
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10619–10629
November 7–11, 2021. c©2021 Association for Computational Linguistics

10619

Block Pruning For Faster Transformers

François Lagunas, Ella Charlaix, Victor Sanh, Alexander M. Rush
Hugging Face

{francois, ella, victor, sasha}@huggingface.co

Abstract

Pre-training has improved model accuracy for
both classification and generation tasks at the
cost of introducing much larger and slower
models. Pruning methods have proven to be an
effective way of reducing model size, whereas
distillation methods are proven for speeding
up inference. We introduce a block pruning
approach targeting both small and fast mod-
els. Our approach extends structured meth-
ods by considering blocks of any size and in-
tegrates this structure into the movement prun-
ing paradigm for fine-tuning. We find that
this approach learns to prune out full com-
ponents of the underlying model, such as at-
tention heads. Experiments consider classifi-
cation and generation tasks, yielding among
other results a pruned model that is a 2.4x
faster, 74% smaller BERT on SQuAD v1, with
a 1% drop on F1, competitive both with dis-
tilled models in speed and pruned models in
size.

1 Introduction

Pre-trained transformer models are the standard
for NLP tasks in both classification and genera-
tion tasks (Devlin et al., 2019; Lewis et al., 2020).
The recent trend is for models to continue to grow
in size while yielding improved performance on
standard benchmarks (Rosset, 2020). This develop-
ment highlights the need to reduce the storage size
and increase the efficiency of pre-trained models.

Pruning methods have shown to be extremely
effective at reducing the storage size of models
fine-tuned for a specific task. Approaches such as
magnitude pruning (Han et al., 2015), L0 regular-
ization (Louizos et al., 2018), lottery ticket hypoth-
esis (Frankle and Carbin, 2018), diff pruning (Guo
et al., 2020), and movement pruning (Sanh et al.,
2020) have demonstrated remarkable reductions in
model size. Movement pruning produces 77% sav-
ings in parameter storage for a 1% drop in accuracy
on SQuAD v1.1. However, these models yield very

little actual efficiency benefits, as to run them in
standard hardware often requires reconstructing the
original dense shape.

On the other hand distillation methods have been
more effective at producing faster models as has
been shown by DistilBERT (Sanh et al., 2019),
TinyBERT (Jiao et al., 2019) or MobileBERT (Sun
et al., 2020). These approaches utilize targeted dis-
tillation to produce smaller models with a dense
structure that is fast on standard hardware. How-
ever without careful engineering and size selection
these models are much larger than pruned ones.

In this work, we target closing this gap through
block pruning. Unlike pruning individual param-
eters, this approach encourages pruning that can
be optimized on dense hardware. It is a less rigid
approach than row or column-based pruning typ-
ically used in structured approaches (McCarley,
2019), which have been difficult to apply effec-
tively to transformers. We integrate this approach
with Movement pruning (Sanh et al., 2020), a sim-
ple method for pruning pre-trained models during
fine-tuning. The final method1 has few additional
hyperparameters or training requirements.

Experiments consider a large variety of differ-
ent benchmark datasets comparing accuracy and
efficiency. We find a surprising result that despite
utilizing sub-row square blocks during training, the
approach learns to eliminate full components of
the model, effectively dropping a large number of
attention heads. This effect allows the model to
achieve speedups even beyond standard structured
pruning of feed-forward layers. Results show a
2.4x speedup on SQuAD v1.1 with a 1% drop of
F1, and a 2.3x speedup on QQP with a 1% loss of
F1. Experiments on summarization also show a
1.39x speedup for an average of 2 points drop on
all ROUGE metrics on CNN/DailyMail, and for a
reduction of decoder weights of 3.5x.

1Available at https://github.com/
huggingface/nn_pruning

https://github.com/huggingface/nn_pruning
https://github.com/huggingface/nn_pruning

10620

2 Related Work

There has been a growing interest in the compres-
sion of pre-trained language models. We consider
three varieties of methods: distillation, pruning,
and structured pruning.

Knowledge distillation, introduced by Hinton
et al. (2015), is a popular compression technique.
Researchers have applied this method to a variety
of NLP models (Tang et al., 2019; Sun et al., 2019;
Turc et al., 2019). Distillation has been used to
obtain significantly smaller BERT models achiev-
ing competitive performances. Sanh et al. (2019)
distills BERT into shallower students during the
pre-training stage and optionally during the fine-
tuning stage. MobileBERT (Sun et al., 2020) and
TinyBERT (Jiao et al., 2019) are obtained thanks
to a layer-wise distillation strategy. While the dis-
tillation of former is task-agnostic, the one used to
obtain the latter is task-specific.

Other previous work has focused on unstructured
pruning (LeCun et al., 1989; Han et al., 2015; Fran-
kle and Carbin, 2018). When targeting transformer
models, it is typical to select the weights to prune
based on their magnitude (Gordon et al., 2020),
or by computing an importance score using a first-
order method (Sanh et al., 2020). While these meth-
ods allow for a significant reduction in model size,
specialized hardware is required to make use of the
resulting unstructured sparse matrices in order to
speed up inference.

