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Abstract
The task of organizing a shuffled set of sen-
tences into a coherent text has been used to
evaluate a machine’s understanding of causal
and temporal relations. We formulate the
sentence ordering task as a conditional text-
to-marker generation problem. We present
Reorder-BART (RE-BART) that leverages a
pre-trained Transformer-based model to iden-
tify a coherent order for a given set of shuf-
fled sentences. The model takes a set of shuf-
fled sentences with sentence-specific markers
as input and generates a sequence of position
markers of the sentences in the ordered text.
RE-BART achieves the state-of-the-art perfor-
mance across 7 datasets in Perfect Match Ra-
tio (PMR) and Kendall’s tau (τ ). We perform
evaluations in a zero-shot setting, showcasing
that our model is able to generalize well across
other datasets. We additionally perform sev-
eral experiments to understand the functioning
and limitations of our framework.

1 Introduction

Constructing coherent text requires an understand-
ing of entities, events, and their relationships. Auto-
matically understanding such relationships among
nearby sentences in a multi-sentence text has been
a longstanding challenge in NLP.

Sentence ordering task was proposed to test the
ability of automatic models to reconstruct a coher-
ent text given a set of shuffled sentences (Barzilay
and Lapata, 2005). Coherence modeling has wide
applications in natural language generation like
extraction-based multi-document summarization
(Barzilay and Elhadad, 2002; Galanis et al., 2012;
Nallapati et al., 2017), retrieval dependent QA (Yu
et al., 2018; Liu et al., 2018) and concept-to-text
generation (Schwartz et al., 2017).

Earlier studies on coherence modeling and sen-
tence ordering focused on exploiting different cate-
gories of features like coreference clues (Elsner and
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Figure 1: An example of the sentence ordering task.
The goal is to reorder a set of shuffled sentences (left)
into a coherent sequence of text (right).

Charniak, 2008), entity grids (Lapata and Barzilay,
2005; Barzilay and Lapata, 2005), named-entity
categories (Elsner and Charniak, 2011), and syn-
tactic features (Louis and Nenkova, 2012) among
others. With the advent of deep learning, re-
searchers leveraged distributed sentence representa-
tions learned through recurrent neural networks (Li
and Hovy, 2014). Recent works adopted ranking-
based algorithms to solve the task (Chen et al.,
2016; Kumar et al., 2020; Prabhumoye et al., 2020).

In this paper, we present RE-BART (for Reorder-
BART) to solve the sentence ordering as a condi-
tional text-to-marker generation where the input is
a shuffled set of sentences and output is a sequence
of position markers for the coherent sentence order.

Sentence ordering can be viewed as a task of
reconstructing the correct text from a noisy input.
For this reason we use BART (Lewis et al., 2020)
as the underlying generation module for RE-BART.
BART is pre-trained as a denoising autoencoder
where one of the objective involves generating the
coherent text from corrupted input sequences. Prior
works encode sentences individually or in a pair-
wise manner and then compute the position of a
sentence in the paragraph. We instead encode the
entire shuffled sequence at once, which results in
learning better token representations with respect
to the entire input context. This helps the model
in capturing interactions among all sentences and
identifying the relative order among them.
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<S1> I packed my raincoat. <S2> The forecast called for rainy. <S3> It never rained. <S4> The weather is never predictable. <S5> Instead it started to snow.

<S2> The forecast called for rainy. <S1> I packed my raincoat. <S3> It never rained. <S5> Instead it started to snow. <S4> The weather is never predictable.

⋯

 BART Encoder   

 BART Decoder   
Shuffled Input

Marker Outputs

Final Ordered Output

Figure 2: Proposed RE-BART framework. Given a shuffled set of input sentences, RE-BART generates Marker
Outputs (position markers of sentences) which is then used to reconstruct the ordered output.

Our simple framework outperforms previous
state-of-the-art by a large margin for all bench-
mark datasets. Specifically, we achieve 11.3%-
36.2% relative improvements in Perfect Match Ra-
tio (PMR) and 3.6%-13.4% relative improvements
in Kendall’s tau (τ ) across all benchmarks. Our
main contributions are:
• We formulate the sentence ordering as a con-

ditional text generation problem and present a
simple method to solve it.

• We empirically show that our model significantly
outperforms existing approaches by a large mar-
gin and achieves state-of-the-art performances
across all benchmark datasets.

