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Abstract

Transfer learning (TL) seeks to improve the
learning of a data-scarce target domain by us-
ing information from source domains. How-
ever, the source and target domains usually
have different data distributions, which may
lead to negative transfer. To alleviate this issue,
we propose a Wasserstein Selective Transfer
Learning (WSTL) method. Specifically, the
proposed method considers a reinforced selec-
tor to select helpful data for transfer learning.
We further use a Wasserstein-based discrimi-
nator to maximize the empirical distance be-
tween the selected source data and target data.
The TL module is then trained to minimize
the estimated Wasserstein distance in an ad-
versarial manner and provides domain invari-
ant features for the reinforced selector. We
adopt an evaluation metric based on the per-
formance of the TL module as delayed reward
and a Wasserstein-based metric as immediate
rewards to guide the reinforced selector learn-
ing. Compared with the competing TL ap-
proaches, the proposed method selects data
samples that are closer to the target domain. It
also provides better state features and reward
signals that lead to better performance with
faster convergence. Extensive experiments on
three real-world text mining tasks demonstrate
the effectiveness of the proposed method.

1 Introduction

Transfer learning (TL) is a type of classical ma-
chine learning methods to leverage information
from data-rich source domains to help a data-scarce
target domain (Pan and Yang, 2009). Recently,
transfer learning based on deep neural networks,
referred to as deep transfer learning (Ruder and
Plank, 2017; Yosinski et al., 2014), has been widely
used on various tasks in natural language process-
ing (Peng et al., 2018; Mou et al., 2016; Liu et al.,
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2017) and computer vision (Loey et al., 2021;
Ganin et al., 2016; Long et al., 2017).

Despite its success in various applications,
vanilla deep transfer learning approaches may suf-
fer from the negative transfer problem (Chen et al.,
2011; Ruder and Plank, 2017; Huang et al., 2007;
Qu et al., 2019a; Wang et al., 2019; Chen et al.,
2019), as the source and target domains usually
have different data distributions. One solution
to solve this problem is instance-based transfer
learning, which properly selects instances from
the source domain to alleviate or avoid the neg-
ative transfer. The recent instance-based trans-
fer learning methods incorporate Reinforcement
Learning (RL) for data selection (Qu et al., 2019a;
Wang et al., 2019; Chen et al., 2019). These meth-
ods jointly train an RL based data selector and the
transfer learning module, which is demonstrated to
be better than previous methods.

However, the aforementioned methods suffer
from the following two challenges. First, the
transfer learning module used in the previous re-
inforced instance-based TL methods is a simple
fully-shared model, which may not be able to learn
clean domain-invariant feature representations that
are discriminative in prediction (Liu et al., 2017;
Shen et al., 2017). This leads to sub-optimal trans-
fer results and the transfer learning module cannot
further provide good state representations for the
RL module. Second, the environment built by the
transfer learning module provides sparse “delayed”
rewards and with high variance during the train-
ing stage, which makes the RL policy difficult to
optimize and cannot provide reasonable signals to
guide the data selection process. The RL policy
is performed at the instance level, but the delayed
reward is at the batch level. Thus, this is a challeng-
ing sparse reward problem, i.e., to update batched
sequential decisions with a single delayed reward.

In light of these challenges, we propose a
Wasserstein distance-based Selective Transfer
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Learning (WSTL) method to select helpful data
from the source domain to help the target. Our
method is built on top of the reinforced transfer
learning framework, but differently, we introduce
a Wasserstein-distance based discriminator. The
advantages of the discriminator are two-fold. First,
the discriminator is trained to distinguish features
between the source and target, and further guides
the transfer learning module to minimize the esti-
mated Wasserstein distance in an adversarial man-
ner. Hence, features learned in the transfer learn-
ing module are domain-invariant (i.e., more trans-
ferrable) and also discriminative in prediction (i.e.,
yields better transfer learning results). Second, the
discriminator also provides Wasserstein distance-
based metric to serve as an immediate reward sig-
nal to help guide RL policy, which can solve the
sparse reward problem. In this way, the proposed
method can select high-quality source data to help
the target in an efficient and effective manner.

To demonstrate the benefits of the proposed
WSTL method, we evaluate it on three real-world
text mining tasks including paraphrase identifica-
tion, natural language inference, and review text
analysis. Experimental results on all these datasets
show that the proposed method outperforms the
state-of-the-art methods by a large margin. Empiri-
cal studies also confirm that the proposed method
can select source domain data that are close to the
target domain, thus indeed helps to reduce domain
discrepancy and alleviate negative transfer.

