
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9457–9473
November 7–11, 2021. c©2021 Association for Computational Linguistics

9457

Revisiting Tri-training of Dependency Parsers

Joachim Wagner and Jennifer Foster
School of Computing

Dublin City University
Dublin, Ireland

firstname.lastname@dcu.ie

Abstract

We compare two orthogonal semi-supervised
learning techniques, namely tri-training and
pretrained word embeddings, in the task of
dependency parsing. We explore language-
specific FastText and ELMo embeddings and
multilingual BERT embeddings. We focus
on a low resource scenario as semi-supervised
learning can be expected to have the most
impact here. Based on treebank size and
available ELMo models, we select Hungar-
ian, Uyghur (a zero-shot language for mBERT)
and Vietnamese. Furthermore, we include En-
glish in a simulated low-resource setting. We
find that pretrained word embeddings make
more effective use of unlabelled data than tri-
training but that the two approaches can be suc-
cessfully combined.

1 Introduction

Pre-trained neural architectures and contextualised
word embeddings are state-of-the-art approaches
to combining labelled and unlabelled data in nat-
ural language processing tasks taking text as in-
put. A large corpus of unlabelled text is processed
once and the resulting model is either fine-tuned
for a specific task or its hidden states are used as
input for a separate model. In the task of depen-
dency parsing, recent work is no exception to the
above. However, earlier, pre-neural work explored
many other ways to use unlabelled data to enrich
a parsing model. Among these, self-, co- and tri-
training had most impact (Charniak, 1997; Steed-
man et al., 2003; McClosky et al., 2006a,b; Søgaard
and Rishøj, 2010; Sagae, 2010).

Self-training augments the labelled training data
with automatically labelled parse trees predicted by
a baseline model in an iterative process:

1. Select unlabelled sentences to be parsed in
this iteration

2. Parse sentences with current model

3. Optionally discard some of the parse trees,
e. g. based on parser confidence

4. Optionally oversample the original labelled
data to give it more weight

5. Train a new model on the concatenation of
manually labelled and automatically labelled
data

6. Check a stopping criterion

Co-training proceeds similarly to self-training but
uses two different learners, each teaching the other
learner, i. e. output of learner A is added to the train-
ing data of learner B and vice versa. Tri-training
uses three learners and only adds predictions to
a learner that the other two learners, the teachers,
agree on. As with co-training, the roles of teachers
are rotated so that all three learners can receive
newly labelled data.

We compare tri-training and contextualised word
embeddings in the task of dependency parsing, us-
ing the same unlabelled data for both approaches.
In this comparison, we will try to answer:

1. How does semi-supervised learning with tri-
training compare to semi-supervised learning
with a combination of context-independent
and contextualised word embeddings?

2. Are the above two approaches orthogonal, i. e.
do we get an additional boost if we combine
them?

3. How do these three approaches compare to the
baseline of using only the manually labelled
data?

We focus on low-resource languages as (a) max-
imising the benefits from semi-supervised learning
even at high computational costs is most needed for
low-resource languages, e. g. to reducing editing
effort in the manual annotation of additional data,
and (b) tri-training with high-resource languages
comes at much higher computational costs as not

9458

only is the manually labelled data much larger but
also the automatically labelled data can be expected
to need to be at least equally larger to have a rele-
vant effect. We select three low-resource languages,
namely Hungarian, Uyghur and Vietnamese, (see
Section 3.3 for selection criteria) and, English, sim-
ulating a low-resource scenario by sampling a sub-
set of the available data.

The results of our experiments show that 1) both
tri-training and pretrained word embeddings offer
an obvious improvement over a fully supervised ap-
proach, 2) pretrained word embeddings clearly out-
perform tri-training (between 2 and 5 LAS points,
depending on the language), and 3) there is some
merit in combining the two approaches since the
best performing model for each of the four lan-
guages is one in which tri-training is applied with
models which use pretrained embeddings.

2 Background

2.1 Tri-training

Tri-training has been used to tackle various natu-
ral language processing problems including depen-
dency parsing (Søgaard and Rishøj, 2010), part-of-
speech tagging (Søgaard, 2010; Ruder and Plank,
2018), chunking (Chen et al., 2006), authorship
attribution (Qian et al., 2014) and sentiment analy-
sis (Ruder and Plank, 2018). Approaches differ not
only in the type of task (sequence labelling, classifi-
cation, structured prediction) but also in the flavour
of tri-training applied. These differences take the
form of the method used to introduce diversity into
the three learners, the number of tri-training itera-
tions and whether a stopping criterion is employed,
the balance between manually and automatically
labelled data, the selection criteria used to add an
automatically labelled instance to the training pool,
and whether automatic labels from previous itera-
tions are retained.

Zhou and Li (2005) introduce tri-training. They
experiment with 12 binary classification tasks with
data sets from the UCI machine learning repository,
using bootstrap samples for model diversity. Each
pair of learners, the teachers, sends their unanimous
predictions to the remaining third learner if (a) the
error rate as measured on the subset of the manu-
ally labelled data which the two learners agree on
is below a threshold and (b) the total number of
items that the teachers agree on and therefore can
hand over to the learner reaches a minimum num-
ber that is adjusted in each round for each learner.