• We conduct zero-shot evaluations showing our
model trained on Movie Plots outperforms the
previous in-domain trained state-of-the-art.

• We present a thorough analysis to evaluate sensi-
tivity of our model to different input properties.

2 Related Work

The problem of sentence ordering can be formu-
lated as finding an order with maximum coherence.
Earlier works focused on modeling local coher-
ence using linguistic features (Lapata and Barzilay,
2005; Barzilay and Lapata, 2005; Elsner and Char-
niak, 2011; Guinaudeau and Strube, 2013).

A line of work have leveraged neural networks
to encode sentences and retrieve the final order
using pointer network (Vinyals et al., 2015) by
comparing them in a pairwise manner (Gong et al.,
2016; Logeswaran et al., 2018a; Cui et al., 2018;
Yin et al., 2019, 2020). HAN (Wang and Wan,
2019) and TGCM (Oh et al., 2019) used an atten-
tion based pointer network for decoding. B-TSort

(Prabhumoye et al., 2020) uses topological sorting
to retrieve the final order from sentence pairs. Zhu
et al. (2021) encode sentence-level relationships
as constraint graphs to enrich sentence represen-
tations. The state-of-the-art approach (Cui et al.,
2020) introduced a novel pointer decoder with a
deep relational module.

Other works considered reframing the task as
a ranking problem. Chen et al. (2016) proposed
a model which relies on a ranking framework to
retrieve the order of sentence pairs. Kumar et al.
(2020) utilized a BERT (Devlin et al., 2019) en-
coder to generate scores for each sentence which
were used to sort them into the correct order.

Different from these approaches, we formulate
sentence ordering as a conditional text generation
task. We use a sequence-to-sequence model in
our framework where the decoder encapsulates the
functioning of a pointer network while generating
output sentence positions. Our code is available at:
https://github.com/fabrahman/ReBART.

3 RE-BART

Given a sequence of shuffled sentences S′ =
{s′1, s′2, . . . , s′NS

}, where s′i denotes the ith sen-
tence and NS denotes the number of input sen-
tences, the task is to generate the ordered output
sequence S∗ = {s1, s2, . . . , sNS

}.
We solve the sentence ordering task using a text-

to-marker framework shown in Figure 2. Specifi-
cally, taking a shuffled sequence of sentences (S′)
as input, we generate a sequence of position mark-
ers Y = {y1, y2, . . . , yNS

} as output, where yi de-
notes the position of ith sentence of the correspond-
ing ordered sequence (si) in the shuffled input. The
ordered output sequence can then be reconstructed

https://github.com/fabrahman/ReBART
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Dataset
Split Length Tokens / sentence

Train Dev Test Max Avg Max Avg

NeurIPS 2.4K 0.4K 0.4K 15 6 158 24.4
AAN 8.5K 962 2.6K 20 5 543 20.7
NSF 96K 10K 21.5K 40 8.9 307 24.3
arXiv 885K 110K 110K 35 5.4 443 23.6

ROCStories 78K 9816 9816 5 5 21 9.1
SIND 78K 9.8K 9.8K 5 5 137 10.7
Movie Plots 27.9K 3.5K 3.5K 20 13.5 319 20.4

Table 1: Dataset statistics.

as Ŝ = {S′y1 , S
′
y2 , . . . , S

′
yNS
}.

Our goal is to train a probabilistic model
Pθ(Y|S′) by optimizing:

max
θ

logPθ(Y|S′) (1)

The functioning of RE-BART model is shown
in Figure 2. RE-BART consists of a sequence-
to-sequence model with an encoder to receive a
shuffled set of sentences, and a decoder to gener-
ate position markers (2, 1, 3 etc.), which is then
used to retrieve the final ordered sequence. We
use BART (Lewis et al., 2020) as the underlying
sequence-to-sequence model, since our task can
benefit from the sentence permutation pre-training
objective. Additionally, to provide the model with
a supervision signal to generate position markers,
we append each sentence in the shuffled input with
sentence markers (<S1>, <S2>, etc.).1 Sentence
markers were added as special tokens to the tok-
enizer. RE-BART learns to attend to the markers
while generating the final order Y .