In contrast, structured pruning removes coherent
groups of weights (Murray and Chiang, 2015; See
et al., 2016; Joulin et al., 2016; Fan et al., 2020;
Sajjad et al., 2020). Recent works (Michel et al.,
2019; Voita et al., 2019) show that some heads
can be removed without significant degradation in
performance, leading to the conclusion that most
heads provide redundant information. Other au-
thors have worked on combining matrix factoriza-
tion and weight pruning. While Mao et al. (2020)
combine SVD-based matrix factorization with un-
structured pruning, Wang et al. (2019) use struc-
tured pruning in order to reduce the rank. Related
to our approach, Kim and Awadalla (2020) and
McCarley (2019) both apply structured pruning on
the heads of the multi-head attention (MHA) and
on the inner-layer nodes of the feed-forward net-
work (FFN). The former uses predefined pruning
ratios, shared across all layers, in order to select
the modules to prune after sorting them given an
importance score. McCarley (2019) compares dif-

ferent methods to compute the prunable module
masks and find L0 regularization to perform the
best.

3 Background

Starting with a transformer model with parame-
ters θ, our goal is to produce a set of parameters
θ′ that are both fine-tuned for a specific end-task
and smaller in such a way that inference can be
efficiently computed on parallel hardware.

The two largest lines in the transformer pa-
rameter budget are the feed-forward network sub-
layer (FFN) and the multi-head attention sub-layer
(MHA). The FFN parameters consist of two matri-
ces (W1 and W2) of transposed shape Rdmodel×dff

and Rdff×dmodel where dmodel is the hidden size and
dff � dmodel is the inner size. These are used in
the standard fashion by the network. The MHA
parameters consist of 4 projection matrices (Wq,
Wk, Wv and Wo) of size Rdmodel×dmodel (query,
key, value, out). These are used to project the
hidden vector to and from the component atten-
tion parts. In implementations, this projection is
made with the matrices in their folded tensor form
Rnheads×

dmodel
nheads

×dmodel where nheads is the number
of attention heads.

In standard fine-tuning, starting from θ, we op-
timize the loss L (for instance, cross-entropy for
classification):

argmin
θ′
L(θ′)

Score-based pruning methods (Ramanujan et al.,
2019) modify the model by introducing score pa-
rameters S for each parameter i and replace the
original parameter matrices with a masked version
W′ = W �M(S). For instance, in the simplest
version of magnitude pruning, the mask would just
zero-out parameters with low absolute values.

Movement pruning (Sanh et al., 2020) is a score-
based pruning approach that encourages the model
to optimize these score parameters. Specifically,
we focus on the soft-movement variant of move-
ment pruning that sets M(S) = 1(S > τ) for a
threshold parameter τ , and optimizes a regularized
objective,

argmin
θ′,S
L(θ′) + λ‖σ(S)‖

where λ is a hyper-parameter, ‖A‖ =
∑

i,j Ai,j
and σ is the sigmoid function.

10621

This pruning objective encourages the model to
fine-tune the parameters while lowering the scores
of unimportant parameters and thus encouraging
more sparsity. In order to train through the thresh-
old, a straight-through estimator (Bengio et al.,
2013) is used.

Movement pruning, combined with distillation,
has shown to be a very effective method to reduce
the number of parameters in an existing model
yielding 94% pruning in our tests for a F1 of 87.5
on SQuAD v1.1 (BERT-base is 88.5). This re-
sults in significantly smaller models than distilla-
tion alone. However, even with this sparsity level,
the model is not substantially faster when run on
most standard hardware that cannot significantly
take advantage of this style of sparse matrix-vector
product.

4 Model: Block Movement Pruning

In this work, we extend movement pruning to work
on blocks of local parameters. Specifically, each
matrix in the transformer is partitioned into fixed-
sized blocks. This setting goes beyond the arbitrary
pruning of unstructured methods, with the goal of
encouraging the data locality closer to what would
be needed for efficiency.2

Our approach is extremely simple. For each
parameter matrix W ∈ RM×N , we assume a fixed-
sized block structure (M ′, N ′). Each of these
blocks acts as an individual group in the regular-
ization with a shared score parameter derived from
the corresponding score matrix S ∈ RM/M ′×N/N ′

.
Computing the masked weight is done by expand-
ing the thresholded values, i.e.

W ′i,j =Wi,j ∗M(S)di/M ′e,dj/N ′e

As in past work, this model is trained with distilla-
tion to match the performance of a teacher model.

Unlike other distillation approaches that require
fully specifying the new model structure, our
method only requires the size and shapes of the
blocks, i.e. the set of (M ′, N ′) for each parameter
matrix in the model. If blocks are too large, then
they are difficult to prune, but if they are too small
they do not support efficient inference.

2Linear algebra libraries perform matrix multiplication us-
ing large blocks, typically 128*64. At a micro level those
machines are typically 32 ways SIMD, and memory is loaded
by large contiguous chunks to maximize bandwidth. Un-
structured sparsity is hard to implement with dense algebra
performance on GPUs. Data locality is important on CPU too,
but in a more limited way.

