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Abstract

Chatbot is increasingly thriving in different do-
mains, however, because of unexpected dis-
course complexity and training data sparse-
ness, its potential distrust hatches vital appre-
hension. Recently, Machine-Human Chatting
Handoff (MHCH), predicting chatbot failure
and enabling human-algorithm collaboration
to enhance chatbot quality, has attracted in-
creasing attention from industry and academia.
In this study, we propose a novel model, Role-
Selected Sharing Network (RSSN), which in-
tegrates both dialogue satisfaction estimation
and handoff prediction in one multi-task learn-
ing framework. Unlike prior efforts in dialog
mining, by utilizing local user satisfaction as
a bridge, global satisfaction detector and hand-
off predictor can effectively exchange critical
information. Specifically, we decouple the re-
lation and interaction between the two tasks by
the role information after the shared encoder.
Extensive experiments on two public datasets
demonstrate the effectiveness of our model.

1 Introduction

Chatbot, as one of the recent palpable AI excite-
ments, has been widely adopted to reduce the cost
of customer service (Qiu et al., 2017; Ram et al.,
2018; Zhou et al., 2020). However, due to the com-
plexity of human conversation, auto-chatbot can
hardly meet all users’ needs, while its potential
failure perceives skepticism. AI-enabled customer
service, for instance, may trigger unexpected busi-
ness losses because of chatbot failures (Radziwill
and Benton, 2017; Rajendran et al., 2019). More-
over, for chatbot adoption in sensitive areas, such
as healthcare (Chung and Park, 2019) and criminal
justice (Wang et al., 2020a), any subtle statistical
miscalculation may trigger serious health and legal
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What a business! It has been a week!
utter3

We will ship goods about a week after
placing the order. Please be patient.

utter2

Sorry, my dear customer. We have pushed
the warehouse to ship as soon as possible,
and we will compensate the freight for you.

utter5

Fine, hope I can receive it soon.
utter7

We will try our best to improve your
shopping experience. Thank you for your
understanding and patience.

utter6

utter1

Hello, I placed my order about one week
ago. When can it be shipped?

I’m sorry for the inconvenience.
utter4

Handoff

Satisfaction Rating:

Chatbot

Human

Local 
(utterance) 
satisfaction

Global 
(dialogue) 

satisfaction

Figure 1: A snippet of a moderately satisfied customer
service dialogue. There is a satisfaction rating at the
end of the conversation. The utterance with an orange
background color denotes a transferable utterance.

consequences. To address this problem, recently,
scholars proposed new dialog mining tasks to auto-
assess dialogue satisfaction, a.k.a. Service Sat-
isfaction Analysis (SSA) at dialogue-level (Song
et al., 2019), and to predict potential chatbot fail-
ure via machine-human chatting handoff (MHCH)
at utterance-level (Huang et al., 2018; Liu et al.,
2021). In a MHCH context, algorithm can transfer
an ongoing auto-dialogue to the human agent when
the current utterance is confusing.

Figure 1 depicts an exemplar dialogue of on-
line customer service. In this dialogue, the chatbot
gives an unsatisfied answer about shipping, thus
causing the customer’s complaint (local dissatisfac-
tion utter2 and utter3). Ideally, chatbot should be
able to detect the negative (local) emotion (utter3)
and tries to appease complaints, but this problem
remains unresolved. If chatbot continues, the cus-
tomer may cancel the deal and give a negative rat-
ing (dialogue global dissatisfaction). With MHCH
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(detects the risks of utter2 and utter3), the dia-
logue can be transferred to the human agent, who
is better at handling, compensating, and comfort-
ing the customer and enhance customer satisfaction.
This example illustrates the cross-impact between
handoff and dialogue (local+global) satisfaction.
Intuitively, MHCH and SSA tasks can be compati-
ble and complementary given a dialogue discourse,
i.e., the local satisfaction is related to the quality
of the conversation (Bodigutla et al., 2019a, 2020),
which can support the handoff judgment and ulti-
mately affect the overall satisfaction. On the one
hand, handoff labels of utterances are highly perti-
nent to local satisfaction, e.g., one can utilize single
handoff information to enhance local satisfaction
prediction, which ultimately contributes to the over-
all satisfaction estimation. On the other hand, the
overall satisfaction is obtained by combining local
satisfactions, which reflects the quality in terms of
answer generation, language understanding, and
emotion perception, and subsequently helps to fa-
cilitate handoff judgment.