There also is an upper limit for the size of the new
data received that is enforced by down-sampling if
exceeded. A learner’s model is updated using the
concatenation of the full set of manually labelled
data (before sampling) and the predictions received
from teachers. If no predictions are received a
learner’s model is not updated. Tri-training stops
when no model is updated.

Chen et al. (2006) apply tri-training to a se-
quence labelling task, namely chunking, and dis-
cuss sentence-level instance selection as a devia-
tion from vanilla tri-training. They propose a “two
agree one disagree method” in which the learner
only accepts a prediction from its teachers when
it disagrees with the teachers. Søgaard (2010) re-
invents this method and coins the term tri-training
with disagreement for it.

Li and Zhou (2007) extend tri-training to more
than three learners and relax the requirement that
all teachers must agree by using their ensemble
prediction. They apply this to an ensemble of deci-
sion trees, i. e. a random forest, and call the method
co-forest. As to the risk of deterioration of per-
formance due to wrong labelling decisions, they
point to previous work showing that the effect can
be compensated with a sufficient amount of data if
certain conditions are met, and they include these
conditions in the co-forest algorithm.

Guo and Li (2012) identify issues with the up-
date criterion of tri-training and with the estimation
of error rates on training data and propose two mod-
ified methods, one improving performance in 19
of 33 test cases (eleven tasks and three learning
algorithms) and the other improving performance
in 29 of 33 cases.

Fazakis et al. (2016) compare self-, co- and
tri-training combined with a selection of machine
learning algorithms on 52 datasets and include a
setting where self-training is carried out with logis-
tic model trees, a type of decision tree classifier that
has logistic regression models at its leaf nodes. Tri-
training with C45 decision trees comes second in
their performance ranking after self-training with
logistic model trees. However, logistic model trees
are not tested with co- or tri-training.

Chen et al. (2018) adjust tri-training to neural
networks by sharing parameters between learners
for efficiency. Furthermore, they add random noise
to the automatic labels to encourage model diver-
sity and to regularize the models and in addition to
teacher agreement they require teacher predictions

9459

made with dropout (as in training) to be stable.
Ruder and Plank (2018) also propose to share

all but the final layers of a neural model between
the three learners in tri-training for sentiment anal-
ysis and POS tagging. They add an orthogonality
constraint on the features used by two of the three
learners to encourage diversity. Furthermore, they
apply multi-task training in tri-training and they
modify the tri-training algorithm to exclude the
manually labelled data from the training data of the
third learner.

2.2 Tri-training in Dependency Parsing
Tri-training was first applied in dependency pars-
ing by Søgaard and Rishøj (2010), who combine
tri-training with stacked learning in multilingual
graph-based dependency parsing. 100k sentences
per language are automatically labelled using three
different stacks of token-level classifiers for arcs
and labels, resulting in state-of-the-art performance
on the CONLL-X Shared Task (Buchholz and
Marsi, 2006).

In an uptraining scenario, Weiss et al. (2015)
train a neural transition-based dependency parser
on the unanimous predictions of two slower, more
accurate parsers. This can be seen as tri-training
with one iteration and with just one learner’s model
as the final model. Similarly, Vinyals et al. (2015)
use single iteration, single direction tri-training in
constituency parsing where the final model is a
neural sequence-to-sequence model with attention,
which learns linearised trees.

2.3 Comparing Cross-view Training and
Pretraining in NLP

The only previous work we know of that com-
pares pretrained contextualised word embeddings
to another semi-supervised learning approach is the
work of Bhattacharjee et al. (2020) who compare
three BERT models (Devlin et al., 2019) and a semi-
supervised learning method for neural models in
three NLP tasks: detecting the target expressions of
opinions, named entity recognition (NER) and slot
labelling, i. e. populating attributes of movies given
reviews of movies. The semi-supervised learning
method is cross-view training (Clark et al., 2018),
which adds auxiliary tasks to a neural network that
are only given access to restricted views of the in-
put, similarly to the learners in co-training, e. g.
a view may be the output of the forward LSTM
in a Bi-LSTM. The auxiliary tasks are trained to
agree with the prediction of the main classifier on

unlabelled data. Cross-view training performs best
in NER and slot labelling in Bhattacharjee et al.
(2020)’s experiments and comes second and third
place on two test sets in opinion target expression
detection.

3 Experimental Setup

This section describes the technical details of the
experimental setup.

3.1 Tri-Training Algorithm
We provide an overview of our tri-training algo-
rithm.1 Before the first tri-training iteration, three
samples of the labelled data are taken and initial
models are trained on them. Each tri-training itera-
tion compiles three sets of automatically labelled
data, one for each learner, feeding predictions that
two learners agree on to the third learner.2 In case
all three learners agree, we randomly pick a receiv-
ing learner.3 At the end of each tri-training itera-
tion, the three models are updated with new models
trained on the concatenation of the manually la-
belled and automatically labelled data selected for
the learners.