We summarize the contributions as follows.

1) We proposed a Wasserstein distance based re-
inforced selective transfer learning method to
select high-quality data efficiently and effec-
tively to alleviate negative transfer.

2) The introduced Wasserstein discriminator pro-
vides better state representations and immedi-
ate reward signals to the reinforced selector,
which leads to more stable training and better
performance with faster convergence.

3) Experiments on three real-world text mining
tasks demonstrate the proposed method signif-
icantly outperforms the state-of-the-art meth-
ods. The empirical studies also confirm that
the data instances selected by the proposed
method are closer to the target domain.

2 Proposed Method

We formulate the problem in a standard transfer
learning setting. Given a source domain De =
{xei , yei }

ne
i=1 and a target domain Dt = {xti, yti}

nt
i=1,

our model aims to improve the performance in Dt

using the rich knowledge in De which is usually
much larger than Dt.

2.1 Model Architecture
As shown in Figure 1, our model consists of three
components: a transfer learning model fω, a rein-
forced data selector fθ and a Wasserstein distance-
based discriminator fϕ. The discriminator esti-
mates the empirical Wasserstein distance between
the source domain and target domain. The TL
module is then trained to minimize the estimated
Wasserstein distance adversarially. The discrimi-
nator and TL module give immediate and delayed
feedback respectively to guide the reinforced data
selector. Details are as follows.

2.2 Wasserstein-based Discriminator
The goal for the discriminator fϕ is to distinguish
source from target data. We consider using Wasser-
stein distance (Panaretos and Zemel, 2019) as the
domain discrepancy measure, as it can provide
more stable gradients even if the two distributions
are distant (Arjovsky et al., 2017). Based on (Shen
et al., 2017; Villani, 2008), the Wasserstein distance
between source and target probability measures Pe,
Pt can be approximated as:

W(Pe, Pt)=
1

K
sup

||f ||L≤K
Ex∼Pe

[
f(x)

]
−Ex∼Pt

[
f(x)

]
,

(1)
where ||f ||L denotes Lipschitz constant. 1 Let ne

and nt denote the number of source samples and
target samples respectively, the empirical Wasser-
stein distance can be approximated by maximizing
the discriminator loss Lwd when fϕ is 1-Lipschitz:

Lwd(x
e,xt)=

1

ne

∑
xe∈Xe

fϕ(fω(x
e))− 1

nt

∑
xt∈Xt

fϕ(fω(x
t)).

(2)
We enforce the Lipschitz constraint for ϕ by

gradient penalty as suggested in Gulrajani et al.
(2017). So the objective of the Wasserstein-based
discriminator is as follows:

max
ϕ

{
Lwd + λEv̂∼Pv̂(||∇v̂fϕ(v̂)||2− 1)2

}
, (3)

1For x1, x2 ∈ X where X is definition domain, K is the
Lipschitz constant of f(x)⇔ |f(x1)−f(x2)| ≤ K|x1−x2|.
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Figure 1: Overview of the proposed Wasserstein Selective Transfer Learning (WSTL) method. The Wasserstein
discriminator aims to estimate the empirical Wasserstein distance between the source and target domains. The TL
module is then trained adversarially with the discriminator to better learn domain invariant features. A Wasserstein
distance based metric is designed to provide the immediate reward, and coupled with the delayed rewards from
the evaluation environment of the TL module, to guide the RL module. Meanwhile, the RL module conducts data
selection based on the state representations of the TL module.

where Pv̂ is sampled uniformly along straight lines
between source and target representation pairs and
λ is the penalty coefficient.

2.3 TL with Wasserstein Discriminator

To make features learned in the TL module more
domain invariant and suitable for transferring, the
TL module and discriminator are trained adversar-
ially: the discriminator tries to distinguish source
from target data, while the TL model aims to fool
the discriminator by minimizing the distances be-
tween source and target data adversarially. We
adopt Wasserstein distance as the adversarial loss
since the Jensen-Shannon divergence adopted in
previous adversarial methods (Ganin et al., 2016;
Qu et al., 2019b) suffers from discontinuities, pro-
viding less useful gradients for training. In contrast,
Wasserstein distance is continuous and differen-
tiable almost everywhere (Arjovsky et al., 2017).
The superiority of Wasserstein distance for training
is also verified in our experiments.