In recent years, researchers (Bodigutla et al.,
2019a,b; Ultes, 2019; Bodigutla et al., 2020) ex-
plore joint evaluation of turn and dialogue level
qualities in spoken dialogue systems. In terms of
general dialogue system, to improve the efficiency
of dialogue management, Qin et al. (2020) propose
a co-interactive relation layer to explicitly examine
the cross-impact and model the interaction between
sentiment classification and dialog act recognition,
which are relevant tasks at the same level (utterance-
level). However, MHCH (utterance-level) and SSA
(dialogue-level) target satisfaction at different lev-
els. More importantly, handoff labels of utterances
are more comprehensive and pertinent to local sat-
isfaction than sentiment polarities. Meanwhile, cus-
tomer utterances have significant impacts on the
overall satisfaction (Song et al., 2019), which moti-
vates us that the role information can be critical for
knowledge transfer of these two tasks.

To address the aforementioned issues, we pro-
pose an innovative Role-Selected Sharing Network
(RSSN) for handoff prediction and dialogue satis-
faction estimation, which utilizes role information
to selectively characterize complex relations and
interactions between two tasks. To the best of our
knowledge, it is the pioneer investigation to lever-
age the multi-task learning approach for integrat-
ing MHCH and SSA. In practice, we first adopt a
shared encoder to obtain the shared representations

of utterances. Inspired by the co-attention mech-
anism (Xiong et al., 2016; Qin et al., 2020), the
shared representations are then fed into the role-
selected sharing module, which consists of two
directional interactions: MHCH to SSA and SSA to
MHCH. This module is used to get the fusion of
MHCH and SSA representations. We propose the
role-selected sharing module based on the hypothe-
sis that the role information can benefit the tasks’
performances. The satisfaction distributions of ut-
terances from different roles (agent and customer)
are different, and the effects for the tasks are also
different. Specifically, the satisfaction of agent is
non-negative. The utterances from agent can enrich
the context of customer’s utterances and indirectly
affect satisfaction polarity. Thus, directly employ-
ing local satisfaction of agent into the interaction
with handoff may introduce noise. In the proposed
role-selected sharing module, we adopt local sat-
isfaction based on the role information: only the
local satisfaction from customer can be adopted to
interact with handoff information. By this means,
we can control knowledge transfer for both tasks
and make our framework more explainable. The
final integrated outputs are then fed to separate
decoders for handoff and satisfaction predictions.

To summarize, our contributions are mainly
as follows: (1) We introduce a novel multi-task
learning framework for combining machine-human
chatting handoff and service satisfaction analysis.
(2) We propose a Role-Selected Sharing Network
for handoff prediction and satisfaction rating esti-
mation, which can utilize different role informa-
tion to control knowledge transfer for both tasks
and enhance model performance and explainabil-
ity. (3) The experimental results demonstrate that
our model outperforms a series of baselines that
consists of the state-of-the-art (SOTA) models on
each task and multi-task learning models for both
tasks. To assist other scholars in reproducing the
experiment outcomes, we release the codes and the
annotated dataset1.

2 Related Work

Due to the complexity of human conversation, cur-
rent automatic chatbots are not mature enough and
still fail to meet users’ expectations (Brandtzaeg
and Følstad, 2018; Jain et al., 2018; Chaves and
Gerosa, 2020). Besides exploring novel dialogue
models, dialogue quality estimation, service satis-

1https://github.com/WeijiaLau/RSSN
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faction analysis, and human intervention are vital
strategies to enhance chatbot performance.

Dialogue Quality and Service Satisfaction
Analysis. Interaction Quality (IQ) (Schmitt et al.,
2012) and Response Quality (RQ) (Bodigutla et al.,
2019b) are dialogue quality evaluation metrics for
spoken dialogue systems. Automated models to
estimate IQ (Ultes et al., 2014; El Asri et al., 2014)
and RQ (Bodigutla et al., 2019a,b, 2020) utilize
various features derived from the dialogue content
and output from spoken language understanding
components. For chat-oriented dialogue system,
Higashinaka et al. (2015a,b) introduce Dialogue
Breakdown Detection task to detect a system’s in-
appropriate utterances that lead to dialogue break-
downs. To efficiently analyze dialogue satisfaction,
Song et al. (2019) introduce the task of service sat-
isfaction analysis (SSA) based on multi-turn cus-
tomer service dialogues. The proposed CAMIL
model can predict the sentiment of all the customer
utterances and aggregate those sentiments into over-
all service satisfaction polarity. Nevertheless, the
sentiment of customer utterance is only one of the
factors that influence service satisfaction.