3.2 Parameter Selection
We explore three tri-training parameters:

• A: the amount of automatically labelled data
combined with labelled data when updating a
model at the end of a tri-training iteration

• T : the number of tri-training iterations
1Full pseudocode is provided in Appendix A. We share

our source code, basic documentation and training log files
(including development and test scores of each learner for
all iterations) on https://github.com/jowagner/
mtb-tri-training.

2We require all predictions (lemmata, universal and
treebank-specific POS tags, morphological features, depen-
dency heads and dependency labels including language-
specific subtypes) for all tokens of a sentence to agree. The
main reason is simplicity: The parser UDPipe-Future expects
training data with all predictions as it jointly trains on them
(multi-task learning). If we allowed disagreement between
teachers on some of the tag columns we would have to come
up with a heuristic to resolve such disagreements, complicat-
ing the experiment. Furthermore, we hypothesise that full
agreement increases the likelihood of the syntactic prediction
to be correct. The agreement can be seen as a confidence
measure or quality filter.

3Restricting the knowledge transfer to a single learner is a
compromise between vanilla tri-training, which lets all three
learners learn from unanimous predictions, and tri-training
with disagreement (Chen et al., 2006), which lets none of the
learners learn from such predictions. Furthermore, this modi-
fication (together with rejecting duplicates while sampling the
unlabelled data) increases diversity of the sets and therefore
may help keeping the learners’ models diverse.

https://github.com/jowagner/mtb-tri-training
https://github.com/jowagner/mtb-tri-training

9460

• d: how much weight is given to data from
previous iterations. The current iteration’s
data is always used in full. No data from
previous iterations is added with d = 0. For
d = 1, all available data is concatenated. With
d < 1, we apply exponential decay to the
dataset weights, e. g. for d = 0.5 we take 50%
of the data from the previous iteration, 25%
from the iteration before the last one, etc.

For a fair comparison of tri-training with and with-
out word embeddings, we take care that A, T and
d are explored equally well in both settings and
that each comparison is based on results for the
same set of parameters. Based on the observations
in Appendices B.2 to B.4 and balancing accuracy,
number of runs and computational costs, we per-
form for each language and parser twelve runs:

• one run with A = 40k, T = 12 and d = 1

• one run with A = 80k, T = 8 and d = 1

• two runs with A = 80k, T = 8 and d = 0.5

• two runs with A = 160k, T = 4 and d = 0.5

• the above six runs in a variant where the seed
data is oversampled to match the size of unla-
belled data for the model updates at the end
of each tri-training iteration.

For runs with multilingual BERT, we use d ∈
{0.5, 0.71} instead of d ∈ {0.5, 1} to reduce com-
putational costs.

3.3 Choice of Languages
Since we focus on low-resource languages, we se-
lect the three treebanks with the smallest amount of
training data from UD v2.3, meeting the following
criteria:

• The treebank has a development set.

• An ELMoForManyLangs model (Section 3.5)
is available for the target language. Sign lan-
guages and transcribed spoken treebanks are
not covered.

• Surface tokens are included in the public UD
release.

The treebanks selected are Hungarian
hu_szeged (Vincze et al., 2010), Uyghur
ug_udt (Eli et al., 2016), and Vietnamese
vi_vtb (Nguyen et al., 2009). Furthermore, we
include English in a simulated low-resource setting
using a sample of 1226 sentences (20149 tokens)

from the English Web Treebank en_ewt (Silveira
et al., 2014). Table 1 shows each treebank’s
training data size and the size of unlabelled data.
The sizes of the labelled training data are in a
narrow range of 19.3 to 20.3 thousand tokens.

3.4 Unlabelled Data

To match the training data of the word embeddings
(Section 3.5), we use the Wikipedia and Common
Crawl data of the CoNLL 2017 Shared Task in UD
Parsing (Ginter et al., 2017; Zeman et al., 2017)
as unlabelled data in tri-training. We downsample
the Hungarian data to 12%, the Vietnamese data
to 6% and the English data to 2% of sentences to
reduce disk storage requirements. All data, includ-
ing data for Uyghur, is further filtered by removing
all sentences with less than five or more than 40
tokens4 and the order of sentences is randomised.
We then further sample the unlabelled data in each
tri-training iteration to a subset of fixed size to
limit the parsing and training costs. The last two
columns of Table 1 show the size of the unlabelled
data sets after filtering and sampling.5

3.5 Parser and Word Embeddings

For the parsing models of the individual learners in
tri-training, we use UDPipe-Future (Straka, 2018).
This parser jointly predicts parse tree, lemmata,
universal and treebank-specific POS tags and mor-
phological features. Since its input at predict time
is just tokenised text, it can be directly applied to
unlabelled data while still exploiting lemmata and
tags annotated in the labelled data to obtain strong
models. We use UDPipe-Future in two configura-
tions:

• udpf: UDPipe-Future with internal word and
character embeddings only. This parser is for
semi-supervised learning via tri-training only,
i. e. the unlabelled data only comes into play
through tri-training. The parser’s word em-

4In preliminary experiments with the English LinEs tree-
bank and without a length limit, learners rarely agree on pre-
dictions for longer sentences. This means that long sentences
are unlikely to be selected by tri-training as new training data
and the increased computational costs of parsing long sen-
tences does not seem justified. We also exclude very short
sentences as we do not expect them to feature new syntactic
patterns and, if they do, to not provide enough context to infer
the correct annotation.