Specifically, we first train the discriminator to
optimality via stochastic gradient ascent. Then we
fix the optimal parameter of the discriminator and
update the TL module simultaneously. Thus, the
final loss of domain adversarial learning can be

formulated as:

min
ω

{ ∑
k∈{e,t}

Lk(y, fω(x))+

β max
ϕ

{
Lwd+λEv̂∼Pv̂(||∇v̂fϕ(v̂)||2−1)2

}}
, (4)

where Lk(y, fω(x)) (k ∈ {e, t}) denotes the loss
of the source and target classifier. λ is set as 0
when optimizing the minimum operation since the
gradient penalty should not guide the TL learn-
ing process. β is the coefficient that controls the
balance between domain invariant learning and dis-
criminative feature learning.

2.4 Reinforced Selective Training
The reinforced source data selector serves as an
agent and the selection process can be modeled as
a Markov decision process which can be solved
by reinforcement learning: The selector selects a
subset of source data, feeds into the TL module
with the target data and receives rewards for this
action. Selection policy πθ is learned by interacting
with the TL environment.

Specifically, let b denote batch index, n denotes
the batch size, we first obtain state representation
Seb = {s1, s2, ..., sn} for the source samples based
on the semantic features generated by the shared
encoder and the prediction results from the target
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classifier. The action Aeb = {a1, a2, ..., an} where
ai ∈ {0, 1}means to drop or keep the i-th instance,
is decided by the policy πθ:

πθ = softmax(W2 g(W1S
e
b + b1) + b2), (5)

where g is ReLU activation, Wk and bk are the
weight matrix and bias of the k-th layer.
Reward Design. The objective of the data selector
is to maximize the expected total reward J(θ):

J(θ) = E
[
Rtot(s, a)|πθ

]
, (6)

where θ denotes the parameters of the data selector.
The RL reward signal Rtot consists of both imme-
diate and delayed rewards, defined as follows.

Immediate Reward. Our immediate reward is
based on the Wasserstein metric to encourage the
data selector to select data instances close to the
target domain. Let Lwd(xei , x

t
∗) be the distance

metric, it can be resolved to the following special
case of the 1st Wasserstein distance:

Lwd(x
e
i , x

t
∗) = min

T≥0

n∑
j=1

Tijd(i, j)

s.t.

n∑
j=1

Tij = ai, ∀i ∈ {1, ..., n},
(7)

where d(i, j) denotes the Euclidean distance be-
tween xi and xj . Here xi and xj denote the out-
put of the shared encoder in source and target do-
mains respectively. Tij measures the “travelling
cost” from sample i in the source domain to sam-
ple j in the target domain. ai denotes the binary
selection action on the data instance xi. The opti-
mal solution is to move all probability mass of the
i-th instance in Xe

b to its most similar instance
j∗ in Xt

b, i.e., Lwd(xei , x
t
∗) = aid(i, j∗) where

j∗ = arg minj d(i, j). 2 To encourage the data
selector to choose source data instances close to
the target, the immediate reward is formulated as:

Rimm = L̄wd(x
e
∗, x

t
∗)− Lwd(xei , xt∗). (8)

where L̄wd(xe∗, x
t
∗) denotes the averaged distance

between all the source and target data. The data
selector seeks to find the optimal solution for
Lwd(x

e
i , x

t
∗) to maximize the immediate reward.

Since using the whole dataset is computationally
expensive, we resolve to compute this metric at
batch level to speed up the training process.

2Please refer to Appendix for the detailed proof.

Delayed Reward. The delayed reward is based
on the evaluation metric which measures the per-
formance difference before and after TL model
updates:

Rb = L(y, fω(x))− L′(y, fω(x)), (9)

where L(y, fω(x)) denotes the evaluation results
of the updated model, and L′(y, fω(x)) denotes the
previous evaluation results. Based on our empirical
results, we set L as the accuracy of the target for
classification tasks, and as correlation coefficients
between the predicted score and the ground truth
score for regression tasks.

In contrast to conventional reinforcement learn-
ing, our model is updated in batches to improve
the model training efficiency. For each batch in an
episode, the accumulated reward is defined as:

Rdelay =

T−t−1∑
k=0

γkRt+1+k, (10)

where γ is a discount factor.
Total Reward. The total reward is defined as

the combination of immediate and delayed reward:

Rtot = αRimm +Rdelay, (11)

where α is the coefficient that balances the contri-
bution of immediate reward and delayed reward.