To reduce the search space, we will limit our-
selves to test (M ′, N ′)att and (M ′, N ′)ff: the same
block size will be used for all layers for attention
weights Wq, Wk, Wv and Wo on one hand, and
for the feed-forward weights W1 and W2 on the
other hand. We split the movement pruning regu-
larization term into:

λatt‖σ(Satt)‖+ λffn‖σ(Sffn)‖

This allows us to take into account the difference in
terms of gradient received by the score parameters.

To reduce further the search space, we will test
on two kinds of blocks:

• (32, 32) : square blocks (Block)

• (1, dmodel) and (dmodel, 1) : dimension prun-
ing on paired FFN rows and columns (Dim)

These block sizes allow for efficient models:
blocks of size at least (16, 16) are efficient to com-
pute with appropriate GPU kernels, whereas full
rows, columns or heads can be entirely removed
from the matrix: the remaining matrix is then
dense.

We also include two additional baseline block
types used to verify the approach:

• (2n, 2n), n ∈ [2, 5] : smaller power of two
square block sizes to study the impact of size
on performance (Block)

• (dmodel
nheads

, dmodel) : for attention heads (Heads)

The first considers small blocks, and the second
considers very large functional blocks.

5 Experimental Setup

We conduct experiments on five (English) tasks
commonly used to evaluate pre-trained language
models: question answering (SQuAD v1.1 Ra-
jpurkar et al., 2016) and (SQuAD v2 Rajpurkar
et al., 2018), natural language inference (MNLI
Williams et al., 2018), sentence similarity (QQP
Chen et al., 2018), sentiment classification (SST-
2 Socher et al., 2013) and abstractive summariza-
tion (CNN/DailyMail Hermann et al., 2015). These
datasets respectively contain 87k, 130k, 392k,
363k, 67k and 287k training examples, and are
downloaded from the Hugging Face datasets hub.
SQuAD is formulated as a span-extraction task,
MNLI and QQP are sentence pairs classification
tasks, SST-2 is a sentence classification task and

10622

CNN/DailyMail (“CNN”) is formulated as a condi-
tional generation task. We report the performance
on the development set as measured by the accu-
racy for MNLI and SST-2, F1 for QQP, the exact
match (EM) and F1 for SQuAD and ROUGE for
CNN/DailyMail.

We experiment with task-specific pruning of
transformer language models. We use BERT (De-
vlin et al., 2019) (an encoder-only Transformer lan-
guage model with 110M parameters, among which
85M are part of the linear layers present in the
Transformer layers) for sentence classification and
question answering (340M and 227M respectively
for BERT-large), and BART (Lewis et al., 2020)
(an encoder-decoder language model with 139M
parameters, among which 99M are part of the lin-
ear layers present in the Transformer layers) for
summarization (406M and 353M for BART-large).

We compare against several baselines. Move-
ment pruning is a fully unstructured approach and
gives an upper bound on the sparsity trade-offs we
hope to achieve, even if it provides little speed ben-
efit. We also compare our results against state-of-
the-art approaches developed for fast inference of
transformer-based language models. DistilBERT
(Sanh et al., 2019) is obtained by distilling through
pre-training a pre-trained BERT into a smaller
model. TinyBERT (Jiao et al., 2019) distills a fine-
tuned model while using data augmentation. Mo-
bileBERT (Sun et al., 2020) is the result of a large
architecture search. dBART (Shleifer and Rush,
2020) is obtained by arbitrarily copying equally
spaced layers of a large model to a smaller one. To
measure inference speed on GPU, we use a 24GB
3090 RTX and an Intel i7 CPU, using a large batch
size (128) for evaluation and using PyTorch CUDA
timing primitives. We measure the speed of other
models in this same setup. Results may be differ-
ent from original papers, as latency and throughput
characteristics are different for each platform. We
also provide the number of parameters in the lin-
ear layers of the Transformer layers for each of
our models and for the reference ones: as the lin-
ear layers represent most of the FLOPS, this is a
good proxy for the computation required and to
some extent for the compute time, when the model
characteristics are equivalent.

Resources and Reproducibility
We are using a minimal set of hyperparameters.
The ratio of λatt and λffn is fixed by the relative
sizes. We performed a few experiments with differ-

Method MHA FFN Teacher

Block Block Block Base
Hybrid Block Dim Base
Hybrid NT Heads Dim None
Struct Heads Dim Base
Hybrid Filled Heads Dim Base
Hybrid Filled LT Heads Dim Large

Table 1: Summary of pruning methods. Dim blocks
correspond to row and column blocks for the FFN.

ent values fixed manually for these parameters, but
their influence is minor.

The main hyperparameter is the number of train-
ing epochs. For SQuAD v1.1, we are using 20
epochs instead of typically 2 for BERT models.
This means a fine-tuning is taking about 12h with
our method instead of 45mn with a standard fine-
tuning setup. This number has to be large enough
to let pruning happen slowly enough for a given
task. A warming up phase and a post-pruning cool-
down phase are helpful, but their exact length has
not a large impact on final performance. We believe
the training time is less important than the infer-
ence time for energy consideration, as inference is
performed repeatedly. Our method is optimizing
inference by a large factor: the training energy is
potentially recouped by a large margin with infer-
ence savings.