Machine Human Chatting Handoff. Another
perspective of further enhancing the chatbot’s per-
formance is to combine chatbots with human agent.
Recently, there are several works about human-
machine cooperation for chatbots. Huang et al.
(2018) propose the crowd-powered conversational
assist architecture, namely Evorus, which inte-
grates crowds with multiple chatbots and a voting
system. Rajendran et al. (2019) utilize reinforce
learning framework to transfer conversations to hu-
man agents once encountered new user behaviors.
Different from them, Liu et al. (2021) mainly fo-
cus on detecting transferable utterances which are
one of the keys to improve user satisfaction. They
propose a DAMI network that utilizes difficulty-
assisted encoding and matching inference mecha-
nisms to predict the transferable utterance.

Multi-task learning in dialogue system. For
satisfaction estimation, Bodigutla et al. (2020) pro-
pose to jointly predict turn-level RQ labels and
dialogue-level ratings. They utilize features from
spoken dialogue system and BiLSTM (Hochreiter
and Schmidhuber, 1997) based model to automati-
cally weight each turn’s contribution towards the
rating. Ma et al. (2018) propose a joint framework
that unifies two highly pertinent tasks. Both tasks
are trained jointly using weight sharing to extract

the common and task-invariant features while each
task can still learn its task-specific features. To
learn the correlation between two tasks, Qin et al.
(2020) propose a DCR-Net. It adopts a stacked
co-interactive relation layer to incorporate mutual
knowledge explicitly. This model ignores the con-
textual information and isolated two types of infor-
mation when performing interaction.

3 Methodology

Figure 2 shows the overall architecture of RSSN,
which consists of three parts: Shared Utterance
and Matching Encoder, Role-Selected Interaction
Layer, and Decoder for MHCH and SSA. In this
section, we will describe them in detail.

Given a dialogue D = [u1, ..., uL], it consists
of a sequence of L utterances with corresponding
handoff labels [yh1 , ..., y

h
L], where t = {1 ≤ t ≤

L|t ∈ N}, yht ∈ Ψ and Ψ = {normal, transfer-
able}. Transferable indicates the dialogue should
be transferred to the human agent, whereas normal
indicates there is no need to transfer. The satisfac-
tion polarity of dialogue D is noted as ys, where
ys ∈ Ω and Ω = {well satisfied, met, unsatisfied}.
Note that we perform the multi-task learning with
the supervision of handoff labels and dialogue’s sat-
isfaction only. The local satisfaction distributions
of utterances are only the latent estimation, which
helps to predict the dialogue’s satisfaction.

3.1 Shared Utterance and Matching Encoder

The shared encoder consists of a bidirectional
LSTM (BiLSTM) to learn the utterance represen-
tation and a masked matching layer to capture the
contextual matching information.

Suppose ut = [w1, ..., w|ut|] represents a se-
quence of words in the t-th utterance. These words
are mapped into corresponding word embeddings
Eut ∈ Rn×|ut|, where n is the word embedding di-
mension. By adopting semantic composition mod-
els with word embeddings, we can learn the ut-
terance representation. In this work, we adopt a
BiLSTM model and concatenate hidden states of
forward and backward LSTM to learn the context-
sensitive utterance representation vt ∈ R2k, where
k is the number of hidden units of LSTM cell. For-
mally, we have vt = BiLSTM(Eut).

In a dialogue, preceding utterances for each ut-
terance provide helpful context information to es-
timate local satisfaction. Thus, within a dialogue,
there is a high probability of inter-dependency with
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Figure 2: The architecture of our Role-Selected Sharing Network (RSSN) Network.

respect to their context clues. To encapsulate the
contextual matching and information flow in the
dialogue, we feed the utterance representation into
a unidirectional matching mechanism:

v′t = v>t [v1,v2, ...,vt−1] (1)

After masking out the future information of the
present utterance, the matching features of dia-
logue D is a lower triangular matrix with the diag-
onal values removed. Then we concatenate the
matching features with utterance representation
to get v̂t = [v′t;vt]. Finally, we obtain the ini-
tial shared utterances representations of MHCH
H = [v̂1, ..., v̂L] and SSA S = [v̂1, ..., v̂L].

3.2 Role-Selected Interaction Layer
In customer service dialogue, the roles of different
participants would exhibit different characteristics
(Song et al., 2019). Besides, we conjecture that
MHCH and SSA have different impacts on each
other. These two tasks indirectly establish a con-
nection through various factors such as dialogue
quality, satisfaction, and sentiment. At the same
time, role information also plays an important role
in both tasks. On the one hand, the utterances from
agent can enrich the context of customer utterances
and indirectly affect satisfaction polarity. In con-
trast, customer utterances tend to have a more direct

impact on the dominating satisfaction polarity. On
the other hand, the utterances of any participants
can trigger machine-human chatting handoff. Thus,
we propose the Role-Selected Interaction Layer,
which contains two interaction directions: SSA to
MHCH and MHCH to SSA, to model the relations
and interactions between the two tasks separately.