5These numbers do not reflect the removal of sentences
that contain one or more tokens that have over 200 bytes
in their UTF-8-encoded form and de-duplication performed
before parsing unlabelled data.

9461

Labelled Unlabelled
Training Development Test (filtered and sampled)

Language Tokens Sent. Tokens Sent. Tokens Sent. Tokens Sentences
English 20,149 1,226 25,148 2,002 25,096 2,077 153,878,772 10,275,582
Hungarian 20,166 910 11,418 441 10,448 449 168,359,253 12,199,371
Uyghur 19,262 1,656 10,644 900 10,330 900 2,537,468 217,950
Vietnamese 20,285 1,400 11,514 800 11,955 800 189,658,820 12,634,409

Table 1: Data statistics (UDPipe sentence splitting and tokenisation for the unlabelled data; right-most columns
are for the unlabelled data used in tri-training; for the ELMo and FastText training data, see Section 3.5)

beddings are restricted to the labelled training
data.

• fasttext: This parser is UDPipe-Future with
FastText word embeddings (Bojanowski et al.,
2017). It is included to be able to tell how
much of performance differences of the fol-
lowing two parsers is due to the inclusion of
FastText word embeddings.

• elmo: This parser combines FastText word
embeddings with ELMo (Peters et al., 2018)
contextualised word embeddings. This parser
is for semi-supervised learning via training
word embeddings on unlabelled data and via
a combination of word embeddings and tri-
training.

• mbert: This parser combines FastText word
embeddings with multilingual BERT6 (Devlin
et al., 2019) contextualised word embeddings,
pre-trained on Wikipedia in just over 100 lan-
guages including three of the four languages
of our experiments.7 We include this parser to
verify that our findings carry over to a trans-
former architecture.

UDPipe-Future employs external word represen-
tations without fine-tuning the respective models,
in our case FastText, ELMo and BERT. Following
Straka et al. (2019) we use a fixed vocabulary of the
one million most frequent types with FastText. We
train FastText on the full CoNLL’17 data for each
language separately, i. e. 9.4 billion tokens for En-
glish, 1.6 billion tokens for Hungarian, 3.0 million
tokens for Uyghur and 4.1 billion tokens for Viet-
namese. FastText’s feature to produce new word
vectors for unseen words is not used. For ELMo,

6https://github.com/google-research/
bert/blob/master/multilingual.md

7To increase parser diversity in tri-training, each tri-
training learner uses different BERT layers and subword unit
vector pooling methods, see Appendix F.

we use the ELMoForManyLangs8 models provided
by Che et al. (2018). They limit training to “20
million words”, i. e. 0.2% of the English data, 1.2%
of the Hungarian data, 100% of the Uyghur data
and 0.5% of the Vietnamese data. Multilingual
BERT is trained on Wikipedia only, presumably
on a newer data dump than the one used for the
Wikipedia part of the CoNLL’17 data.

An unusual feature of UDPipe-Future is that it
oversamples the training data to 9,600 sentences in
each epoch if the training data is smaller than that.
This automatic oversampling enables the parser to
perform well on most UD treebanks without tuning
the number of training epochs. In our experiments,
this behaviour will be triggered in settings with a
low or medium augmentation size A, except when
data of previous iterations is combined (d > 0) and
the number of iterations T is not small.9

We make a small modification to the default
learning rate schedule of UDPipe-Future, soften-
ing its single large step from 0.001 to 0.0001 to
five smaller steps, keeping the initial and the fi-
nal learning rate.10 The seed for pseudo-random
initialisation of the neural network of the parser is
derived from the seed that randomises the sampling
of data in each tri-training experiment, an identifier
of the tri-training parameters, an indicator whether
the run is a repeat run, the learner number i and the
tri-training iteration t.

8https://github.com/HIT-SCIR/
ELMoForManyLangs

9With d > 0, the amount of training data grows with
each iteration (up to a limit for d < 1). For example, in
the third tri-training iteration for Hungarian with mBERT,
d = 0.71 and A = 40k, learner 1 receives 3749 sentences
(39986 tokens) from the current iteration, 2744 sentences
from iteration 2, 2038 sentences from iteration 1 and 2275
sentences from the labelled data (2.5 times 910 sentences),
totalling in 10806 sentences which is above UDPipe-Future’s
oversampling threshold of 9600 sentences.

10We run UDPipe-Future with the option -epochs
30:1e-3,5:6e-4,5:4e-4,5:3e-4,5:2e-4,
10:1e-4

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/HIT-SCIR/ELMoForManyLangs

9462

3.6 Ensemble Method for Candidate Models

Candidate models for the final model are created at
each tri-training iteration by combining the current
models of the three learners in an ensemble using
linear tree combination (Attardi and Dell’Orletta,
2009) as implemented11 by Barry et al. (2020).12

Candidate ensembles are evaluated on development
data using the CoNLL’18 evaluation script.

