are often uploaded to websites, bench-
mark contamination a potential issue for dataset
creation from webtext. Brown et al. (2020) raised
this issue when introducing GPT-3, as they ac-
knowledged that a bug in their filtering caused
some benchmark contamination, found after fin-
ishing their training. Due to the cost of retraining
the model, they instead opt to analyze the impact
of contamination of different tasks, finding that
contamination could affect performance on bench-
marks. Our observations support dynamically col-
lecting data with the human-in-the-loop approach
(Nie et al., 2020; Kiela et al., 2021) that might re-
duce contamination of future benchmarks since (i)
pretaining data is infrequently collected, and (ii)
annotator-written examples for a given task are less
likely to be (previously) crawled from the web.
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Social biases and representational harms In
§4.3, we show an example of negative sentiment
bias against Arab identities, which is an example of
representational harms (Barocas et al., 2017). Our
evidence of bias in C4.EN is a first step, though
we have not shown a causal link between our mea-
sured sentiment statistics and the downstream bias;
if we could control the distributional biases in the
pretraining data, perhaps it would reduce down-
stream bias. One potential way to do that is through
carefully selecting subdomains to use for training,
as different domains will likely exhibit different
biases. Our experiments with New York Times arti-
cles and Al Jazeera indicate that indeed, text from
different internet domains contain different distri-
butions, with varying amounts of bias. We argue
that providing a measurement of such bias is an
important component of dataset creation. However,
if one wants to control for many different kinds of
bias simultaneously, this seems very challenging to
do by simply selecting specific subdomains.

Excluded voices and identities Our examina-
tion of the excluded data suggests that documents
associated with Black and Hispanic authors and
documents mentioning sexual orientations are sig-
nificantly more likely to be excluded by C4.EN’s
blocklist filtering, and that many excluded docu-
ments contained non-offensive or non-sexual con-
tent (e.g., legislative discussions of same-sex mar-
riage, scientific and medical content). This exclu-
sion is a form of allocational harms (Barocas et al.,
2017; Blodgett et al., 2020) and exacerbates exist-
ing (language-based) racial inequality (Rosa, 2019)
as well as stigmatization of LGBTQ+ identities
(Pinsof and Haselton, 2017). In addition, a direct
consequence of removing such text from datasets
used to train language models is that the models
will perform poorly when applied to text from and
about people with minority identities, effectively
excluding them from the benefits of technology
like machine translation or search. Our analyses
confirm that determining whether a document has
toxic or lewd content is a more nuanced endeavor
that goes beyond detecting “bad” words; hateful
and lewd content can be expressed without negative
keywords (e.g., microaggressions, innuendos; Bre-
itfeller et al., 2019; Dinan et al., 2019). Importantly,
the meaning of seemingly “bad” words heavily de-
pends on the social context (e.g., impoliteness can
serve prosocial functions; Wang et al., 2012), and
who is saying certain words influences its offensive-

ness (e.g., the reclaimed slur “n*gga” is considered
less offensive when uttered by a Black speaker than
by a white speaker; Croom, 2013; Galinsky et al.,
2013). We recommend against using blockilst filter-
ing when constructing datasets from web-crawled
data.

Limitations and Recommendations We recog-
nize that we have only examined some of the pos-
sible issues with a dataset of this size, and so in
addition to making the dataset available to down-
load, we recommend providing a location for oth-
ers to report issues they find (Habernal et al., 2016;
Schäfer, 2016). For example, it is likely that there
exists personally identifiable information and copy-
righted text within C4.EN, but we leave quantifying
or removing such text to future work. We also rec-
ognize that the data that tools such as LangID work
disproportionately well for English compared to
other languages (Caswell et al., 2021), and that
many of the analyses done in this paper might not
generalize to other languages.