The proposed text-to-marker framework has two
advantages over an alternate text-to-text frame-
work, where the model directly generates the en-
tire text sequence instead of marker outputs. First,
the model performs better as the output space is
much smaller. This also makes it less susceptible
to neural text degeneration (Holtzman et al., 2020),
as significantly fewer output tokens are generated.
Second, when generating the entire text sequence
in the text-to-text framework, we observe that the
model often generates text which is not part of the
input, rendering the output invalid for the task.

4 Experimental Setup

4.1 Datasets
We run our experiments on 7 publicly available
English datasets from two domains: scientific paper

1We experimented with various combinations of sentence
markers and position marker, and found out that the text-to-
marker framework performs the best.

Dataset epochs learning rate batch size

NeurIPS abstract 10 5e-6 4
AAN abstract 5 5e-6 4
NSF abstract 3 5e-6 2
arXiv abstract 3 5e-6 2
ROCStories 5 5e-6 4
SIND 5 5e-6 4
Wikipedia Movie Plots 5 5e-6 2

Table 2: Hyperparameter settings on each dataset.

abstracts and narratives.
Paper Abstracts: We evaluate our model on 4
datasets, obtained from abstracts of scholarly arti-
cles. The datasets include abstracts from NeurIPS,
AAN, ACL, NSF Research Award, and arXiv (Lo-
geswaran et al., 2018b; Gong et al., 2016; Chen
et al., 2016).
Narratives: We evaluate our model on 3 datasets
in the narrative domain. ROCStories (Huang et al.,
2016) contains five-sentence long stories about
everyday events. SIND2 (Huang et al., 2016) is
a visual storytelling dataset. Wikipedia Movie
Plots 3 contains plot description of movies from
Wikipedia.4

We randomly split ROCStories into
train/test/validation in a 80:10:10 ratio. For
the other datasets, we use the same train, test and
validation sets as previous works. Dataset statistics
are reported in Table 1.

4.2 Implementation Details

We use Huggingface library (Wolf et al., 2019) for
our experiments. During inference we decode the
output positions in a greedy manner by choosing
the logit with the highest probability. The hyper-
parameters used for each dataset are provided in
Table 1 in the Appendix. The experiments are con-
ducted in PyTorch framework using Quadro RTX
6000 GPU. The hyper-parameters for each dataset
are provided in Table 2.

4.3 Evaluation Metrics

Following previous works (Cui et al., 2020; Kumar
et al., 2020; Wang and Wan, 2019), we use the
following metrics for evaluating our approach:
Accuracy (Acc): This is the fraction of output sen-
tence positions predicted correctly averaged over

2http://visionandlanguage.net/VIST/dataset.html
3www.kaggle.com/jrobischon/wikipedia-movie-plots
4Movie plots contains instances with long paragraphs, we

consider the first 20 sentences in every instance.
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METHOD
NeurIPS abstract AAN abstract NSF abstract arXiv abstract
Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ

Pairwise Model (Chen et al., 2016) - - - - - - - - - - 33.43 0.66
LSTM+PtrNet (Gong et al., 2016) 50.87 - 0.67 58.20 - 0.69 32.45 - 0.52 - 40.44 0.72
V-LSTM+PtrNet (Logeswaran et al., 2018a) 51.55 - 0.72 58.06 - 0.73 28.33 - 0.51 - - -
ATTOrderNet (Cui et al., 2018) 56.09 - 0.72 63.24 - 0.73 37.72 - 0.55 - 42.19 0.73
HAN (Wang and Wan, 2019) - - - - - - - - - - 44.55 0.75
SE-Graph (Yin et al., 2019) 57.27 - 0.75 64.64 - 0.78 - - - - 44.33 0.75
FUDecoder (Yin et al., 2020) - - - - - - - - - - 46.58 0.77
TGCM (Oh et al., 2019) 59.43 31.44 0.75 65.16 36.69 0.75 42.67 22.35 0.55 58.31 44.28 0.75
RankTxNet (Kumar et al., 2020) - 24.13 0.75 - 39.18 0.77 - 9.78 0.58 - 43.44 0.77
B-TSort (Prabhumoye et al., 2020) 61.48 32.59 0.81 69.22 50.76 0.83 35.21 10.44 0.66 - - -
BERSON (Cui et al., 2020) 73.87 48.01 0.85 78.03 59.79 0.85 50.02 23.07 0.67 75.08 56.06 0.83