At tri-training iteration zero, i. e. before any un-
labelled data is used, runs with the same language
and parser only differ in the random initialisation
of models. A large number of additional ensembles
can therefore be built, picking a model for each
learner from different runs. These ensembles be-
have like ensembles from new runs, allowing us
to study the effect of random initialisation using
a much more accurate estimate of the LAS distri-
bution than possible with ensembles of each runs.
We obtain 4096 LAS values for each language and
parser as follows:

1. For each learner i ∈ {1, 2, 3}, we partition
the available models into 16 buckets in order
of development LAS.

2. We enumerate all 163 = 4096 combinations
of buckets, and from each bucket combination,
we sample one combinations of three models,
one model per bucket.

3. The selected model combination is combined
using the linear tree combiner and evaluated.

4 Development Set Results

We compare semi-supervised learning with tri-
training to semi-supervised learning with a combi-
nation of context-independent and contextualised
word embeddings, and we compare these two ap-
proaches to combining them and to training without
unlabelled data, i. e. supervised learning, address-
ing the three questions posed in Section 1.

As described in Section 3.2, we obtain twelve
LAS scores from tri-training with each parser and
language. Tri-training with T iterations can choose
an ensemble from T + 1 ensembles (Appendix E).
To give the baselines the same number of models to

11https://github.com/jowagner/
ud-combination

12As we observed that performance of the ensembles on the
development data varies considerably with the random initiali-
sation of the tie breaker in the combiner’s greedy search, e. g.
obtaining LAS scores from 75.52 to 75.62 for ten repetitions,
we run the combiner 21 times with different initialisation and
report average LAS.

choose from, we sample from the baseline ensem-
bles described in Section 3.6. For each tri-training
run with T iterations, we select the best score from
T+1 baseline scores. As the choice of the subset of
T + 1 scores is random, we repeat the random sam-
pling 250,000 times to get an accurate estimate of
the LAS distribution. In other words, we simulate
what would happen if the additional data obtained
through tri-training had no effect on the parser.

Figure 1 compares the parsing performance with
and without tri-training for the four development
languages and for the three types of parsing models
udpf, elmo and mBERT. Most distributions for
each language are clearly separated and the order
of methods is the same: both tri-training and ex-
ternal word embeddings yield clear improvements.
External word embeddings have a much stronger
effect than tri-training. In combination, the two
semi-supervised learning methods yield a small
additional improvement with an average score dif-
ference of over half an LAS point.

5 Error Analysis

In this section, we probe, using the development
sets, how the error distribution changes as we add
tri-training and/or word ELMo embeddings trained
on unlabelled data to the basic parser. We compare
the following

1. tokens that are out-of-vocabulary relative
to the manually labelled training data ver-
sus those that are in the training data
(“OOV”/“IV”)

2. different sentence length distributions: up to
9, 10 to 19, 20–39, and 40 or more tokens

3. different dependency labels, e.g is there a
marked difference in the effect of tri-training
or word embeddings for particular label types,
e.g. nsubj?

How does tri-training help (with no embed-
dings)? As expected, tri-training brings a clearly
greater improvement for OOVs than IVs for all four
languages. The role of sentence length is not con-
sistent across languages. For English, tri-training
helps most on longer sentences (> 20 words), for
Hungarian, short sentences (< 10 words), and for
Uyghur, very long sentences (> 40 words). Sen-
tence length does not appear to be a factor for Viet-
namese. Regarding dependency labels, there are
no clear pattern across languages.13

13See Table 7 in Appendix C.

https://github.com/jowagner/ud-combination
https://github.com/jowagner/ud-combination

9463

English
“udpf”

“elmo” “mbert”

Hungarian
“udpf”

“elmo” “mbert”

Uyghur“udpf”
“mbert”

“elmo”

Vietnamese

“udpf”

“elmo” “mbert”

Figure 1: Effects of external word embeddings and tri-training on the LAS distribution: The baseline distributions
are based on a large number of ensemble LAS scores. Each tri-training distribution is based on twelve LAS scores.

9464

How do word embeddings help (with no tri-
training)? Analysis of improvement by sentence
length and by OOV status show similar trends to the
tri-training improvements described above. Across
languages, the use of pretrained embeddings helps
to correctly identify the flat relation (which is
used in names and dates).

6 Test Set Results

In this section, we verify to what extent our main
observations on development data carry over to test
data and include results for a parser using only Fast-
Text as external word embedding. For each of the
LAS distributions using tri-training in Figure 1 and
the distribution for fasttext not shown, we select
the ensemble with highest development LAS for
testing. Since we also use model selection based on
development LAS to choose the final model of each
tri-training run from its T + 1 iterations, the best
model is selected from a set of 50 models given
the values of T listed in Section 3.2, exceeding the
number of baseline models available from iteration
0. For a fair comparison, we therefore leverage the
4096 baseline ensembles described in Section 3.6.
As a choice of 50 out of 4096 ensembles would
introduce noise, we repeatedly draw samples, for
each sample find the best model according to de-
velopment LAS, obtain test LAS and report the
average LAS over all samples, i. e. the expectation
value. As was the case for development results, we
run the linear tree combiner 21 times on the three
individual predictions of the tri-training learners
and take the average LAS over all combiner runs
as the score of the ensemble.