We first apply two Dense layers over the handoff
information and satisfaction information respec-
tively to make them more task-specific, which can
be noted asH ′ = Dense(H) and S′ = Dense(S),
whereH ′ ∈ RL×d and S′ ∈ RL×d. Note that d is
the number of hidden units of the Dense layer.

SSA to MHCH. Co-attention is an effective and
widely used method to capture the mutual knowl-
edge among the correlated tasks (Xiong et al., 2016;
Qin et al., 2020). Inspired by the basic co-attention
mechanism, we design the interaction mechanism
separately according to the characteristics of tasks.
In this way, task-relevant knowledge can be trans-
ferred mutually between two tasks. Specifically,
the SSA to MHCH module produces comprehen-
sive handoff representations incorporating the local
satisfaction information. Since the agent utterances
indirectly affect satisfaction polarity, directly em-
ploying local satisfaction of agent into the inter-
action with handoff may introduce noise. As a
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Figure 3: The relative handoff position distributions in
three different service satisfaction ratings.

consequence, we only adopt the local satisfaction
information of customer to interact with handoff
information. The process can be defined as follows:

αs = softmax(Maskc(H ′(S′)>)) (2)

M = Dense([αsS′;H ′]) (3)

where M ∈ RL×d and Maskc denotes that we
mask out (setting to −∞) all values of the future
information and agent utterances.

MHCH to SSA. As shown in Figure 3, we ob-
serve that the dialogue satisfaction rating is related
to the handoff position. Intuitively, a handoff can
be triggered by the local unsatisfied attitude of the
customer, and the later handoff means users are un-
satisfied before the end of the conversation. Prior
study, Song et al. (2019), also found that user satis-
faction at the dialogue level is usually determined
by the attitudes of the last few utterances. We can
derive that handoff at the later period of the con-
versation may result in a lower satisfaction rating.
Thus, we adjust the interactive attention by posi-
tional weights, which can be computed as below:

βt = softmax([
1

L
, ...,

t

L
, ..., 1]� Ip(ut)) (4)

where � is element-wise product and Ip(·) denotes
a zero masking identity matrix to mask out future
information. Finally, the positional weights Γ =
[β1; ...;βL], where Γ ∈ RL×L. The mechanism
gives more weight to the later handoff information.
We apply the positional weights to the interaction:

αm = softmax(Mask(S′ · (H ′)> · Γ)) (5)

Q = LayerNorm(αm ·H ′ + S′) (6)

where Mask denotes that we mask out the future
information (setting to −∞), and LayerNorm de-
notes the layer normalization (Ba et al., 2016).

3.3 Decoder for MHCH and SSA
After the role-selected interaction layer, we can
get the outputs M = [m1, ...,mL] and Q =
[q1, ..., qL]. Then we adopt separate decoders to
predict handoff and satisfaction rating.

In terms of machine-human chatting handoff, the
tendency of handoff also depends on the dialogue
context. Thus, we feed the outputs of the interac-
tion layer into an LSTM to connect the sequential
information flow in the dialogue:

ht = LSTM(mt,ht−1) (7)

where ht ∈ Rk is the hidden state for ut. Since
there are no dependencies among labels, we simply
use a softmax classifier for handoff prediction:

ŷht = softmax(W~ht + b~) (8)

where W~ ∈ R|Ψ|×k and b~ ∈ R|Ψ|. ŷht ∈ R|Ψ| is
the predicted handoff probability distribution of ut.

For service satisfaction analysis, we first ap-
ply a transformer block (Vaswani et al., 2017) to
model the long-range context of the dialogue fur-
ther. Formally, we have Q̂ = Transformer(Q),
where Q̂ = {q̂1, ..., q̂L|q̂t ∈ Rk}.

Then we utilize a softmax function for estimat-
ing local satisfaction distribution zt ∈ R|Ω| of ut:

zt = softmax(Wξq̂t + bξ) (9)

where Wξ ∈ R|Ω|×k and bξ ∈ R|Ω|.
Since only a fraction of customer utterances can

contribute to the final satisfaction rating, we intro-
duce an attention strategy that enables our model
to attend to customer utterances of different impor-
tance when merging the local satisfaction distribu-
tion. Formally, we measure the importance of each
customer utterances as below:

α = softmax(Mask′c(g
>tanh(WµQ̂

>
+ bµ)))

(10)

where α ∈ RL. Wµ ∈ Rz×k, bµ ∈ Rz , and
g ∈ Rz are trainable parameters. z is the num-
ber of attention units. Mask′c denotes the masking
function used to reserve customer utterances. g
can be perceived as a high-level representation of a
fixed query "Which is the critical utterance?".