Finally, the checkpoints created during the ex-
periments are available on an AWS S3 bucket, with
their metadata and training parameters, totaling
3TB of data, to facilitate reproduction of our re-
sults and to make it possible to study further the
behavior of those models. Code for experiments,
analysis, and tools to prepare the present paper are
available on GitHub (see Appendix A).

Pruning Methods

The pruning approaches are shown in Table 1.
Block pruning use square block sizes throughout

all the linear layers, as an extension of the original
movement pruning for which the block size is 1.

Hybrid pruning jointly removes hidden dimen-
sions in feed-forward layers W1 and W2, using
movement pruning to create the dimension mask.
This corresponds to full rows or columns in the
parameter matrices. The pruned W′

1 and W′
2 can

then be "compacted" to become fully dense: we

10623

perform dense operations on cropped matrices. For
the attention layers, pruning only some rows or
columns in Wq, Wk, Wv and Wo can not be
practically exploited. This is because the structure
of the computation makes the additional cost of
resizing the tensor inefficient. We, therefore, use
square block pruning on the attention layer, with a
block size of (32, 32) which showed the best trade-
off between performance and accuracy.

Struct pruning uses the same methods for FFN
layers but aims to remove model attention heads
directly. To do so, we choose a block size on at-
tention that equals the head size while still using
the same soft movement pruning strategy. For this
approach, we use a λatt equals to 1/32, as there
are 32 times more parameters than in an attention
block than in a feed-forward dimension.

When Block Pruning does not fully remove a
component such as an attention head, as shown in
Figure 1, we cannot speed up the model. But we
can reclaim some of the performance at no speed
cost and at marginal cost on sparsity by making use
of those zero weights.

Hybrid Filled pruning allows the model to reini-
tialize these reclaimed weights uniformly at ran-
dom and continue fine-tuning the smaller model
for a few steps. We also explore "rewinding" (Fran-
kle and Carbin, 2018) by identifying weights that
should not be pruned (because they are part of a
non-empty attention head) and re-fine-pruning the
pre-trained model: the first run marks the atten-
tion heads that were not pruned, and the second
uses this information to create a positive mask of
weights that are protected from pruning. We did
not find a significant difference between the two
methods. The results presented here do not use
rewinding.

6 Experiments

Main Results We begin by observing the high-
level impact of the different pruning methods.
Figure 1 shows the effect on attention and feed-
forward layers for the different block pruning meth-
ods. We find that all the different block sizes learn
to prune out entire dimensions in the FFN layers.
Interestingly we find that the block methods can
also learn to remove entire heads from the MHA.
This pruning pattern makes it possible to remove
entire heads from the model during inference. For
this reason, we focus on the Hybrid approach as
our main method, which can both eliminate feed-

Block

Hybrid

Hybrid Filled

Attention Feed-forward

Figure 1: Pruning patterns on SQuAD v1.1: blue is pre-
served, pink is pruned. Attention heads are delimited
for clarity.

forward dimensions while using blocks to remove
attention heads gradually.

Results on SQuAD are shown in Figure 2,
which compares our approach for speed and den-
sity to baseline BERT-Base tuned models such as
TinyBERT-6 and DistilBERT (MobileBERT is dis-
cussed below). The main result is that the Hybrid
Pruning model is as fast as the baseline and ap-
proaches the same accuracy while at the same time
producing significantly smaller models in terms of
density. Moving to the Hybrid Filled model leads to
a further gain in speed at a small cost in model den-
sity. For instance, for the same F1 performance of
87.5, Hybrid Filled models display a 2.5x speedup
against 1.88 for TinyBERT. TinyBERT and Distil-
BERT have 50% of BERT’s encoder parameters,
whereas Hybrid Filled models have 25% BERT
parameters for the same level of accuracy.

The figures also include two intrinsic baselines:
our reimplementation of Movement pruning and
pure Block pruning. We find that our implemen-
tation of Movement pruning is highly effective at
producing sparse models (even leading to a small
increase in accuracy) but does not produce signifi-
cant speedups. Square Block pruning does better,
but not as well as hybrid blocks.

Table 2 gives a full comparison of models with
different compression rates. As linear layers repre-
sent a very large part of the flops of a transformer
model, this compression rate is actually a good
measure of the maximum achievable speedup. This
number is much higher than the actually measured
speedup. This indicates that our setup for measur-

10624

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Speedup

84

85

86

87

88

89

90
F1

BERT

DistilBERT
TinyBERT6

MobileBERT

Movement
Block
Hybrid

Hybrid Filled
Hybrid Filled LT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Density

84

85

86

87

88

89

90

F1 DistilBERT
TinyBERT6

MobileBERT

Movement
Block
Hybrid

Hybrid Filled
Hybrid Filled LT
BERT-base (F1 = 88.5)

Figure 2: Comparison on SQuAD v1.1 of model F1 against speed and density (BERT-base reference). For each
pruning method the pruned model is BERT-base, but different regularization values give different final sparsity lev-
els. This translates into a tradeoff curve between accuracy and speedup specific to the method. Distilled networks
(Mobile|Tiny|Distil)BERT are given as references. The higher the curve, the most accurate the model is for a given
speed.