BART (fine-tuned) 64.35 33.69 0.78 73.02 52.40 0.86 33.59 14.44 0.53 60.51 2.45 0.25
RE-BART 77.41 57.03 0.89 84.28 73.50 0.91 50.23 29.74 0.76 74.28 62.40 0.86

METHOD
SIND ROCStories Wikipedia Movie Plots

Acc PMR τ Acc PMR τ Acc PMR τ

Pairwise Model (Chen et al., 2016) - - - - - - - - -
LSTM+PtrNet (Gong et al., 2016) - 12.34 0.48 - - - - - -
V-LSTM+PtrNet (Logeswaran et al., 2018a) - - - - - - - - -
ATTOrderNet (Cui et al., 2018) - 14.01 0.49 - - - - - -
HAN (Wang and Wan, 2019) - 15.01 0.50 - 39.62 0.73 - - -
SE-Graph (Yin et al., 2019) - 16.22 0.52 - - - - - -
FUDecoder (Yin et al., 2020) - 17.37 0.53 - 46.00 0.77 - - -
TGCM (Oh et al., 2019) 38.71 15.18 0.53 - - - - - -
RankTxNet (Kumar et al., 2020) - 15.48 0.57 - 38.02 0.76 - - -
B-TSort (Prabhumoye et al., 2020), 52.23 20.32 0.60 - - - - - -
BERSON (Cui et al., 2020) 58.91 31.69 0.65 82.86 68.23 0.88 - - -

BART (fine-tuned) 54.50 26.73 0.64 80.42 63.50 0.85 30.01 18.88 0.59
RE-BART 64.99 43.15 0.72 90.78 81.88 0.94 42.04 25.76 0.77

Table 3: Performance on abstracts (top) and narratives (bottom) datasets. The best and second-best scores are in
bold and underlined. RE-BART achieves the state-of-the-art performance in PMR and τ for all datasets.

all test instances. It is defined as:

Acc = E
S′∼D

[
1

NS

NS∑
i=1

I(S′yi = si)

]

where S′ is a shuffled input from the dataset D, si
is the ith sentence in the ordered sequence, yi is
the predicted sentence marker at position i and NS

is the number of sentences in the input.
Perfect Match Ratio (PMR): PMR measures the
fraction of sentence orders exactly matching with
the correct order across all input instances:

PMR =
1

N

N∑
j=1

[
I(Yj = Y ∗j )

]
where Yj and Y ∗j are the predicted and gold posi-
tion marker sequences, respectively, and N is the
number of instances in the dataset.
Kendall’s Tau (τ ): τ is a metric to evaluate the

correlation between two sequences:

τ = 1− 2 (# inversions)(
n
2

)
In our setup, we evaluate τ between the predicted
position marker sequence Y and gold position
marker sequence Y ∗. A higher score indicates a
better performance for all metrics.

4.4 Baselines

We compare RE-BART with 11 previous sentence
ordering frameworks including the current state-of-
the-art BERSON (Cui et al., 2020). Other base-
lines include B-TSort (Prabhumoye et al., 2020),
RankTxNet (Kumar et al., 2020), TGCM (Oh et al.,
2019), FUDecoder (Yin et al., 2020), SE-Graph
(Yin et al., 2019), HAN (Wang and Wan, 2019),
ATTOrderNet (Cui et al., 2018), V-LSTM+PtrNet
(Logeswaran et al., 2018a), LSTM+PtrNet (Gong
et al., 2016) and Pairwise model (Chen et al., 2016).
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Setup BART T5
Acc PMR τ Acc PMR τ

text-to-text 80.42 63.50 0.85 62.75 34.49 0.71

text-to-marker 90.78 81.88 0.94 82.36 64.85 0.88

Table 4: Model performance using text-to-text and text-
to-marker frameworks on ROCStories. A significant
gain is observed using text-to-marker framework.

Apart from these baselines, we also include a text-
to-text variant of our model, where we fine-tune
a pre-trained BART model to generate the text se-
quences corresponding to sentences instead of their
markers. We call this variant BART (fine-tuned).

5 Results

In this section, we evaluate the performance of
RE-BART on several benchmark sentence ordering
datasets. We also conduct a series of experiments
to better understand the working of our model and
investigate its generalization capability.