7 Related Work

BERT (Devlin et al., 2019) was trained on
BOOKSCORPUS (Zhu et al., 2015) and English-
language WIKIPEDIA. It was soon improved with
additional data (ROBERTA; Liu et al., 2019): a por-
tion of CC-NEWS (Nagel, 2016), OPENWEBTEXT

(Gokaslan and Cohen, 2019; Radford et al., 2019),
and STORIES (Trinh and Le, 2018). Since then,
other corpora have been (partially) constructed
from Common Crawl, e.g., PILE (Gao et al., 2020),
CCNET (Wenzek et al., 2020), and MC4 (Xue
et al., 2021). Luccioni and Viviano (2021) provide
some exploratory analysis of undesirable content
in Common Crawl, wherein they find hatespeech
and adult content. One of the largest language
models, GPT-3 (Brown et al., 2020), was trained
on a mixture of filtered Common Crawl (60% of
GPT-3’s data), WEBTEXT2 (22%; Kaplan et al.,
2020), BOOKS1 and BOOKS2 (8% each; Brown
et al., 2020), and English-language WIKIPEDIA

(3%). GPT-3’s Common Crawl data was down-
loaded from 41 monthly “snapshots” from 2016–
2019, and it constitutes 45TB of compressed text
before filtering23 and 570GB after (∼400 billion
byte-pair-encoded tokens).

Since analyzing pretraining corpora is challeng-
ing due to their size, their documentation is of-

23Two filters applied are (i) a similarity filter to documents
from other corpora, and (ii) deduplication.
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ten missing (Bender et al., 2021; Paullada et al.,
2020). To bridge this gap, researchers started to
publish systematic post-hoc studies of these cor-
pora. Gehman et al. (2020) provide an in-depth
analysis with respect to toxicity and fake news of
OPENWEBTEXT. Caswell et al. (2021) recruited
51 volunteers speaking 70 languages to judge
whether five publicly available multilingual web-
crawled corpora (El-Kishky et al., 2020; Xue et al.,
2021; Ortiz Suárez et al., 2020; Bañón et al., 2020;
Schwenk et al., 2019) contain text in languages
they report, as well as their quality. Jo and Gebru
(2020) discuss parallels between creating histori-
cal archives and the curation of machine learning
datasets including pretraining corpora. Hutchinson
et al. (2021) introduce a “framework for dataset
development transparency that supports decision-
making and accountability” that could be used for
developing pretraining corpora. The Masakhane
organization advocates for participatory research
(Nekoto et al., 2020), a set of methodologies that
includes all necessary agents, e.g., people from
countries where the low-resourced languages are
spoken for low-resourced NLP.

8 Conclusion

We present some of the first documentation and
analyses of C4.EN, a web-scale unlabeled dataset
originally introduced by Raffel et al. (2020). We
argue that documentation for datasets created by
scraping the web and then filtering out text should
include analysis of the metadata, the included data,
and the excluded data. We host three versions of
the data for download, in addition to an indexed
version for easy searching, and a repository for
public discussion of findings.24

9 Societal and Ethical Implications

Our work advocates for the need for more trans-
parency and thoughtfulness during the creation of
large webtext corpora. Specifically, we highlight
that specific design choices (e.g., blocklist filtering)
can cause allocational harms to specific commu-
nities, by disproportionately removing minority-
related content. Additionally, we show that using
passively crawled webtext corpora (e.g., Common-
Crawl) can cause representational harms to specific
demographic identities, showing disparate cooc-
currences of specific geographic origins with neg-

24https://github.com/allenai/c4-
documentation

ative sentiment. Better documentation for web-
craweld corpora, and other massive language mod-
eling datasets, can help find and solve issues that
arise with language models, especially those that
are used in production and impact many people.
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Figure 4: URL frequency by country for 175,000 ran-
domly selected URLS from the cleaned common crawl
dataset.

A Appendix

A.1 Tokenization

The SentencePiece tokenizer for T5 is described
in Section 3.3.1 of Raffel et al. (2020). They
train this tokenizer and generate their Word-
Pieces and vocabulary from a 10:1:1:1 ratio of
English:French:German:Romanian, for a total of
32,000 word pieces. This English vocabulary is
generated from the cleaned English C4, and thus
does not contain the tokens in the blocklist; this
can lead to some unexpected tokenizations, such as
“sex” being tokenized as “s” + “ex”.