Model Size Compr. Speed F1 EM

BERT 85M 1.00 1.00 88.5 80.8
TinyBERT 42M 2.00 1.88 87.5 79.7
DistilBERT 42M 2.00 2.06 86.9 79.1
Hybrid Filled 30M 2.76 1.84 88.7 81.7
Hybrid Filled 21M 3.94 2.25 87.7 80.2
Hybrid 20M 4.09 1.97 88.07 80.6
Hybrid Filled 16M 5.17 2.69 86.8 78.8
Hybrid 15M 5.44 2.26 87.15 79.4
Hybrid 14M 5.91 2.24 86.51 78.7
Struct 14M 6.25 3.36 85.9 78.0
Hybrid 12M 6.63 2.61 86.41 78.3
Hybrid 10M 7.82 2.70 86.12 77.8

MobileBERT 21M 4.00 1.61 90.0 82.9
Hybrid Filled LT 38M 2.20 1.56 90.3 83.7
Hybrid Filled LT 20M 4.21 2.31 88.3 81.2
Hybrid Filled LT 16M 5.08 2.62 87.2 79.5

Table 2: SQuAD v1.1 pruned models with base/large
teacher: Encoder Linear Parameters Count, Compres-
sion rate and Speed gain relative to BERT-base, F1 and
Exact Match. LT stands for Large Teacher.

ing speed may underestimate the actual speedup
one could obtain with those pruned models with
specialized implementations. Hybrid Filled reaches
a 2.25x speedup under minimal loss in accuracy.
Struct pruning targeting MHA blocks directly can
be even faster but leads to a stronger degradation
in accuracy.

Table 3 shows the comparison between Tiny-
BERT and a Hybrid pruned model of the same
speed on several others tasks. Hybrid Pruning per-
forms better on SQuAD v1.1, and approaches Tiny-

Model SQuAD v1.1 MNLI QQP SST-2
F1/EM Acc (m/mm) F1 Acc

TinyBERT 87.5/79.7 84.6/83.2 88.0 93.0
Hybrid 88.1/80.6 83.2/83.6 87.9 91.2

Table 3: Hybrid pruning/TinyBERT cross-task perfor-
mance comparison. Speed is at least TinyBERT speed
(1.88x BERT-base) for all networks and significantly
sparser.

BERT performance on other tasks.

Comparison with MobileBERT All methods
can be improved further using a larger teacher
model. For these experiments, we compare with
MobileBERT, which uses a BERT-large teacher
and reaches an F1 of 90.0 on SQuAD v1.1 on
its fastest version. It should be noted that Mo-
bileBERT makes use of additional optimizations
not present in the original BERT-large we are us-
ing: LayerNorms are replaced by purely linear
NoNorms, and GeLUs are replaced by ReLUs. For
these experiments, we use a BERT-large teacher to
perform meaningful comparisons, using our best
method Hybrid Filled.

Figure 2 shows that we have comparable results
on SQuAD v1.1, with a simpler optimization ap-
proach: we get a slightly better model (F1=90.3)
for the same speedup of 1.6x, and we get a speedup
of 2.2x at BERT-base accuracy (F1=88.5). We ob-
serve that using a large teacher is beneficial even at
high levels of pruning: up to 80% of sparsity, the
resulting student model has better accuracy for the

10625

same number of parameters when using a BERT-
large teacher instead of a base one. This trend
reverses after this point: a larger teacher is detri-
mental to accuracy when the student is very heavily
pruned.

Encoder-Decoder Finally, we apply these meth-
ods to two encoder-decoder architectures, BART-
base and BART-large for the task of summarization.
For these architectures, the decoder parameters are
responsible for a majority of the computational
costs, so these are our main focus. Voita et al.
(2019) observed that for machine translation mod-
els, encoder heads were much easier to prune than
decoder ones. We found similar results, e.g. for
identical λatt and λffn, the encoder was systemati-
cally more pruned than the decoder, for both MHA
and FFN sub-layers. In order to increase speedup
gain, we applied twice as much weight on the de-
coder compression, which resulted in even pruning
ratios among the encoder and decoder.

Table 4 shows the main results. We see that
Hybrid pruning leads to large decoder compression
ratios (3.4 on BART-base and 3.5 BART-large) with
only a small drop in ROUGE score. Speedups reach
1.4 times of the original speed. (Given the large
decoder compression rates, we would expect larger
speedups to be possible with further engineering of
the inference.)

There is less comparable work for pre-trained
encoder-decoders. We compare our approach
with a distillation-based approach dBART (Shleifer
and Rush, 2020). This approach yields a similar
speedup gain with a smaller drop in performance
but less sparsity. For models of comparable sizes
(158M for our Hybrid NT vs 176M for dBART-
6-6), we observe a drop of 0.7 in R2 and 0.4 in
RL against 0.9 in R2 and 1.3 in RL for dBART-
6-6. As with encoder-only models, the two ap-
proaches could likely be combined to yield even
faster, smaller models.3

7 Analysis

Large Model Pruning To test that this approach
scales to large models, we apply Hybrid pruning on
BERT-large on SQuAD v1.1. We observe similar
results: a 18% dense BERT-large has a F1 of 90.2,
with a speedup of 3.2x compared to BERT-large
with a F1 of 93.2. This pruned model is actually

3Distillation methods for text generation require generating
pseudo-labels, a different process which is significantly slower
than BERT distillation.