Table 2 shows development and test set LAS
for the models selected as described above. The
test set results confirm the development result that a
combination of tri-training and contextualised word
embeddings consistently gives the best results and
that the individual methods improve performance.
In keeping with the development results, contextu-
alised word embeddings yield higher gains than tri-
training. The test results confirm the development
observation that multilingual BERT does not work
as well as language-specific ELMo for Uyghur, a
zero-shot language for multilingual BERT.

7 Conclusion

We compared two semi-supervised learning meth-
ods in the task of dependency parsing for three
low-resource languages and English in a simulated

low-resource setting. Tri-training was effective but
could not come close to the performance gains of
contextualised word embeddings. Combined, the
two learning methods achieved small additional
improvements between 0.2 LAS points for Uyghur
and 1.3 LAS points for Vietnamese. Whether these
gains can justify the additional costs of tri-training
will depend on the application.

We recommend that users of tri-training vary set-
tings and repeat runs to find good models. Future
work could therefore explore how to best combine
the many models or the large amount of automati-
cally labelled data that such experiments produce.
To obtain a fast and strong final model, a combina-
tion of ensemble search and model distillation or
up-training may be the next step. Integrating cross-
view training (Clark et al., 2018) into tri-training
may also be fruitful similarly to the integration
of multi-view learning in co-training (Lim et al.,
2020). The requirement of tri-training that two
teachers must agree changes the sentence length
distribution of the data selected and may introduce
other biases. Future work could try to counter this
effect be re-sampling the predictions similarly to
how Droganova et al. (2018) corrected for such
effects in self-training.

While our literature review suggests that tri-
training performs better than co- and self-training,
it would be interesting how these methods com-
pare under a fixed computation budget as the latter
methods train fewer parsing models per iteration.

8 Ethics and Broader Impact

Tri-training uses much smaller amounts of un-
labelled data than the state-of-the-art semi-
supervised method of self-supervised pre-training
and we therefore do not expect tri-training to add
new risks from undesired biases in the unlabelled
data. The use of tri-training may, however, pose
new challenges in detecting problematic effects
of issues in unlabelled data as existing inspection
methods may not be applicable.

An individual tri-training run with FastText and
multilingual BERT word embeddings and A =
80k, T = 8 and d = 0.5 typically takes three
days on a single NVIDIA GeForce RTX 2080 Ti
GPU. Overall, we estimate that our experiments
took 2500 GPU days. This large GPU usage stems
from the exploration of tri-training parameters in
Appendix B. Future work can build on our obser-
vations and thereby reduce computational costs.

9465

udpf fasttext elmo mbert
Language B TT B TT B TT B TT
Development
English 75.8 78.8 78.1 80.6 83.7 84.9 85.9 86.7
Hungarian 79.0 81.7 80.9 83.0 85.2 86.1 85.9 86.9
Uyghur 67.3 68.8 68.4 69.7 71.2 72.1 68.1 68.4
Vietnamese 62.3 64.8 64.0 65.6 67.3 68.3 69.3 70.2
Test
English 76.6 79.3∗∗∗∗∗ 78.9 80.8∗∗∗∗∗ 84.0 84.9∗∗∗∗∗ 85.7 86.0∗∗
Hungarian 77.6 79.2∗∗∗∗∗ 79.8 81.2∗∗∗∗∗ 84.3 84.9∗∗ 85.5 86.3∗∗∗
Uyghur 66.0 67.7∗∗∗∗∗ 66.8 68.2∗∗∗∗∗ 69.8 70.6∗∗∗ 67.4 67.5
Vietnamese 61.3 62.6∗∗∗∗ 62.5 63.1∗ 65.6 66.8∗∗∗∗ 69.3 69.9∗

Table 2: Development and test set LAS for selected models (best of 12 according to development LAS); B =
baseline, TT = tri-training; statistical significance of tri-training improvement over baseline (McNemar test; carried
out for test set results only): one star for p ≤ 0.05, two stars for p ≤ 0.01, three stars for p ≤ 0.001, four stars for
p ≤ 0.0001 and five stars for p ≤ 0.00001.

Acknowledgements

This research is supported by Science Founda-
tion Ireland (SFI) through the ADAPT Centre for
Digital Content Technology, which is funded un-
der the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the Euro-
pean Regional Development Fund, and through
the SFI Frontiers for the Future programme
(19/FFP/6942).

References
Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-

verse revision and linear tree combination for depen-
dency parsing. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Short
Papers, pages 261–264, Boulder, Colorado, USA.
Association for Computational Linguistics.