A.2 Geolocation

In Figure 4 we show the URL frequency by country.

A.3 Patents from different patent offices

An example patent originally in Chinese:
https://patents.google.com/
patent/CN1199926A/en, an exam-
ple originally in German and run through
OCR: https://patents.google.com/
patent/WO1998039809A1/en.

A.4 Sources of GLUE datasets

• BoolQ (Clark et al., 2019)
• CoLA (Warstadt et al., 2019)
• MNLI (Williams et al., 2018)
• MRPC (Dolan and Brockett, 2005)
• QNLI (Rajpurkar et al., 2016; Wang et al.,

2019b)
• RTE (Dagan et al., 2005; Haim et al., 2006;

Giampiccolo et al., 2007; Bentivogli et al.,
2009)

• SST-2 (Socher et al., 2013)
• STS-B (Cer et al., 2017)
• WNLI (Levesque et al., 2012; Wang et al.,

2019b)

A.5 Classification label contamination

We observe that a large portion of GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a)
datasets can be easily found on Github (see a list be-
low). This prompted us to check do these datasets
occur in the unfiltered Common Crawl. We se-
lect phrases from each datasets that we identify on
Github, and check if they occur in the unfiltered
Common Crawl. If there is a match we manu-
ally examine the overlapping Common Crawl doc-
uments to see whether they represent the associated
dataset. We do not find any such case, and conclude
that there is no input-and-label contamination of
standard NLP classification benchmarks in the un-
filtered Common Crawl.

• https://github.com/nyu-
mll/CoLA-baselines/blob/
master/acceptability_corpus/

• https://github.com/
333caowei/extract-
stanfordSentimentTreebank/
blob/master/sst2_test.csv

• https://github.com/
abhishekshridhar/Paraphrase-
Detection/blob/master/msr-
paraphrase-corpus/msr_
paraphrase_test.txt

• https://github.com/
AndriyMulyar/semantic-text-
similarity/blob/master/
semantic_text_similarity/data/
sts_b/sts-test.csv

• https://raw.githubusercontent.
com/qinxinlei/QNLI/master/
glue_data/QNLI/dev.tsv
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Count Country or WIPO Code Country or Office Name Language

70489 US USA English
4583 EP European Patent Office English, French, or German
4554 JP Japan Japanese
2283 CN China Chinese (Simplified)
2154 WO World Intellectual Property Organization Various
1554 KR Republic of Korea Korean
1417 CA Canada English

982 AU Australia English
747 GB United Kingdom English
338 DE Germany German
332 TW Taiwan Traditional Chinese
271 FR France French
138 MX Mexico Spanish
118 SE Sweden Swedish
711 Other Various Various

Table 3: The number of patents from different different patent offices from patents.google.com, the largest
single Internet domain (in terms of tokens) for C4. Many patent offices require a patent be filed in a particular
language (listed above), but also allow translations into other languages be submitted. The majority of patents
in C4 are from the US, which includes patents originally written in English, with older patents OCR’d. “Other”
contains 48 other patent offices which each have fewer than 100 patents.

Dataset % Matched Count Matched / Dataset Size

L
ab

el

LAMA T-REx 4.6% 1,585 / 34,014
LAMA Google-RE 5.7% 314 / 5,528
XSum 15.49 1756 / 11334
TIFU-short 24.88 19843 / 79740
TIFU-long 1.87 790 / 42139
WikiBio 3.72 2712 / 72831
AMR-to-text 10.43 143 / 1371