Model Size DCp Speed R1 R2 RL

BART-large 353M 1.0 1.00 44.8 21.7 41.8
Hybrid NT 158M 2.0 - 44.3 21.0 41.4
Hybrid NT 108M 2.8 1.38 43.5 20.3 40.6
Hybrid NT 82M 3.5 1.39 42.7 19.6 39.9

BART-large† 353M 1.0 1.00 - 21.1 40.9
dBART-12-6† 252M 2.0 1.44 - 21.2 41.0
dBART-6-6† 176M 2.0 1.46 - 20.2 39.6
dBART-12-3† 201M 4.0 1.66 - 20.6 40.3

BART-base 99M 1.0 1.00 43.4 20.4 40.4
Hybrid NT 35M 2.6 1.19 42.2 19.4 39.2
Hybrid NT 23M 3.4 1.35 41.4 18.7 38.4

Table 4: BART pruned models fine-tuned on CNN:
encoder-decoder linear parameters count, Decoder
compression rate (DCp) and Speed gain (one forward
prediction) relative to BART-large/base, dev ROUGE
scores. † denotes test ROUGE scores taken from
Shleifer and Rush (2020). NT stands for No Teacher.

Model Size Compr. Speed F1 EM

SQuAD v1.1
BERT-large 227M 1.00 1.0 93.2 86.9
BERT-base 85M 2.66 3.1 88.5 80.8
Hybrid 54M 4.16 2.9 91.0 84.6
Hybrid 41M 5.59 3.2 90.2 83.7

SQuAD v2
BERT-large 227M 1.00 1.0 85.8 82.8
StructuredQA 57M 4.00 – 81.5 –
Hybrid 38M 5.88 – 82.6 79.7

Table 5: BERT-large SQuAD pruned models. Refer-
ence speed is BERT-large.

faster than a BERT-base model (Table 5). We can
compare Hybrid Pruning of SQuAD v2 BERT-large
models with the results of the structured pruning
method described in McCarley (2019). For a 17%
dense model, we obtain a F1 of 82.6, whereas struc-
tured pruning gets a 25% dense model with a F1 of
81.5.

This result is in line with Li et al. (2020): the
larger the model, the more pruning is effective.
When pruning a larger model, the final model is
actually better than a smaller one with the same
absolute number of parameters.

Block Size Influence Figure 3 shows the impact
of different block sizes on Block pruning: pruning
is done on attention layers and FFNs with the same
square block size, from (4, 4) to (32, 32), with a
BERT-base teacher. We can see that we reach the

10626

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Speedup

85

86

87

88

89

90
F1

BERT

DistilBERT

TinyBERT6

MobileBERT Movement
Block Size=32
Block Size=16
Block Size=8
Block Size=4

Figure 3: SQuAD v1.1 with Block Pruning: Influence
of block size on F1.

BERT-base original F1 for all block sizes from
4 to 32, but with a speedup that increases with
the block size. The maximum reachable speedup
without F1 drop is 1.3 for a block size of 32. But
when some drop of F1 is allowed, the speedup
increases quickly with the block size and plateau
when reaching 16. We then reach a speedup of 1.75
for an F1 drop of 2% and a block size of 32.

We also note that, with the original Movement
Pruning method, we see some speedup due to full
dimension pruning. This likely comes from our
improved set of hyper-parameters (compared to the
original paper), allowing us to remove some empty
rows and columns in the FFN layers. However we
see that using blocks leads to a significant speed
improvement compared to Movement Pruning.

Quantization Quantization is often of critical
importance for practical applications. We, there-
fore, wanted to check that our networks could be
subjected to quantization without significant loss
of accuracy, especially when considering the issues
that could arise with the high level of sparsity of
some FFNs. Table 6 shows the results of full 8-bit
quantization tests on our models. These indicate
that the method is compatible with quantization,
and the models using quantization on top of our
pruning method achieve very high gains in terms
of size (as well as speed).

Impact of Distillation We report experimental
results with the addition of a teacher distillation
step as previous work showed this boosts move-
ment pruning at little cost. In this section, we con-
duct an ablation study to evaluate the impact of
distillation using a BERT-base teacher.

Model Compress EM F1

BERT-base 1.0 80.8 88.5
Hybrid 3.3 80.2 87.8
+ quantization 13.3 77.8 86.3

Table 6: Results of pruned BERT-base on SQuAD v1.1
dev Exact Match and F1 score with 8-bit quantization.