Table 3 reports the experimental results on all
benchmark datasets.5 RE-BART improves over all
baselines by a significant margin and achieves the
new state-of-the-art results in PMR and τ metrics
for all datasets. In particular, RE-BART improves
the previous state-of-the-art performance in PMR
metric by a relative margin of 18.8% on NeurIPS,
22.9% on AAN, 28.9% on NSF, 11.3% on arXiv,
36.2% on SIND and 20% on ROCStories. We ob-
serve similar relative gains in τ : 4.7% on NeurIPS,
7.1% on AAN, 13.4% on NSF, 3.6% on arXiv,
10.8% on SIND and 6.8% on ROCStories.

We observe that RE-BART’s performance on
Wikipedia Movie Plots is relatively poor compared
to other datasets. This could be because this dataset
has relatively longer input sequences (Table 1),
making the task more challenging for the model.
Comparison with text-to-text framework: Ta-
ble 3 also shows that RE-BART outperforms
BART (fine-tuned), our text-to-text baseline, for
all datasets. BART (fine-tuned) performs reason-
ably well on the NeurIPS, AAN, SIND and ROC-
Stories datasets where the average number of sen-
tences (Table 1) is low. It struggles on NSF, arXiv
and Movie Plots where input sequences are longer.
Upon manual inspection, we found that BART
(fine-tuned) model suffers from neural text degener-
ation (Holtzman et al., 2020) and produces output

5Prior results have been compiled from (Cui et al., 2020).

(a) BART embeddings (b) T5 embeddings

Figure 3: UMAP projections of pre-trained sentence
representations from BART and T5 for ROCStories
dataset. Embeddings of the sentences are colored based
on their position in the ordered sequence S∗. It is eas-
ier to identify the gold sentence position from the pre-
trained BART embeddings.

tokens which aren’t present in the input.
We hypothesize that training in our proposed

text-to-marker framework yields a performance
gain over text-to-text framework, irrespective of
the underlying sequence-to-sequence model. To
verify this hypothesis, we compare two settings of
our framework that use BART and T5 as the under-
lying sequence-to-sequence model. In Table 4, we
observe significant gains for both BART and T5 us-
ing our text-to-marker framework. This shows the
text-to-marker framework outperforms text-to-text
baseline irrespective of the generation module.

From results in Table 3, we observe that our sim-
ple framework is effective and outperforms more
complex baseline architectures. One explanation
behind RE-BART’s success could be the use of sen-
tence markers. RE-BART is able to encapsulate the
context in individual sentences (observed in gener-
ated attention maps in §6.5) and produce markers
at the correct output position. Additionally, our
text-to-marker framework is better at leveraging
causal and temporal cues implicitly captured by
BART during pre-training.

5.1 BART vs. T5

We want to study the effect of BART’s pre-training
objective on its performance in sentence ordering
task. BART is pre-trained on multiple tasks in-
cluding the rearrangement of permuted sentences,
which is closely relevant to our task. To inves-
tigate if this pre-training objective provides an
edge to BART, we conduct the following exper-
iment on the ROCStories dataset. We visualize
the UMAP (McInnes et al., 2018) projections of
sentence representations obtained from pre-trained
BART-large and T5-large models, and color code
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Method τ PMR

Random 0.00 20.00
RE-BART (shuffled output) 0.00 19.97
RE-BART (w/o sentence markers) 0.79 84.59
RE-BART (random markers) 0.92 88.97

RE-BART (final setup) 0.94 90.78

Table 5: Ablations with training setups on ROCStories.

them according to their position in the ordered
text S∗. For example, red color represents the
first sentence of every instance. We compare with
T5, which has a similar architecture but is not pre-
trained with sentence permutation objective.

We observe that in case of BART, sentence em-
beddings belonging to an identical output position
(si) are better clustered in space, making them eas-
ier to be identified as shown in Figure 3.6 In case
of T5, the overlap among embeddings at different
sentence positions is higher. To quantify the over-
lap we measure cluster purity following Ravfogel
et al. (2020). We perform k-means clustering on
UMAP projections of sentence embeddings from
pre-trained BART & T5 models (k = 5, ROCSto-
ries has 5 sentences per instance). We measure
average purity in each cluster by computing the rel-
ative proportion of the most common sentence posi-
tion. The mean cluster purity for BART: 35.9% and
T5: 23.6%. This indicates that since pre-trained
BART is already able to segregate sentences based
on their original position, it finds it easier to reorder
them given a shuffled set.