James Barry, Joachim Wagner, and Jennifer Foster.
2020. The ADAPT enhanced dependency parser at
the IWPT 2020 shared task. In Proceedings of the
16th International Conference on Parsing Technolo-
gies and the IWPT 2020 Shared Task on Parsing into
Enhanced Universal Dependencies, pages 227–235,
Online. Association for Computational Linguistics.

Kasturi Bhattacharjee, Miguel Ballesteros, Rishita
Anubhai, Smaranda Muresan, Jie Ma, Faisal Lad-
hak, and Yaser Al-Onaizan. 2020. To BERT or not
to BERT: Comparing task-specific and task-agnostic
semi-supervised approaches for sequence tagging.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7927–7934, Online. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City. Association for
Computational Linguistics.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In Pro-
ceedings of the The Fourteenth National Conference
on Artificial Intelligence (AAAI-97), pages 598–603,
Providence, Rhode Island, USA. The AAAI Press,
Menlo Park, California, USA.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Dong-Dong Chen, Wei Wang, Wei Gao, and Zhi-Hua
Zhou. 2018. Tri-net for semi-supervised deep learn-
ing. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-18), pages 2014–2020. International Joint
Conferences on Artificial Intelligence Organization.

Wenliang Chen, Yujie Zhang, and Hitoshi Isahara.
2006. Chinese chunking with tri-training learning.
In Computer processing of oriental languages, Be-
yond the Orient: The Research Challenges Ahead,
21st International Conference, ICCPOL 2006, vol-
ume 4285, pages 466–473. Springer-Verlag Berlin
Heidelberg, Germany.

https://www.aclweb.org/anthology/N09-2066
https://www.aclweb.org/anthology/N09-2066
https://www.aclweb.org/anthology/N09-2066
https://doi.org/10.18653/v1/2020.iwpt-1.24
https://doi.org/10.18653/v1/2020.iwpt-1.24
https://www.aclweb.org/anthology/2020.emnlp-main.636
https://www.aclweb.org/anthology/2020.emnlp-main.636
https://www.aclweb.org/anthology/2020.emnlp-main.636
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://www.aclweb.org/anthology/W06-2920
https://www.aclweb.org/anthology/W06-2920
https://www.aaai.org/Library/AAAI/1997/aaai97-093.php
https://www.aaai.org/Library/AAAI/1997/aaai97-093.php
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.24963/ijcai.2018/278
https://doi.org/10.24963/ijcai.2018/278
https://doi.org/10.1007/11940098

9466

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kira Droganova, Filip Ginter, Jenna Kanerva, and
Daniel Zeman. 2018. Mind the gap: Data enrich-
ment in dependency parsing of elliptical construc-
tions. In Proceedings of the Second Workshop on
Universal Dependencies (UDW 2018), pages 47–54,
Brussels, Belgium. Association for Computational
Linguistics.

Marhaba Eli, Weinila Mushajiang, Tuergen Yibulayin,
Kahaerjiang Abiderexiti, and Yan Liu. 2016. Uni-
versal dependencies for Uyghur. In Proceedings
of the Third International Workshop on World-
wide Language Service Infrastructure and Sec-
ond Workshop on Open Infrastructures and Anal-
ysis Frameworks for Human Language Technolo-
gies (WLSI/OIAF4HLT2016), pages 44–50, Osaka,
Japan. The COLING 2016 Organizing Committee.

Nikos Fazakis, Stamatis Karlos, Sotiris Kotsiantis,
and Kyriakos Sgarbas. 2016. Self-trained LMT
for semisupervised learning. Computational Intel-
ligence and Neuroscience, 2016.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan Straka,
and Daniel Zeman. 2017. CoNLL 2017 shared task
- automatically annotated raw texts and word embed-
dings. LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Tao Guo and Guiyang Li. 2012. Improved tri-training
with unlabeled data. In Software Engineering
and Knowledge Engineering: Theory and Practice,
pages 139–147, Berlin, Heidelberg. Springer Berlin
Heidelberg.

M. Li and Z. Zhou. 2007. Improve computer-aided di-
agnosis with machine learning techniques using un-
diagnosed samples. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Hu-
mans, 37(6):1088–1098.

K. Lim, J. Y. Lee, J. Carbonell, and T. Poibeau. 2020.
Semi-supervised learning on meta structure: Multi-
task tagging and parsing in low-resource scenarios.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34:(05), pages 8344–8351.

David McClosky, Eugene Charniak, and Mark Johnson.
2006a. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the North American Chapter of the As-
sociation of [sic!] Computational Linguistics (HLT-
NAACL 06), pages 152–159, New York City, USA.
Association for Computational Linguistics.

David McClosky, Eugene Charniak, and Mark Johnson.
2006b. Reranking and self-training for parser adap-
tation. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics (COLING ACL 06), pages 337–344, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Phuong-Thai Nguyen, Xuan-Luong Vu, Thi-Minh-
Huyen Nguyen, Van-Hiep Nguyen, and Hong-
Phuong Le. 2009. Building a large syntactically-
annotated corpus of Vietnamese. In Proceedings of
the Third Linguistic Annotation Workshop (LAW III),
pages 182–185, Suntec, Singapore. Association for
Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana, USA. Associ-
ation for Computational Linguistics.