Dataset Size Hybrid Hybrid NT

QQP 24M 87.61 87.17
21M 87.14 87.00
10M 86.82 86.27

SST-2 70M 93.23 92.20
42M 91.97 90.71
18M 90.60 89.79

Table 7: Distillation ablation study of BERT-base on
QQP and SST-2 dev of a BERT-base teacher. F1 and ac-
curacy scores reported for QQP and SST-2 respectively.
NT stands for No Teacher.

As shown in Table 7, combining hybrid prun-
ing with distillation always performs better than
pruning alone, but that it is not critical for the ap-
proach to work. The distillation effect is larger for
smaller datasets such as SST-2, which are prone
to over-fitting. We believe that the regularization
brought by pruning and distillation counters over-
fitting caused by the additional number of steps
needed for pruning.

8 Conclusion

We have shown that we can extract small pruned
models that are at an equivalent or better than dis-
tilled networks. This approach can be done during
fine-tuning and not pre-training. The method does
not resort to techniques such as data augmentation
or architecture search, and it works on a diverse
set of tasks and base models. As better and larger
models are published at an increasing pace, we can
rely on a simple and robust method to accelerate
them on specific tasks without sacrificing accuracy
and distribute these models easily while keeping
most of the original model accuracy.

9 Impact

We expect the method presented here to contribute
to the reduction of the compute resources and en-
ergy needed to perform natural language tasks,
while preserving the original model performance.
It will contribute additionally to alleviating privacy

10627

concerns: smaller models running on user devices
instead of server-side allow more information to
stay private. This is especially relevant when con-
sidering the large anticipated demand for such NLP
applications in the near future.

9.1 Acknowledgements

The authors would like to thank the anonymous
reviewers, the Hugging Face team for the support,
Nvidia for providing us some hardware for evalua-
tion, and finally the open-source community for the
numerous tools which made this research possible.

References
Yoshua Bengio, Nicholas Léonard, and Aaron C.

Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. CoRR, abs/1308.3432.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs. University of
Waterloo.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jonathan Frankle and Michael Carbin. 2018. The lot-
tery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635.

Mitchell A. Gordon, Kevin Duh, and Nicholas An-
drews. 2020. Compressing BERT: studying the ef-
fects of weight pruning on transfer learning. CoRR,
abs/2002.08307.

Demi Guo, Alexander M. Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. CoRR, abs/2012.07463.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to

read and comprehend. In Advances in Neural Infor-
mation Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1693–1701.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling BERT for natural lan-
guage understanding. CoRR, abs/1909.10351.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hervé Jégou, and Tomás Mikolov.
2016. Fasttext.zip: Compressing text classification
models. CoRR, abs/1612.03651.

Young Jin Kim and Hany Hassan Awadalla. 2020. Fast-
formers: Highly efficient transformer models for nat-
ural language understanding.

Yann LeCun, John S. Denker, and Sara A. Solla. 1989.
Optimal brain damage. In Advances in Neural In-
formation Processing Systems 2, [NIPS Conference,
Denver, Colorado, USA, November 27-30, 1989],
pages 598–605. Morgan Kaufmann.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7871–7880. Association for Computational
Linguistics.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
Kurt Keutzer, Dan Klein, and Joseph E. Gonzalez.
2020. Train large, then compress: Rethinking model
size for efficient training and inference of transform-
ers. CoRR, abs/2002.11794.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l_0 regularization. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang,
Yang Wang, Yaming Yang, Quanlu Zhang, Yunhai
Tong, and Jing Bai. 2020. Ladabert: Lightweight
adaptation of BERT through hybrid model compres-
sion. CoRR, abs/2004.04124.

J. S. McCarley. 2019. Structured pruning of a
bert-based question answering model. CoRR,
abs/1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? CoRR,
abs/1905.10650.

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/2010.13382
http://arxiv.org/abs/2010.13382
http://arxiv.org/abs/2010.13382
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2002.11794
http://arxiv.org/abs/2002.11794
http://arxiv.org/abs/2002.11794
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
http://arxiv.org/abs/2004.04124
http://arxiv.org/abs/2004.04124
http://arxiv.org/abs/2004.04124
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1905.10650

10628

Kenton Murray and David Chiang. 2015. Auto-
sizing neural networks: With applications to n-
gram language models. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 908–916. The Asso-
ciation for Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 2: Short Papers, pages 784–789.
Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha
Kembhavi, Ali Farhadi, and Mohammad Rastegari.
2019. What’s hidden in a randomly weighted neural
network? CoRR, abs/1911.13299.

Corby Rosset. 2020. Turing-nlg: A 17-billion-
parameter language model by microsoft. Microsoft
Research Blog, 2:13.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s BERT:
smaller and faster transformer models. CoRR,
abs/2004.03844.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. CoRR, abs/2005.07683.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings of
the 20th SIGNLL Conference on Computational Nat-
ural Language Learning, CoNLL 2016, Berlin, Ger-
many, August 11-12, 2016, pages 291–301. ACL.