The impact on downstream performance is
shown in Table 4, where BART outperforms T5
in both setups. We posit that sentence permuta-
tion denoising during pre-training gives BART an
advantage in the sentence ordering task.

5.2 Ablations

We perform a series of ablation experiments with
different setups to better understand the working
of our model. All the experiments in this section
were performed on ROCStories dataset.

In the first ablation test, we want to verify
whether the model is able to capture coherence
among sentences or is just over-fitting on the data.

6An interesting observation from Figure 3 is that both pre-
trained BART and T5 embeddings have two distinct clusters.
Upon closer inspection we found out that the smaller cluster
on the right in both cases correspond to sentences that appear
first in the shuffled input (starting with “<S0>”).

To this end, we train our model using an arbitrarily
shuffled order as output instead of the ground-truth
order. We observe near random prediction perfor-
mance as shown in the second row of Table 5

Next, we examine whether the sentence-markers
provide any strong supervision to the model during
training. Our initial assumption was that the model
can use these markers adequately to learn sentence
ordering. To validate our assumption, we remove
the sentence-markers from the input (the input is
simply a sequence of shuffled sentences) and eval-
uate if the model is implicitly able to figure out the
sentence positions. We observe a significant drop
in τ (-14.97%) and PMR (-6.19%) comparing the
third and last row in Table 5 . This result shows
that sentence-markers are indeed helpful.

Finally, we investigate if the sequential nature
of sentence markers have an impact on the per-
formance. We append every sentence in an in-
put with random sentence markers between 0-100
(e.g. <S47>, <S78> etc.). We observe that the
model performance is quite close to the final setup
(fourth row in Table 5). There is a slight drop in per-
formance which can be attributed to inconsistent
assignment of sentence markers across different
instances. This shows that the model can still effec-
tively exploit sentence markers and their sequential
nature have little impact on the final performance.

5.3 Zero-shot Performance

We investigate how well our model is able to gen-
eralize across different datasets. To this end, we
evaluate the zero-shot performance of our model
on different datasets.

In our experiment, we train the RE-BART model
on a single dataset and test it on all others in a zero-
shot setup.7 From the results in Table 6, we observe
that in most zero-shot setups RE-BART is able to
perform well across different domains. Particularly,
RE-BART fine-tuned on Wikipedia Movie Plots
generalizes well to other unseen datasets. Surpris-
ingly it even outperforms the previous state-of-the-
art BERSON, which was fine-tuned on in-domain
data, on PMR score for all datasets except NSF
abstract (see the last row for comparison). We posit
that the presence of longer sentences with more
complex language in the Movie Plots dataset helps
the model generalize to other datasets.

7We do not report the results of zero-shot experiments
for the arXiv dataset because the training data in arXiv may
overlap with NeurIPS, AAN and NSF abstract test sets.
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Evaluated→ NeurIPS abstract AAN abstract NSF abstract SIND ROCStories Movie Plots
Trained ↓ Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ Acc PMR τ

NeurIPS abstract 77.41 57.03 0.89 78.42 55.38 0.80 29.04 11.37 0.57 55.19 24.97 0.59 76.99 58.62 0.89 17.46 9.39 0.40

AAN abstract 76.99 58.62 0.89 84.28 73.50 0.91 37.09 19.12 0.62 58.08 33.93 0.64 86.62 75.46 0.91 24.08 16.23 0.48

NSF abstract 77.32 57.82 0.88 81.15 61.10 0.81 50.23 29.74 0.76 57.26 28.46 0.60 86.62 75.22 0.90 30.86 17.89 0.76

SIND 59.95 34.75 0.77 75.36 53.29 0.78 34.32 17.27 0.61 64.99 43.15 0.72 86.56 75.02 0.91 21.49 13.87 0.45

ROCStories 15.84 0.27 0.12 21.43 0.45 0.09 6.50 0.12 0.07 50.09 21.03 0.54 90.78 81.87 0.94 2.88 0.06 0.03

Movie Plots 73.26 54.11 0.87 78.56 64.46 0.85 39.19 20.33 0.65 58.40 36.12 0.65 87.07 76.39 0.91 42.05 25.76 0.77
BERSON* 73.87 48.01 0.85 78.03 59.79 0.85 50.02 23.07 0.67 58.91 31.69 0.65 82.86 68.23 0.88 - - -

Table 6: Performance of our model when trained on a dataset and evaluated on another in a zero-shot setup. The best and
second-best performance for any metric are in bold and underline respectively. ∗We include the performance of BERSON for
comparison purposes, when it is evaluated on the same dataset it is fine-tuned on (from Table 3).
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Figure 4: Variation in performance metrics with rela-
tive degree of shuffling d̂(S′, S∗) . A decline in per-
formance is observed with a higher degree of shuffling
across datasets.