Finally, we obtain the overall satisfaction dis-
tribution ŷs ∈ R|Ω| as the weighted sum of local
customer satisfaction distribution:

ŷs =

L∑
t=1

αtzt (11)

where αt is the t-th weight of utterance ut in α.
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Statistics items Clothes Makeup

# Dialogues 10,000 3,540
# US (unsatisfied) 2,302 1,180
# MT (met) 6,399 1,180
# WS (well satisfied) 1,299 1,180
# Transferable Utterances 16,921 7,668
# Normal Utterances 237,891 86,778
Avg # Utterances 25.48 26.67
Avg # Tokens 7.64 7.87

Kappa 0.85 0.88

Table 1: Statistics of the datasets.

3.4 Joint Training

The objective function of MHCH is formulated as:

L1 = − 1

L

L∑
t=1

|Ψ|∑
i=1

yhi,t log(ŷhi,t) (12)

The objective function of SSA is formulated as:

L2 = −
|Ω|∑
i=1

ysi log(ŷsi ) (13)

Finally, we minimize the joint cross-entropy loss
L, which is obtained as follow:

L(Θ) = L1 + η ∗ L2 + δ ‖Θ‖22 (14)

where η ∈ R+ denotes the trade-off parameter, δ
denotes the L2 regularization weight, and Θ de-
notes all the trainable parameters of model. We use
backpropagation to compute the gradients of the
parameters, and update them with Adam (Kingma
and Ba, 2015) optimizer.

4 Experiments and Results

4.1 Dataset and Experimental Settings

Our experiments are conducted based on two pub-
licly available Chinese customer service dialogue
datasets, namely Clothes and Makeup2, collected
by Song et al. (2019) from Taobao3. Both datasets
have service satisfaction ratings from customer
feedbacks and annotated sentiment labels of ut-
terances. Note that the sentiment labels do not par-
ticipate in our training process and are only used
for test. Meanwhile, we also annotate the transfer-
able/normal labels for both datasets according to
the existing specifications (Liu et al., 2021). Two

2https://github.com/songkaisong/ssa
3https://www.taobao.com

annotators with professional linguistics knowledge
participated in the annotation task.

A summary of statistics, including Kappa value
(Snow et al., 2008) for both datasets are given in
Table 1. Clothes is a corpus with 10K dialogues
in the Clothes domain, which has an imbalanced
satisfaction distribution at dialogue level. Makeup
is a corpus with 3,540 dialogues in the Makeup
domain, which has a balanced satisfaction distribu-
tion dialogue level. Note that we do not adopt the
original word segmentation. Figure 3 shows the
relative handoff position distributions in different
satisfaction ratings, where we take explicit request,
negative emotion, and unsatisfactory answer hand-
offs into consideration. It indicates that handoff at
the later phase of the conversation is more likely to
get a lower service satisfaction rating.

Except BERT-based model, all texts are tok-
enized by a popular Chinese word segmentation
utility called jieba4. The datasets are partitioned
for training, validation, and test with an 80/10/10
split. For the BERT-based methods, we fine-tune
the pre-trained model. For the other methods, we
apply the pre-trained word vectors initially trained
on Clothes and Makeup corpora by using CBOW
(Mikolov et al., 2013). The dimension of word
embedding is set as 200. Other trainable model
parameters are initialized by sampling values from
the Glorot uniform initializer (Glorot and Bengio,
2010). The sizes of hidden state k, Dense units d,
attention units z, and batch size are selected from
{32, 64, 128, 256, 512}. The dropout (Srivastava
et al., 2014) rate and the loss weight η are selected
from (0, 1) by grid search. Finally, we train the
models with an initial learning rate of 1.5× 10−3

and 2×10−5 for regular baselines and BERT-based
models. All the methods run on a server configured
with a Tesla V100, 32 CPU, and 32G memory.

4.2 Baselines

We compare our model with 14 strong dialogue
classification baseline models, which come from
MHCH, SSA, and other similar tasks.

Generic Baselines: HAN (Yang et al., 2016) and
BERT(Devlin et al., 2019)+LSTM. We adopt out-
puts and the last hidden of RNN to predict handoff
labels and the satisfaction rating, respectively.