Sam Shleifer and Alexander M. Rush. 2020.
Pre-trained summarization distillation. CoRR,
abs/2010.13002.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2013, 18-21 October 2013, Grand Hy-
att Seattle, Seattle, Washington, USA, A meeting of

SIGDAT, a Special Interest Group of the ACL, pages
1631–1642. ACL.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages
4322–4331. Association for Computational Linguis-
tics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. CoRR, abs/2004.02984.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. CoRR, abs/1903.12136.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. CoRR, abs/1905.09418.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. CoRR,
abs/1910.04732.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), pages
1112–1122. Association for Computational Linguis-
tics.

https://doi.org/10.18653/v1/d15-1107
https://doi.org/10.18653/v1/d15-1107
https://doi.org/10.18653/v1/d15-1107
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
http://arxiv.org/abs/1911.13299
http://arxiv.org/abs/1911.13299
http://arxiv.org/abs/2004.03844
http://arxiv.org/abs/2004.03844
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://doi.org/10.18653/v1/k16-1029
https://doi.org/10.18653/v1/k16-1029
http://arxiv.org/abs/2010.13002
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/D13-1170/
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1910.04732
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101

10629

A Reproducibility & Hyper-Parameters

Code

The complete code to run the experiments, an-
alyze the results and finally create the fig-
ures and tables in this paper is available on
the Hugging Face nn_pruning repository, at
https://github.com/huggingface/nn_pruning.

Hyperparameters

The hyperparameters of the experiments are avail-
able as JSON files (one file per task) in the same
repository: each entry contains all the information
to fine-tune and prune the model, its evaluation re-
sults, and detailed statistics about its final sparsity.

For example, the SQuAD V1 checkpoints refer-
enced in this paper are listed with the hyperparam-
eters and related information.

Checkpoints

Some of the models we produced during this re-
search can be used directly from the Hugging Face
model hub.

The other models and the checkpoints, includ-
ing the intermediary ones that were saved during
training, are available on Amazon S3.

B Additional Data

Block Shape & Head pruning

We show here the effect of the pattern on the head
number reduction: using block instead of row/col-
umn pruning leads to a much larger number of
pruned heads while improving accuracy, here on
the SST-2 task.

We are using Block Movement pruning for each
model, with different block patterns, pruning only
the attention layers. Compression measures the
reduction of the number of non-zero parameters in
attention linear layers, whereas head compression
measures the reduction of the number of complete
non-zero heads.

Pattern Compr. Heads Head Compr. Accur.

BERT base 1x 144 1x 92.7

Rows/Cols 8.6x 86 1.7x 90.6
Block 32 4.7x 54 2.7x 91.1
Block 64 3.5x 51 2.8x 92.0

Table 8: Head pruning method comparison on SST-2

Pruning Methods Comparison
We select speed as our main metric to compare
with other techniques, as it is the major practical
measure of inference efficiency. On this metric, we
decided to compare our models to the best models
available i.e. the distilled models (MobileBERT,
TinyBERT), even though the method is different,
as they are the strongest "speed/accuracy" baseline
available.

In Table 9 we compare Wang et al. (2019) with
TinyBERT (Jiao et al., 2019) and MobileBERT
(Sun et al., 2020).

Method Speed SST2 MRPC STS-B QNLI

Wang et al. <1.5x 92.09 88.61 88.18 89.05
TinyBERT 2x 93.1 87.3 83.7 90.4
MobileBERT 4x 92.8 88.8 84.4 90.6

Table 9: Distillation/Structured Pruning Comparison

We compare as well to Hybrid pruning, with and
without a teacher, with the unstructured methods
from Sanh et al. (2020) (the original Movement
Pruning method we are using) and Gordon et al.
(2020), and with Sajjad et al. (2020) (dropping full
layers), in Table 10.

Model Spd Cp MNLI QQP SST-2
(m/mm) F1/Acc Acc

BERT base 1 1 84.5/85.1 88.1/91.1 92.7

Mvmt NT ∼ 1 10 80.7/81.1 87.1/90.5 -
Hybrid NT 3.5 10 79.4/79.9 86.0/89.3 87.0
Mvmt ∼ 1 10 81.2/81.8 86.8/90.2 -
Hybrid 3.5 10 80.4/81.1 86.4/89.8 89.7

Hybrid NT 3 4.5 81.7/81.8 87.0/90.3 89.8
Hybrid 3 4.5 82.7/82.8 87.4/90.6 90.6
Sajjad < 2 2 81.1/ - - /90.4 90.3
Gordon - 2 82.6/- - /90.3 90.8
Hybrid NT 1.6 2 83.2/83.3 87.2/90.4 90.7
Hybrid 1.6 2 83.7/84.1 88.3/91.3 92.0

Table 10: Pruning Methods Comparison. Mvmt is
Movement Pruning Sanh et al. (2020), Sajjad is Saj-
jad et al. (2020), Gordon is Gordon et al. (2020). NT
is for No Teacher. Spd is speed multiplier, Cp is for
parameters compression rate.

https://github.com/huggingface/nn_pruning
https://github.com/huggingface/nn_pruning/blob/main/analysis/article/files/results_squadv1.json
https://github.com/huggingface/nn_pruning/blob/main/analysis/article/files/results_squadv1.json
https://huggingface.co/madlag
https://huggingface.co/madlag
https://github.com/huggingface/nn_pruning/tree/main/analysis/article