RE-BART trained on ROCStories performs the
worst across all datasets. Its poor performance
can be attributed to the fact that ROCStories has
fixed length stories with short sentences and sim-
pler language, which makes transfer to other com-
plex datasets harder. However, it performs reason-
ably well on SIND, where the data is from a similar
domain and most instances are five-sentence long.

From the results in Table 6, we also observe that
RE-BART performs equally well across domains
(narrative→ abstract, abstract→ narrative). The
model trained on Wikipedia Movie Plots (narrative
domain), achieve the best zero-shot performance
on AAN and NSF abstract (abstract domain). We
also observe good performance during (narrative
→ abstract) transfer, when RE-BART trained on
AAN and NSF is tested on ROCStories. From
these experiments, we show that our model is able
to generalize across domains and is not restricted

to the domain of the dataset it is trained on.

6 Analysis

In this section, we perform experiments to explore
RE-BART’s functioning with variation in different
aspects of inputs.

6.1 Effect of Shuffling
We analyze if RE-BART’s performance is sensitive
to the degree of shuffling in the input. To this end,
we define the degree of shuffling d(S′, S∗) as the
minimum number of swaps required to reconstruct
the ordered sequence S∗ from S′. Lower d(S′, S∗)
indicates that the input S′ is more similar to the or-
dered output sequence S∗. To effectively compare
the performance across all datasets, we compute
the normalized degree of shuffling as:

d̂(S′, S∗) =
d(S′, S∗)

|S∗|

In Figure 4, we observe a gradual decline in per-
formance across all metrics with an increase in the
normalized degree of shuffling, d̂(S′, S∗). Over-
all, the results show that RE-BART performance
is higher when d̂(S′, S∗) is lower. This could be
because a lower degree of shuffling means more co-
herent and meaningful input, resulting in an easier
task for the model.

6.2 Effect of Input Length
In this experiment, we analyse how RE-BART per-
formance varies with the number of sentences in
the input. Figure 5 shows RE-BART’s performance
for inputs with different number of sentences, NS .
We observe a general declining trend in perfor-
mance with increasing input length across different
datasets.8 This shows that the model finds it dif-

8We do not show the results on ROC and SIND, because
these datasets mostly have a fixed number of input sentences.
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Figure 5: Variation of performance metrics (Accuracy, PMR and Kendall’s Tau) with the number of input sentences
NS across different datasets. A decline in performance is observed when the number of input sentences increases.
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Figure 6: Position-wise accuracy. A higher prediction
accuracy is observed for first and last sentences across
all datasets.

ficult to tackle longer input instances. The drop
in performance is more pronounced for NSF and
arXiv which have instances with higher number
of sentences compared to other datasets. For all
datasets, we observe that the rate of decline in τ
is much less than Accuracy and PMR. From this
observation, we infer that even if the predicted po-
sitions of individual sentences are incorrect, our
model produces sentence order which are corre-
lated with the original order.

6.3 Position-wise Performance

Here, we explore how the performance of RE-
BART varies while predicting sentences at different
positions in the ordered output. To uniformly inves-
tigate this across all datasets, we measure perfor-
mance using a relative output position defined as
yrel = yi

|S| . We consider yrel correct to 1 decimal
place and compute the prediction accuracy for each
yrel. The position-wise prediction accuracy for all
datasets is shown in Figure 6. We observe that pre-
diction accuracy is the highest for the first sentence,
then there is a steady decline till it starts to rise
again towards the end of the output sequence.