Optimization. We adopt the policy gradient algo-
rithm (Williams, 1992) to maximize the expected
reward J(θ). The parameter θ is updated as:

∇θJ(θ) = ∇θE
[
Rtot(s, a)|πθ

]
= Eπθ

[
∇θ log πθ(s, a)Rtot(s, a)

]
' 1

K

K∑
i=1

Rtot(s, a)∇θ log πθ(s, a),

(12)

where K is the selected data size.
We present the training process in Algorithm 1.

Clearly, the Wasserstein based discriminator serves
to (1) help the TL module to learn domain-invariant
features, and provide stable state representation for
RL module, and (2) provide Wasserstein distance-
based metric to serve as an immediate reward signal
to help guide RL policy.
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Algorithm 1: Wasserstein distance-based
Selective Transfer Learning (WSTL)
Require :Source and target domain data

Xe, Xt, validation data V
1 Initialize dicriminator fϕ, TL module fω

and data selector fθ with random weights;
2 Pre-train discriminator using Xe, Xt;
3 Pre-train TL module using Xe, Xt;
4 for each batch (Xe

b , X
t
b) in (Xe, Xt) in

episode l do
5 Obtain representations fω(Xe

b ), fω(Xt
b)

6 for i = 1, 2, . . . , n do
7 Update discriminator fϕ using

Eq. (3)
8 end
9 Conduct data selection using Eq. (5)

10 Obtain immediate reward using Eq. (8)
11 Update TL module fω using Eq. (4)
12 Obtain delayed reward using Eq. (10)
13 Obtain total reward using Eq. (11)
14 Update RL module fθ using Eq. (12)
15 end

3 Experiments

3.1 Datasets and Implementation Details

In this paper, we conduct extensive experiments
on three real-world applications, i.e., Paraphrase
Identification (PI), Natural Language Inference
(NLI) (Bowman et al., 2015; Qu et al., 2019a),
and review helpfulness prediction (McAuley and
Leskovec, 2013) to examine the effectiveness of
our proposed method. For PI task, we treat the
Quora question pairs 3 as the source domain and
AnalytiCup 4 dataset as the target. For NLI task, we
use MultiNLI (Williams et al., 2018) as the source
domain and SciTail (Khot et al., 2018) as the tar-
get. Following (Chen et al., 2017), we consider
Decomposable Attention Model (DAM) (Parikh
et al., 2016) for PI and NLI following (Qu et al.,
2019a), and TextCNN (Kim, 2014) for review help-
fulness prediction . Note that the proposed method
is general as we can adopt different neural archi-
tectures for TL module. The discriminator and RL
module are simple neural networks with 2-hidden
layers. Details about the data statics and experi-
ment settings are in Appendix.

3www.kaggle.com/c/quora-question-pairs
4www.tianchi.aliyun.com/competition/introduction.htm?

raceId=231661

Model
PI NLI

ACC AUC ACC AUC
Src-only 0.7538 0.5571 0.7112 0.7087
Tgt-only 0.8393 0.8548 0.7300 0.7663
TL Method 0.8488 0.8706 0.7453 0.8044
Ruder and Plank 0.8458 0.8680 0.7521 0.8062
RTL 0.8616 0.8829 0.7672 0.8163
MGTL 0.8637 0.8855 0.7782 0.8247
WSTLw/o adv 0.8574 0.8856 0.7554 0.8099
WSTLw/o RL 0.8691 0.9084 0.7723 0.8222
WSTL-JS 0.8631 0.8854 0.7778 0.8245
WSTL 0.8811† 0.9101 0.7869† 0.8382

Table 1: Evaluations of the proposed method on PI and
NLI tasks. † denotes the statistically significant differ-
ence over the strongest baseline with p < 0.01 mea-
sured by the student’s paired t-test. Note that AUC is
an overall metric that is not suitable for t-test.

3.2 Experiments on PI and NLI

We compare our model with these baseline models.
• Src-only: A model only trained on source

domain and tested on the target domain.
• Tgt-only (Parikh et al., 2016): A model only

uses target domain data described in Sec. 2.4.
• TL Method: a typical TL method in (Mou

et al., 2015, 2016) that uses a shared encoder
and domain-specific output layers.

• Ruder and Plank (Ruder and Plank, 2017):
an instance selection method with Bayesian
optimization.