In
pu

t

BoolQ 2.4% 79 / 3,245
CoLA 14.4% 153 / 1,063
MNLI - hypothesis 14.2% 1402 / 9847
MNLI - premise 15.2% 1494 / 9847
MRPC - sentence 1 2.7% 46 / 1725
MRPC - sentence 2 2.7% 46 / 1725
QNLI - sentence 53.6% 2931 / 5463
QNLI - question 1.8% 97 / 5463
RTE - sentence 1 6.0% 179 / 3000
RTE - sentence 2 10.8% 325 / 3000
SST-2 11.0% 200 / 1821
STS-B - sentence 1 18.3% 253 / 1379
STS-B - sentence 2 18.6% 256 / 1379
SST-2 11.0% 200 / 1821
WNLI - sentence 1 4.8% 7 / 146
WNLI - sentence 2 2.1% 3 / 146

Table 4: An extended version of Table 2 with number of instances that are matched.
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Contaminated Summaries
The takeover of Bradford Bulls by Omar Khan’s consortium has been ratified by the Rugby Football
League.
US presidential candidate Donald Trump has given out the mobile phone number of Senator Lindsey
Graham - one of his Republican rivals for the White House.
Two men who were sued over the Omagh bomb have been found liable for the 1998 atrocity at their civil
retrial.
Grimsby fought back from two goals down to beat Aldershot and boost their National League play-off
hopes.
Doctors say a potential treatment for peanut allergy has transformed the lives of children taking part in a
large clinical trial.
A breast surgeon who intentionally wounded his patients has had his 15-year jail term increased to 20
years.
Turkey has bombarded so-called Islamic State (IS) targets across the border in northern Syria ahead of an
expected ground attack on an IS-held town.
Peterborough United have signed forward Danny Lloyd on a free transfer from National League North
side Stockport.
The first major trial to see if losing weight reduces the risk of cancers coming back is about to start in the
US and Canada.
Villarreal central defender Eric Bailly is set to be Jose Mourinho’s first signing as Manchester United
manager.

Table 5: A sample of XSum summaries that are found in C4.EN.

• https://github.com/
himanshushivhare/RTE/blob/
master/RTE3-TEST/RTE3-
TEST.xml

• https://github.com/zdwls/
boolqQA/blob/main/datafile/
test.jsonl

• https://github.com/mcdm/
CommitmentBank/blob/master/
CommitmentBank-items.csv

• https://github.com/drwiner/
COPA/blob/master/datasets/
copa-test.xml

• https://raw.githubusercontent.
com/eitanhaimashiah/
multibidaf/master/data/
multirc_dev.json

• https://github.com/aEE25/
Testing-WiC-with-ERNIE/blob/
main/WiC_dataset/test/test.
data.txt

• https://github.com/xiandong79/
WinogradSchemaChallenge/blob/
master/datasets/WSCollection.
xml

A.6 Filtered Text Clustering and Analysis
Determining what has been filtered is a fundamen-
tally hard problem: as we argue in this paper, auto-
mated mechanisms like blocklists are insufficient
for filtering out inappropriate content, and even
human annotators would have difficulty reaching
complete agreement. With these caveats in mind,
we analyzed the documents filtered by the "bad
words" list by performing a k-means clustering
(with k=50) on 100,000 randomly sampled docu-
ments embedded using TF-IDF. We present a tSNE
projection of this clustering in Figure A.6. While
many clusters correspond to pornography or hate
speech, there are also clusters corresponding to
medicine, religion, gaming, infant care, and other
innocuous topics. Blocklist filtering excludes many
important topics, and the excluded topics aren’t
straightforward to predict.

A.7 Demographic Bias Experiment Details
To reproduce the ethnicity bias results of Li et al.
(2020), we used their script to generate questions
for testing implicit bias towards various ethnicities.
This resulted in 294,000 questions about 15 differ-
ent ethnicities, with each question comparing two.
An example question is “An Arab woman was tak-
ing classes with a Jewish woman. Who was a bad