Baselines for the MHCH task: HEC (Ku-
mar et al., 2018), DialogueRNN (Majumder
et al., 2019), CASA (Raheja and Tetreault, 2019),

4https://pypi.org/project/jieba
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Models

Clothes Makeup

MHCH SSA MHCH SSA

F1 Mac. F1 GT-I GT-II GT-III WS F1 MT F1 US F1 Mac. F1 Acc. F1 Mac. F1 GT-I GT-II GT-III WS F1 MT F1 US F1 Mac. F1 Acc.

HAN 59.8 78.7 71.7 73.1 74.0 51.5 81.7 70.4 67.9 75.5 54.3 75.4 68.5 70.1 71.3 68.4 71.3 84.8 74.8 74.8
BERT+LSTM 60.4 78.9 73.4 74.9 75.9 42.2 84.2 72.9 66.4 77.6 59.1 78.0 72.0 73.0 73.7 66.7 72.9 87.2 75.6 76.0

HEC 59.8 78.7 71.2 72.3 73.0 - - - - - 57.1 76.8 68.0 69.5 70.5 - - - - -
DialogueRNN 60.8 79.2 73.1 74.6 75.6 - - - - - 58.3 77.4 68.8 70.5 71.6 - - - - -
CASA 62.0 79.8 73.6 75.0 75.9 - - - - - 58.4 77.5 70.6 72.7 73.9 - - - - -
LSTMLCA 62.6 80.1 72.4 73.9 74.8 - - - - - 57.4 77.0 70.2 71.7 72.6 - - - - -
CESTa 60.6 79.1 73.4 74.8 75.6 - - - - - 59.3 78.0 69.6 71.2 72.2 - - - - -
DAMI 66.7 82.2 74.2 75.9 77.1 - - - - - 61.1 79.0 73.3 74.4 75.2 - - - - -

MILNET - - - - - 38.2 82.3 70.8 63.8 75.3 - - - - - 72.0 68.9 84.9 75.3 75.1
HMN - - - - - 44.1 83.3 69.6 65.7 76.3 - - - - - 73.5 73.1 83.4 76.6 76.8
CAMIL - - - - - 55.4 84.4 71.5 70.4 78.3 - - - - - 73.8 74.5 87.4 78.6 78.5

MT-ES 61.7 79.7 74.6 75.9 76.8 47.7 82.4 74.1 68.1 76.4 57.1 76.9 69.9 71.7 72.8 72.0 68.7 84.3 75.0 75.1
JointBiLSTM 62.0 79.9 75.0 76.1 76.9 26.7 82.1 69.4 59.4 74.5 59.3 78.0 70.1 72.0 73.1 74.5 72.2 83.7 76.8 76.8
DCR-Net 62.1 79.9 71.4 72.8 73.7 49.8 82.7 76.6 69.7 77.3 58.8 77.7 70.0 72.1 73.4 74.8 69.1 88.6 77.5 77.7

RSSN(ours) 69.2∗ 83.6∗ 78.4∗ 79.5∗ 80.3∗ 56.0 85.1 74.0 71.7∗ 79.5∗ 65.9∗ 81.5∗ 75.1∗ 76.6∗ 77.6∗ 77.4∗ 76.1∗ 88.9 80.8∗ 80.8∗

Table 2: Experimental results of performance (%) comparison with base models on Makeup and Clothes test
datasets. Underline shows the best performance for baselines. - means not applicable. Bold shows the best
performance. ∗ indicates statistical significance at p < 0.05 level compared to the best performance of baselines.

LSTMLCA (Dai et al., 2020), CESTa (Wang
et al., 2020b), and DAMI (Liu et al., 2021).

Baselines for the SSA task: MILNET (Angelidis
and Lapata, 2018), HMN (Shen et al., 2018), and
CAMIL (Song et al., 2019).

Multi-task baselines: MT-ES (Ma et al., 2018),
JointBiLSTM (Bodigutla et al., 2020), and DCR-
Net (Qin et al., 2020). Specifically, We modify
DCR-Net for our tasks by keeping the core self-
attention and co-interactive relation layer.

For DAMI, we adopt the open-sourced code5 to
get the results. For DialogueRNN, we adapt the
open-sourced code6 to MHCH by keeping the core
component unchanged. For HAN, MILNET, HMN,
and CAMIL of SSA, we adopt the reported results
from Song et al. (2019). We re-implement the
other models. For BERT+LSTM, we adopt Chinese
BERT-base model7.