• RTL(Qu et al., 2019a): a recent proposed RL
based instance selection method.

• MGTL(Wang et al., 2019): another recent
generative adversarial network based instance
selection method.

• WSTLw/o adv: degenerated versions of our
model which does not include the adversar-
ial training process between the discriminator
and TL module.

• WSTLw/o RL: degenerated versions of our
model, without the reinforced data selector.

• WSTL-JS: a variant of our method with JS
divergence as distance metrics.

As in Table 1, we have several observations.
(1) We observe that the proposed WSTL method

achieves the best performance and significantly out-
performs other methods on both tasks, which shows
the superiority and effectiveness of the method.

(2) Due to the domain shift, Src-only performs
worse than Tgt-only. The TL method outperforms
the Tgt-only model, for leveraging information
from the source domain can help the target domain.

www.kaggle.com/c/quora-question-pairs
www.tianchi.aliyun.com/competition/introduction.htm?raceId=231661
www.tianchi.aliyun.com/competition/introduction.htm?raceId=231661
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(3) Existing instance selection methods such as
RTL and MGTL have improved performance over
TL, which shows that data selection can alleviate
negative transfer. WSTL outperforms all compet-
ing methods, indicating the proposed Wasserstein-
based discriminator can help both RL and TL to
stabilize training and promote better selection.

(4) The improvement over two variants of our
model WSTLw/o adv and WSTLw/o RL also shows
the importance of Wasserstein-based adversarial
training and RL module.

(5) Compared with JS divergence, the proposed
WSTL method outperforms WSTL-JS, which
shows the effectiveness of the Wasserstein distance
metric.

In general, by integrating the TL module, RL
module and the Wasserstein-based discriminator
in a unified framework, WSTL can significantly
outperform the competing methods on all tasks.

3.3 Experiments on Review Helpfulness
Prediction

Review helpfulness prediction is a regression task
that predicts the helpfulness score of a given re-
view. We compare our model with regression base-
lines that use hand-crafted features which are STR,
UGR, LIWC, INQUIRER, aspect-based feature
ASP, and two groups of ensemble features named
Fusion1 and Fusion2 from Chen et al. (2018a). We
also compare with Src-only, Tgt-only (Kim, 2014),
Vanilla TL Method, and two degenerated versions
of our model WSTLw/o adv and WSTLw/o RL as
described in Section 3.2. In addition, we compare
with two recent proposed TL methods for the task:

• TL-dd (Chen et al., 2018a): a cross-domain
model with auxiliary domain discriminators.

• TL-adv (Liu et al., 2017): TL method with
adversarial training to alleviate the shared and
private features from interfering each other.

As shown in Table 2, we have similar obser-
vations with the experiments on PI and NLI. (1)
Those traditional methods without using deep neu-
ral networks, e.g., from STR, UGR to Fusion meth-
ods, cannot perform as well as deep learning meth-
ods. This shows deep learning methods have the
ability to extract more important semantic features
for the task. (2) Source and target domain data
have similar but different data distributions since
Src-only performs worse than Tgt-only. (3) Trans-
fer learning methods significantly outperform “non-
transfer” methods and hand-crafted features, which

Correlation Watch Phone Outdoor Home
STR 0.276 0.349 0.277 0.222
UGR 0.425 0.466 0.412 0.309
LIWC 0.378 0.464 0.382 0.331
INQ 0.403 0.506 0.419 0.366
ASP 0.406 0.437 0.385 0.283
Fusion 1 0.488 0.539 0.497 0.432
Fusion 2 0.493 0.550 0.501 0.436
Src-only 0.483 0.443 0.449 0.395
Tgt-only 0.559 0.556 0.640 0.564
TL Method 0.557 0.560 0.651 0.570
TL-adv 0.501 0.564 0.511 0.468
TL-dd 0.515 0.571 0.510 0.472
RTL 0.564 0.566 0.654 0.573
MGTL 0.571 0.567 0.656 0.574
WSTLw/o adv 0.572 0.565 0.653 0.571
WSTLw/o RL 0.574 0.563 0.652 0.572
WSTL-JS 0.570 0.567 0.655 0.574
WSTL 0.598 0.575 0.660 0.579

Table 2: Results for review helpfulness prediction.

demonstrate that the performance of the target do-
main can be improved with a large margin with the
help of transfer learning. (4) WSTL outperforms
two state-of-the-art TL methods TL-dd and TL-
adv, indicating the importance of source data selec-
tion on the task. (5) WSTL achieves 1% improve-
ment on average over RTL and MGTL methods,
demonstrating that domain invariant features and
Wasserstein distance-based metric can circumvent
the difficulty of RL training. (6) We find both adver-
sarial training with discriminator and RL module
are important for the task, as our model outper-
forms two degenerated models. (7) Our method
with Wasserstein distance achieves improvement
over WSTL-JS on different domains, which shows
the superiority of Wasserstein distance over other
distance metrics.