https://github.com/himanshushivhare/RTE/blob/master/RTE3-TEST/RTE3-TEST.xml
https://github.com/himanshushivhare/RTE/blob/master/RTE3-TEST/RTE3-TEST.xml
https://github.com/himanshushivhare/RTE/blob/master/RTE3-TEST/RTE3-TEST.xml
https://github.com/himanshushivhare/RTE/blob/master/RTE3-TEST/RTE3-TEST.xml
https://github.com/zdwls/boolqQA/blob/main/datafile/test.jsonl
https://github.com/zdwls/boolqQA/blob/main/datafile/test.jsonl
https://github.com/zdwls/boolqQA/blob/main/datafile/test.jsonl
https://github.com/mcdm/CommitmentBank/blob/master/CommitmentBank-items.csv
https://github.com/mcdm/CommitmentBank/blob/master/CommitmentBank-items.csv
https://github.com/mcdm/CommitmentBank/blob/master/CommitmentBank-items.csv
https://github.com/drwiner/COPA/blob/master/datasets/copa-test.xml
https://github.com/drwiner/COPA/blob/master/datasets/copa-test.xml
https://github.com/drwiner/COPA/blob/master/datasets/copa-test.xml
https://raw.githubusercontent.com/eitanhaimashiah/multibidaf/master/data/multirc_dev.json
https://raw.githubusercontent.com/eitanhaimashiah/multibidaf/master/data/multirc_dev.json
https://raw.githubusercontent.com/eitanhaimashiah/multibidaf/master/data/multirc_dev.json
https://raw.githubusercontent.com/eitanhaimashiah/multibidaf/master/data/multirc_dev.json
https://github.com/aEE25/Testing-WiC-with-ERNIE/blob/main/WiC_dataset/test/test.data.txt
https://github.com/aEE25/Testing-WiC-with-ERNIE/blob/main/WiC_dataset/test/test.data.txt
https://github.com/aEE25/Testing-WiC-with-ERNIE/blob/main/WiC_dataset/test/test.data.txt
https://github.com/aEE25/Testing-WiC-with-ERNIE/blob/main/WiC_dataset/test/test.data.txt
https://github.com/xiandong79/WinogradSchemaChallenge/blob/master/datasets/WSCollection.xml
https://github.com/xiandong79/WinogradSchemaChallenge/blob/master/datasets/WSCollection.xml
https://github.com/xiandong79/WinogradSchemaChallenge/blob/master/datasets/WSCollection.xml
https://github.com/xiandong79/WinogradSchemaChallenge/blob/master/datasets/WSCollection.xml
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0.0 0.5 1.0 1.5 2.0 2.5
PMI(identity term; filtered by blocklist)

european, europeans, european americans, ...
white, whites

straight, straights
christian, christians

black, blacks
african american, african-american, african americans, ...

jewish, jews, jew
muslim, muslims

man, men
caucasian, caucasians

asian, asians, asian american, ...
women, woman

trans, transgender
female, females

non-binary, nonbinary, non binary
male, males

latina, latino, latinas, ...
bisexual, bisexuals, bi-sexual, ...

homosexual, homosexuals
heterosexual, heterosexuals

gay, gays
lesbian, lesbians

Id
en

tit
y

Figure 5: Pointwise Mutual Information (PMI) between identity mentions and documents being filtered out by the
blocklist. Identities with higher PMI (e.g., lesbian, gay) have higher likelihood of being filtered out.

Figure 6: K-means clustering of 100k randomly sampled filtered documents encoded using TF-IDF and tSNE PCA
(only 5k shown for clarity). Five top keywords for each cluster given in legend.
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homosexuals?
gays?

non[ -]?binary
trans(|\+|gender)

lesbians?
blacks?

african[ -]americans?
latin[oax]s?

asian([ -]american)?s?
muslims?

jew(|s|ish)?
wom[ae]n
females?
m[ae]n
males?

straights?
heterosexuals?
bi-?sexuals?

whites?
caucasians?

european([ -]american)?s?
christians?

Table 6: List of regular expressions used to capture the
identity mentions studied in §5.2

driver?” These questions come in pairs, with one
having negative sentiment expressed about the an-
swer to the question (as above), and one expressing
positive sentiment about the answer.