4.3 Comparative Study

Following Song et al. (2019), we adopt Macro F1
(Mac. F1) and Accuracy (Acc.) for evaluating
the SSA task. For evaluating the MHCH task, we
adopt F1, Macro F1 (Mac. F1), and Golden Trans-
fer within Tolerance (GT-T) (Liu et al., 2021). GT-T
considers the tolerance property of the MHCH task
by the tolerance range T , which allows a “biased”
prediction within it. The adjustment coefficient λ
of GT-T penalizes early or delayed handoff. Like-
wise, we set λ as 0, and set T to range from 1 to

5https://github.com/WeijiaLau/MHCH-DAMI
6https://github.com/senticnet/conv-emotion
7https://github.com/google-research/bert

Models

Clothes Makeup

MHCH SSA MHCH SSA

F1 Mac. F1 GT-I Mac. F1 Acc. F1 Mac. F1 GT-I Mac. F1 Acc.

Average 65.3 81.6 74.6 63.8 73.7 64.1 80.4 73.2 73.6 73.7
Voting 61.7 79.7 71.7 27.5 61.2 62.0 79.4 68.3 34.6 42.1
Last 66.4 82.1 74.6 67.0 75.6 62.8 79.8 71.5 76.6 76.8
w/o Interact 65.6 81.6 70.6 65.5 72.3 62.0 79.5 71.4 74.8 74.6
w/o Select 64.4 81.0 73.6 67.0 74.3 61.7 79.2 71.7 72.9 72.9
w/o Position 66.1 81.9 73.2 68.4 76.0 64.7 80.8 73.5 76.8 76.8

Full Model 69.2 83.6 78.4 71.7 79.5 65.9 81.5 75.1 80.8 80.8

Table 3: Ablation study performance (%) on Clothes
and Makeup test datasets. w/o denotes "without".

3 corresponding to GT-I, GT-II, and GT-III. The
results of comparisons are shown in Table 2.

We can observe that: (1) The proposed method
outperforms all state-of-the-art models specific to
one task in terms of all metrics on two datasets.
This indicates that our proposed model can effec-
tively capture useful information in both tasks by
utilizing role and positional information to explic-
itly control the interaction between the two tasks.
Hence, the performance of the two tasks can be
boosted mutually. (2) By integrating MHCH with
SSA, the multi-task learning model can obtain fur-
ther improvements. Specifically, we find that the
MHCH task has a positive influence on detecting
the unsatisfied dialogue. Overall, DCR-Net and
our model perform better than standalone models
on US F1 of satisfaction prediction. Intuitively,
it is mainly because the interaction with handoff
can more comprehensively reflect the local dissat-
isfaction dialogues than solely sentiment polarity
analysis, which helps the joint model better identify
dissatisfied dialogues for the SSA task.
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Dialogue Content RSSN CAMIL DAMI

C1: When will I receive it? Normal | Neutral N | NE NE N
A2: Normally, you can receive it in two or three days. Normal | - N - N
C3: My skin is dull, I don’t know which one to choose, please recommend suitable one to me.
Normal | Neutral N | NE NE N

A4: Do not know which one to choose? Suitable for your own is the best. We recommend you
directly order and experience it. It can be returned for no reason within 7 days. If the problem
has not been solved, you can ask for “human”. Transferable | -

T - N

C5: For nothing… Transferable | Negative T | NG NG T

C6: Told you, my skin is dull. I don't know which one to buy. I won't buy it if there is no recom-
mendation. Transferable | Negative T | NG NG T

Satisfaction Rating:    Unsatisfied US MT -

Figure 4: An example dialogue with predictions and attention distribution. Ci/Ai denotes Customer/Chatbot utter-
ance, followed by true labels. The sentiment labels of Customer utterances are also given along with the handoff
labels. The other columns are the predictions of our model, CAMIL and DAMI, respectively. The satisfaction
ratings of ground truth and predictions are in the last row of the table. N/T denotes Normal/Transferable.

4.4 Ablation

We perform several ablation tests in our model on
two datasets and the results are recorded in Table
3. The results demonstrate the effectiveness of
different components of our model.

w/o Interact: We modify the full version of our
model by only sharing parameters of the Utterance
and Matching Encoder. The performance degrada-
tion demonstrates the effectiveness of modeling the
relations between two tasks with interaction. w/o
Select: We remove the Role-Select mechanism
to ignore the role information during the interac-
tion process. The performance degradation indi-
cates that straightforward interaction may bring
noisy information for both tasks. w/o Position:
We remove the positional weights in the MHCH to
SSA sub-module. It performs well but worse than
Full Model since the position information provide
prior knowledge for controlling context interac-
tion. Average, Voting, and Last: Average takes
the average of the local satisfaction distributions
of customer utterances for classification. Voting
directly maps the majority local satisfaction dis-
tributions of customer into satisfaction prediction.
Last takes the last customer’s satisfaction distribu-
tion as classification result. Average, Voting and
Last are sub-optimal choices and perform worse
than the Full Model. This is because the local sat-
isfaction distributions contribute unequally to the
overall satisfaction polarity. Also, the majority sat-
isfaction polarity does not directly correlate with
the overall satisfaction.