3.4 Effects of the Wasserstein Discriminator

To demonstrate the effectiveness of the Wasserstein
discriminator, we compare our method with the
vanilla RTL method (Qu et al., 2019a).
Distances between Domains. We first compare
the distances between the selected data and the
target data on “Watch” task. The Wasserstein dis-
tances for the original data, selected data from RTL,
and selected data from our WSTL are 3.841e-06,
3.782e-06, and 3.436e-06, respectively. Clearly,
both WSTL and RTL methods can reduce distances
between source and target data distribution, while
WSTL can select data instances closer to the target.
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Figure 2: Feature visualization of different methods.
Red and blue points denote source and target data.
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Figure 3: Convergence curve for RTL and WSTL.

Feature Visualization. We use t-SNE to demon-
strate the proposed method’s capacity of minimiz-
ing the divergence between source and target dis-
tributions. As shown in Figure 2, we observe that
instances from different domains are closer in Fig-
ure 2(b). It corroborates that by adopting Wasser-
stein discriminator, WSTL can help to learn domain
invariant features which can effectively reduce do-
main discrepancy. The detailed feature distribu-
tions at different training steps are in Appendix.
Moreover, WSTL improves around 2% over RTL
in Table 1 and 1% on average in Table 2, which
shows WSTL can learn discriminative features with
better results on target domain.
Convergence and Stability. We compare the con-
vergence and stability between WSTL and RTL
methods on “Watch” task in review helpfulness
prediction. As shown in Figure 3, we can observe
that WSTL converges faster and performs more
stably than the RTL method. The reason is that
Wasserstein distance-based discriminator can sta-
bilize learning and provide domain invariant rep-
resentation and Wasserstein distance-based metric
to help reinforced data selector learn more effi-
ciently. We also find WSTL performs better than
RTL method since better state representations and
reward signals provided by Wasserstein distance-
based domain discriminator can make WSTL select

Rimm Rdelay Rtot
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PI NLI
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Figure 4: Model performance w.r.t. (a) different re-
wards on both PI ad NLI tasks and (b) different values
of hyper-parameter α.
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Figure 5: Model performance w.r.t. different values of
hyper-parameter β

high-quality source data to improve performance
in the target domain.

3.5 Parameter Sensitivity Analysis

Effect of different rewards. We test the effect of
different rewards on the data selector learning.

As in Figure 4(a), we can observe that both de-
layed reward and immediate reward are helpful for
the task, and the best performance can be achieved
by combining with both types of rewards.

We also demonstrate the impact of hyper-
parameter α which measures the contribution of
immediate reward and delayed reward. As in Fig-
ure 4(b), we observe that our method is generally
robust to different values of the hyper-parameter
α as it shows to have similar performance with
different settings.

Effect of Feature Learning. We tested the impact
of hyper-parameter β which controls the balance
between domain invariant learning and discrimi-
native feature learning. We tested with different
values of hyperparameter β = {0.01, 0.1, 1, 10} in
Equation 4. As shown in Figure 5, we can observe
that the performance on PI task is less sensitive to
parameter β than NLI task.
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Figure 6: The proportion of “address” in selected data
with the same semantic meaning as in target domain.

3.6 Case Study

To examine whether our model can select desir-
able samples from the source domain, we design
an experiment to examine the behaviors of the data
selector. In source NLI data, the term “address”
has two meanings, i.e., a verb that begins to deal
with something, and a noun that describes a lo-
cation. However, in target NLI data, the term is
mostly about the first meaning. Hence we remove
sentences with the second meaning in the target
and collect examples containing “address” in both
datasets, to examine whether the proposed method
can select proper sentences. We compute the pro-
portion of selected source examples containing the
same semantic meaning of “address” as in SciTail.