We conjecture that RE-BART is able to pick up
on shallow stylistic cues, often present in the first
and last sentences enabling it to have higher predic-
tion accuracies for these positions. For example, in
ROCStories all first sentences have a proper noun

Method arXiv SIND
head tail head tail

Pairwise Model 84.85 62.37 - -

LSTM+PtrNet 90.47 66.49 74.66 53.30

ATTOrderNet 91.00 68.08 76.00 54.42

SE-Graph 92.28 70.45 78.12 56.68

FUDecoder 92.76 71.49 78.08 57.32

TGCM 92.46 69.45 78.98 56.24

RankTxNet 92.97 69.13 80.32 59.68

BERSON 94.75 76.69 84.95 64.87

RE-BART 96.46 80.62 87.97 73.02

Table 7: Accuracy of predicting the first and the last
sentences on arXiv and SIND datasets. RE-BART
achieves the best performance for both datasets.

and introduce the protagonist of the story. In the
abstracts, many papers start with similar phrases
like “In this paper,”, “We present ” and ends with
“Our contributions are ”, “We achieve ”, etc. For
Movie plots, last sentence accuracy is significantly
less than other datasets because we consider the
first 20 sentences only.

Following previous works (Gong et al., 2016;
Cui et al., 2018), we report the prediction accuracy
of the head and tail (first and last) sentences for
arXiv and SIND in Table 7. RE-BART outperforms
all baselines by a large margin on both datasets.

6.4 Prediction Displacement

For instances where the model prediction was
wrong Y 6= Y ∗, we investigate how far was the
model prediction Y was from the gold label Y ∗. To
evaluate this we compute d(Y, Y ∗), the minimum
number of swaps required to retrieve Y ∗ from Y .
We experiment on Wikipedia Movie Plots dataset
where the performance of RE-BART was not as
good as other datasets. From Figure 8, we observe
that most of the incorrectly predicted samples had
a low d(Y, Y ∗), with 70% of the incorrect predic-
tions having d(Y, Y ∗) ≤ 6. This shows that even
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Figure 7: Visualization of cross-attention in the trained RE-BART model for an input instance from ROCStories.
The y-axis shows output tokens, x-axis shows input tokens, and colorized cells denote the cross-attention between
tokens at a position (x, y). Lighter color indicates higher attention values. The model learns to attend around
sentence markers and other special tokens.
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Figure 8: Plot shows how many instances were incor-
rectly predicted for each d(Y, Y ∗) for Movie Plots.

if the model make a wrong prediction, it mostly
misses a few positions and does not get the entire
order wrong.

6.5 Attention Visualization
We visualize the norm-based cross-attention map
(Kobayashi et al., 2020), between the decoded out-
put and encoder input, of one of the attention head
in Figure 7. Lighter color indicates higher attention
values. We append all input instances with spe-
cial tokens [shuffled] and [orig] at the be-
ginning and end respectively, along with sentence
markers at the start of each sentence. In Figure 7,
we observe that the model attends to tokens near
those special tokens. This shows that during decod-
ing the model finds only tokens next to the sentence
markers useful. We hypothesize this is due to the
fact that these tokens are able to encapsulate the
context of the corresponding sentence. We observe
similar maps across different attention heads.

6.6 Effect of Sentence Displacement
We investigate if there is any variation in perfor-
mance if a sentence is placed too far from its posi-
tion in the shuffled sentence. We compute relative
distance from the original position δrel(si) as:

δrel(si) =
|i− j|
|S∗|

s.t. si = s′j
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Figure 9: Accuracy at a position based on how far it
is from the original position. Accuracy doesn’t change
much with δrel(si).

Figure 9 shows how the performance varies
with respect to δrel(si). We observe that accuracy
doesn’t change much with relative displacement.
We infer that local sentence-level relative displace-
ment doesn’t dictate the performance as much as
global input-level factors like degree of shuffling
and input length.

7 Conclusion

In this work, we address the task of sentence order-
ing by formulating it as a conditional text genera-
tion problem. We observe that simply generating
output text from shuffled input sequences is dif-
ficult due to neural text degeneration. We solve
this problem by proposing RE-BART, a text-to-
marker generation framework. RE-BART achieves
the state-of-the-art performance on 7 benchmark
datasets and is able to generalize well across differ-
ent domains in a zero-shot setup. We investigated
the limitations of our model, and found that RE-
BART is sensitive to various factors like number
of input sentences and degree of shuffling. Future
works can focus on developing models which are
robust to such factors.
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