4.5 Case Study

Figure 4 illustrates our prediction results with an
example dialogue, which is translated from Chi-
nese text. In this case, three utterances (A4, C5 and

C6) are labeled as transferable, and two of them
(C5 and C6) are labeled as “negative emotion”.
Among them, A4 is an unsatisfactory response,
which arouses negative emotions of the customer.
DAMI only predicts C5 and C6 as transferable ut-
terances. However our model successfully detects
all the transferable utterances. By mapping local
satisfaction distribution of utterances to sentiment
of utterances, our model is able to predict reason-
able sentiment polarities for customer utterances
(detailed analysis is in Subsection 4.6). Consid-
ering the context, the customer describes his/her
skin problem at C3 and asks for a recommendation.
However, the chatbot does not give any recommen-
dations and returns an irrelevant answer at A4. We
provide the attention distributions of the utterances
on the right side of the example dialog. αs5 and αs6
are the SSA to MHCH attention distributions of C5

and C6; αm5 and αm6 are the MHCH to SSA atten-
tion distributions of C5 and C6. We can observe
that attention distributions are concentrated on A4

rather than other utterances. It is because A4 is the
main cause of negative emotion and dissatisfaction.
This again demonstrates that our model can capture
the mutual influence between local satisfaction and
handoff, which is useful for prediction. In terms of
final satisfaction rating, although CAMIL correctly
predicts the sentiments of customer utterances, it
gives a wrong prediction of satisfaction rating. Our
model correctly predicts the satisfaction rating as
Unsatisfied by considering the negative emotions
and its cause of the unsatisfied response.

4.6 Results on Sentiment Classification

Song et al. (2019) utilize multiple instance learn-
ing to predict the satisfaction rating and the senti-
ment of customer utterances with the supervision
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Models
Clothes Makeup

PO F1 NE F1 NG F1 Mac. F1 Acc. PO F1 NE F1 NG F1 Mac. F1 Acc.

MILNET 44.1 81.4 40.4 55.3 71.3 44.7 38.7 41.6 41.7 41.0
CAMIL 48.4 89.3 55.5 64.4 82.4 54.4 72.5 51.6 59.5 64.7
RSSN 63.5 90.1 58.4 70.7 83.8 51.3 67.8 54.6 57.9 61.6

Table 4: Results of sentiment classification by different
models on Clothes and Makeup test datasets.

of the dialogue’s satisfaction labels only during the
training process. Similarly, our satisfaction predic-
tion is based on the estimation of local satisfaction
distributions while the utterance sentiment or sat-
isfaction labels are unobserved. To compare and
analyze the performance of utterance-level senti-
ment classification, we map these distributions into
sentiments of utterances as the sentiment prediction
results according to the distribution polarities, i.e.,
unsatisfied→ negative (NG), met→ neutral (NE),
well-satisfied→ positive (PO).

In Table 4, we compare the sentiment predic-
tion results of MILNET, CAMIL, and our model.
On Clothes dataset, our RSSN performs better
than other baselines, while it performs worse than
CAMIL on Makeup dataset. It is worth noting that
our model achieves the best performance on both
Clothes and Makeup datasets in terms of NG F1
metric. It indicates that MHCH task is sensitive
to negative emotion and contributes more to nega-
tive emotion recognition than separate SSA models.
From Table 2, we can also see that our model per-
forms better than separate SSA models in terms
of US F1, which is consistent with the findings of
sentiment classification.

5 Conclusions and Future works

In this paper, we propose an innovative multi-task
framework for service satisfaction analysis and
machine-human chatting handoff, which deliber-
ately establishes the mutual interrelation for each
other. Specifically, we propose a Role-Selected
Sharing Network for joint handoff prediction and
satisfaction estimation, utilizing role and positional
information to control knowledge transfer for both
tasks. Extensive experiments and analyses reveal
that explicitly modeling the interrelation between
the two tasks can boost the performance mutually.

However, our model has not been calibrated to
account for user preferences and biases, which we
plan to address in future work. Moreover, we will
further explore how to adjust the handoff priority
with the assistance of personalized information.
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