From Figure 6, we observe that with model train-
ing, the data selector can select more instances with
the same “address” meaning as in SciTail. This re-
sult is insightful as it shows the proposed method
can transfer relevant examples to promote positive
transfer and ignore irrelevant ones to mitigate neg-
ative transfer.

4 Related Work

Transfer learning (TL). TL has been widely stud-
ied in various applications (McCann et al., 2017;
Deng et al., 2009; Yosinski et al., 2014). Due to
the domain difference, a vanilla transfer learning
method may suffer from negative transfer. There
are generally two lines of study to address this prob-
lem. The first is feature-based methods, which aim
to locate a common feature space that can reduce
the differences between the source and target do-
mains (Shen et al., 2017). However, the capacity of
shared space could be consumed by some unnec-
essary features. The second category is instance-
based methods, which re-weight the source sam-
ples so that data from the source and target domain

share a similar data distribution (Chen et al., 2011;
Huang et al., 2007; Ruder and Plank, 2017). The
TL module is typically considered as a sub-module
of the data selection framework (Ruder and Plank,
2017). Therefore, the TL module needs to be re-
trained repetitively to provide sufficient updates to
the selection framework which may suffer from
long training time. The recent studies (Qu et al.,
2019a; Wang et al., 2019) consider RL based in-
stance selection methods to jointly train the data
selector and the TL model. However, the training
of the TL module struggles to maintain stable and
the mislead signal from the TL model inevitably in-
creases the difficulty of data selection. Our method
employs the Wasserstein discriminator to help both
TL and RL modules. It provides domain invariant
features to serve as states for the RL policy and
helps to improve TL module via adversarial train-
ing. The Wasserstein discriminator also provides
immediate rewards to guide the RL policy.

Different from several domain adaption meth-
ods proposed for sentiment classification (Qu et al.,
2019b; Du et al., 2020; Xue et al., 2020; Zhang
et al., 2019; He et al., 2018) where the labels in
the target domain are not available, both the source
and target labels are available in our transfer learn-
ing setting. In our setting, we seek to leverage
data-sufficient domains to help target domains with
less sufficient data labels. Besides, these methods
are designed for sentiment classification while our
method is more general on various task such as PI
and NLI.

Wasserstein Distance. The Wasserstein dis-
tance (Panaretos and Zemel, 2019) is a metric based
on the theory of optimal transport. It gives a natural
measure of the distance between two probability
distributions. Arjovsky et al. (2017) introduce
Wasserstein metric to alleviate the vanishing gra-
dient and the mode collapse issues in the origi-
nal GAN (Goodfellow et al., 2014). Chen et al.
(2018b) propose to minimize the Wasserstein dis-
tance between different domains for cross-lingual
sentiment classification. Shen et al. (2017) adopts
Wasserstein distance to representation learning for
domain adaptation. However, the learned repre-
sentations are contaminated by misleading features,
suffering from feature redundancy. Yu et al. (2020)
introduces Wasserstein distance as a regularizer to
improve the sequence representations. Inspired by
its success in various applications, we introduce
Wasserstein distance to selective transfer learning.
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5 Conclusions

To alleviate the negative transfer issues, we pro-
pose a Wasserstein Selective Transfer Learning
(WSTL) method that builds a Wasserstein discrimi-
nator to maximize the empirical distance between
the selected source and target domain data. The
TL module is trained to minimize the estimated
Wasserstein distance in an adversarial manner, and
the discriminator provides immediate rewards fur-
ther coupled with the delayed rewards from the TL
module to guide the reinforced data selector. Exten-
sive experiments on three real-world datasets show
the proposed method significantly outperforms the
competing methods.
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A Appendices.

A.1 Proof for Equation 7
The optimal solution is to move all probability mass
of each instance in Xe

b to its most similar instance
in Xt

b. Precisely, an optimal T ∗ matrix is defined
as:

T ∗ij =

{
ai if j = arg minj di,j ,

0 otherwise.
(13)

Below we derive the solution.
PROOF. Let j∗ = arg minj d(i, j), then we

have: ∑
j

Tijd(i, j) ≥
∑
j

Tijd(i, j∗)

= d(i, j∗)
∑
j

Tij

= d(i, j∗)ai

=
∑
j

T ∗ijd(i, j). �

Therefore, T ∗ must yield a minimum objective
value. Thus, for each instance vector xi in Xe

b ,
we can achieve the minimum objective value by a
nearest neighbor search to obtain j∗ where j∗ =
arg minj d(i, j), and obviously the distance metric
Lwd(x

e
i , x

t
∗) = aid(i, j∗).