We took the pretrained UnifiedQA
model (Khashabi et al., 2020), distributed
by Hugging Face’s transformers library (Wolf
et al., 2020), and evaluated it on these 294,000
questions formatted as multiple choice, so the
model had to pick one of the two ethnicities in
the question. We then counted the proportion of
times each ethnicity was associated with positive
sentiment by the model; i.e., the model selected
the ethnicity as the answer for a positive-sentiment
question, or selected the opposite ethnicity as the
answer for a negative-sentiment question. The
resulting proportions are shown in the following
table:

Given these results, we selected “Jewish” and
“Arab” as points of comparison for a corpus study
on C4.EN, as they are the ethnicities with the most
extreme biases that were easy to find in C4.EN with
simple scripts (“African” is a substring of “African-
American”, which has higher overall sentiment,
and, e.g., “Black” has very common non-ethnic
word senses).

To explore whether C4.EN could be a source of
the observed bias between “Jewish” and “Arab”, we
first found all paragraphs containing these words,
where the word was surrounded by spaces (for
easy searching using fgrep, which is important

Ethnicity Positivity

Jewish 67.1%
Asian 60.6%
Caucasian 60.5%
European 60.5%
White 56.5%
Alaskan 55.9%
Hispanic 50.8%
Native American 50.6%
South-American 44.4%
African-American 44.3%
Latino 43.1%
Middle-Eastern 42.6%
Black 39.3%
Arab 37.0%
African 36.6%

Table 7: Proportion of times each ethnicity was associ-
ated with positive sentiment by UnifiedQA (Khashabi
et al., 2020), following the experimental setup of Li
et al. (2020).

on such a large corpus). We then took those para-
graphs and tokenized them by whitespace, removed
all punctuation, and computed cooccurrence statis-
tics between all words and the target ethnicity. This
resulted in 249.8M word occurrences in paragraphs
containing the word “Jewish”, and 134.8M for
“Arab”.

We then obtained various sentiment lexicons, to
get a coarse estimate of the sentiment expressed in
paragraphs containing these ethnicity terms. We
used the VADER sentiment lexicon (Hutto and
Gilbert, 2014), the SocialSent lexicons (Hamil-
ton et al., 2016), and a small manually-created
one using the words from the UNQOVER ques-
tions above. For the VADER lexicon, we treated
a word as positive if the lexicon gave it a senti-
ment score greater than 1.0 and negative if the
score was less than -1.0 (and ignored it otherwise).
SocialSent consists of separate lexicons for many
subreddits; we aggregated these by averaging the
sentiment scores for all words that appeared in
at least 40 subreddit-specific lexicons. This gave
a roughly domain-independent sentiment lexicon,
which we manually filtered to remove any overtly
ethnic terms, then took the top 250 most polar-
ized words from each side as positive and negative
words.

Given a particular sentiment lexicon, we counted
the number of positive and negative word occur-
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rences in paragraphs containing the ethnicity word,
then found the proportion of these occurrences
that had positive sentiment. For the SocialSent-
derived lexicon, which we believe to be the most
robust out of the ones we used, we found 3.4M
sentiment-bearing tokens for “Jewish”, of which
73.2% were positive, and 1.2M for “Arab”, of
which 65.7% were positive, giving a positivity gap
towards “Jewish” of 7.5%. The other sentiment
lexicons also resulted in a positivivty gap towards
“Jewish”, though it was smaller (1.4% for the man-
ual lexicon based on UNQOVER questions, and
2.0% for the VADER lexicon).

For the domain-filtered bias experiments,
we found paragraphs from URLs beginning
with either https://www.nytimes.com or
https://www.aljazeera.com, two of the
top 25 domains for documents in C4.EN, then
repeated the above analysis using the SocialSent-
derived lexicon. These domains had many fewer
sentiment-bearing tokens for each ethnicity, rang-
ing from 1.6k (“Jewish” in Al Jazeera) to 7.9k
(“Arab” in NYT). Positivity ratios in NYT were
74.0% (“Jewish”) and 69.5% (“Arab”), while they
were 42.5% (“Jewish”) and 42.8% (“Arab”) in Al
Jazeera.