A.2 Experiment Settings
PI task. This is a typical text matching task that is
widely used in dialogue systems (Qu et al., 2019a).
The task is to examine the relationship, i.e., para-
phrase or not, between two input text sequences.
We treat the Quora question pairs 5 as the source
domain and AnalytiCup 6 dataset as the target. The
former is a large-scale dataset that covers a variety
of topics which has 404287 examples, while the
latter consists of question pairs from E-commerce
which has 6668 examples in training set, 3334 ex-
amples in validation set and 3330 examples in test
set. We follow the study in (Qu et al., 2019a) for
data preprocessing.
NLI task. This is a natural language inference
task to examine whether the semantic relation indi-
cates whether a hypothesis can be inferred from a
premise (Bowman et al., 2015). We use MultiNLI
as the source domain and SciTail as the target. The

5www.kaggle.com/c/quora-question-pairs
6www.tianchi.aliyun.com/competition/introduction.htm?

raceId=231661

Dataset Domain # of reviews (> 5 votes)
Electronics source 354,301
Watches target 9,737
Cellphones target 18,542
Outdoor target 72,796
Home target 219,310

Table 3: Amazon reviews from 5 different domain cat-
egories.

former is a large crowd-sourced benchmark corpus
from a wider range of text genres which has 261799
examples. The latter is a recently released challeng-
ing textual entailment dataset collected from the
science domain which has 23596 examples in train-
ing set, 1304 examples in validation set and 2126
examples in test set.
Review helpfulness prediction. This is a text min-
ing task to examine the helpfulness score of a given
review. Due to the high volume of reviews on E-
commerce sites, it’s an important task that draws
increasing attention from both academia and indus-
try (Martin and Pu, 2014). We use reviews from
five categories of products in the Amazon review
dataset (McAuley and Leskovec, 2013). The data
from the Electronics domain (the largest dataset)
are served as the source domain, while the rest
four domains are treated as target domains. Data
statistics are summarized in Table 3.

The experiments are conducted on a Linux server
equipped with an Intel(R) Xeon(R) CPU E5-2699
v4 @ 2.20GHz and 8 NVIDIA V100-SXM2-16GB
GPUs. We implement our model via TensorFlow
and the models are trained with Adam optimizer
(Kingma and Ba, 2014). The discriminator is de-
signed with a hidden layer of 128 nodes. The learn-
ing rate for the discriminator is 1e−4 and the train-
ing steps n is set to 5 for fast computation and
sufficient optimization guarantee for the discrim-
inator. The penalty coefficient λ is set to 10 as
suggested in (Gulrajani et al., 2017).

For both PI and NLI tasks, the size for the hidden
layers of the decomposable attention model is 256.
The max sequence length is set to 50. Word em-
beddings are initialized with GloVe word vectors
(Pennington et al., 2014) and are set to trainable.
The initial learning rate is set as 0.001. The trans-
fer learning model is pre-trained for 50 iterations
before the reinforced data selector is applied.

For review helpfulness prediction task, the
lookup table is also initialized with pre-trained vec-

www.kaggle.com/c/quora-question-pairs
www.tianchi.aliyun.com/competition/introduction.htm?raceId=231661
www.tianchi.aliyun.com/competition/introduction.htm?raceId=231661
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Figure 7: Feature visualization of WSTL at different training steps.

tors from Glove. For CNN, the activation func-
tion is ReLU, and the channel size is set to 128.
Multiple filters are used here with window size
l ∈ {2, 3, 4, 5}. We use Adam as the optimizer.
Following the previous work (Chen et al., 2018a),
ten-fold cross-validation is performed for all exper-
iments and all the results are evaluated in correla-
tion coefficients between the predicted helpfulness
score and the ground truth score computed by “a
of b approach” from the dataset.

A.3 Feature Visualization
To demonstrate the transferability of the selected
features, we use t-SNE to visualize the selected fea-

ture representation from the source domain and tar-
get domain. We choose the “Watch” task in review
helpfulness prediction as an example. In Figure 7,
red points denote samples from the source domain,
green points denote samples from the target do-
main. We can observe that with the model training,
red and green points are getting closer, which de-
notes that our model can select useful source data
instances that are close to the target domain. It
proves that adopting Wasserstein distance in ad-
versarial training can help learn domain invariant
features, and such features can help to effectively
alleviate negative transfer.