Tieyun Qian, Bing Liu, Li Chen, and Zhiyong Peng.
2014. Tri-training for authorship attribution with
limited training data. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 345–
351, Baltimore, Maryland, USA. Association for
Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. Transactions of the Associ-
ation for Computational Linguistics, 8:842–866.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044–1054, Mel-
bourne, Australia. Association for Computational
Linguistics.

Kenji Sagae. 2010. Self-training without reranking for
parser domain adaptation and its impact on seman-
tic role labeling. In Proceedings of the 2010 Work-
shop on Domain Adaptation for Natural Language
Processing, pages 37–44, Uppsala, Sweden. Associ-
ation for Computational Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,

https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W18-6006
https://doi.org/10.18653/v1/W18-6006
https://doi.org/10.18653/v1/W18-6006
https://www.aclweb.org/anthology/W16-5206
https://www.aclweb.org/anthology/W16-5206
https://doi.org/10.1155/2016/3057481
https://doi.org/10.1155/2016/3057481
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
https://doi.org/10.1007/978-3-642-25349-2_19
https://doi.org/10.1007/978-3-642-25349-2_19
https://doi.org/10.1109/TSMCA.2007.904745
https://doi.org/10.1109/TSMCA.2007.904745
https://doi.org/10.1109/TSMCA.2007.904745
https://doi.org/10.1609/aaai.v34i05.6351
https://doi.org/10.1609/aaai.v34i05.6351
https://www.aclweb.org/anthology/N06-1020
https://doi.org/10.3115/1220175.1220218
https://doi.org/10.3115/1220175.1220218
https://www.aclweb.org/anthology/W09-3035
https://www.aclweb.org/anthology/W09-3035
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.3115/v1/P14-2057
https://doi.org/10.3115/v1/P14-2057
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/P18-1096
https://doi.org/10.18653/v1/P18-1096
https://doi.org/10.18653/v1/P18-1096
https://www.aclweb.org/anthology/W10-2606
https://www.aclweb.org/anthology/W10-2606
https://www.aclweb.org/anthology/W10-2606

9467

John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 2897–2904, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Anders Søgaard. 2010. Simple semi-supervised train-
ing of part-of-speech taggers. In Proceedings of
the ACL 2010 Conference Short Papers, pages 205–
208, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised dependency parsing using generalized tri-
training. In Proceedings of the 23rd International
Conference on Computational Linguistics (Coling
2010), pages 1065–1073, Beijing, China. Coling
2010 Organizing Committee.

Mark Steedman, Miles Osborne, Anoop Sarkar,
Stephen Clark, Rebecca Hwa, Julia Hockenmaier,
Paul Ruhlen, Steven Baker, and Jeremiah Crim.
2003. Bootstrapping statistical parsers from small
datasets. In 10th Conference of the European Chap-
ter of the Association for Computational Linguistics,
Budapest, Hungary. Association for Computational
Linguistics.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka, Jana Straková, and Jan Hajič. 2019. Eval-
uating contextualized embeddings on 54 languages
in POS tagging, lemmatization and dependency pars-
ing. ArXiv 1908.07448v1.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010.
Hungarian dependency treebank. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 2773–2781. Curran Asso-
ciates, Inc.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing,
China. Association for Computational Linguistics.

Xiang Yu, Ngoc Thang Vu, and Jonas Kuhn. 2020.
Ensemble self-training for low-resource languages:
Grapheme-to-phoneme conversion and morpholog-
ical inflection. In Proceedings of the 17th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages
70–78, Online. Association for Computational Lin-
guistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martínez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadová,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donça, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. CoNLL 2017 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–19, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: ex-
ploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge and Data Engineering,
17(11):1529–1541.

A Tri-training Algorithm

Algorithm 1 shows the tri-training algorithm in the
form we use it in this work. An extended version
of the description in Seciton 3.1 follows.

Lines 1–3 Before the first tri-training iteration,
three samples Bi of the labelled data L are taken
and initial models hi are trained on them (i ∈
{1, 2, 3}). We sample without replacement and
with a target size 2.5 times the size of L, re-
populating the sampling urn each time it becomes
empty.14

Lines 5–7 For each tri-training iteration, we fur-
ther sample a de-duplicated subset U ′ of the unla-
belled data as processing all available unlabelled

14Zhou and Li (2005) sample with replacement. Section B.1
motivates our choice.

https://www.aclweb.org/anthology/L14-1067/
https://www.aclweb.org/anthology/L14-1067/
https://www.aclweb.org/anthology/P10-2038
https://www.aclweb.org/anthology/P10-2038
https://www.aclweb.org/anthology/C10-1120
https://www.aclweb.org/anthology/C10-1120
https://www.aclweb.org/anthology/C10-1120
https://www.aclweb.org/anthology/E03-1008
https://www.aclweb.org/anthology/E03-1008
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
https://www.aclweb.org/anthology/L10-1321/
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.18653/v1/2020.sigmorphon-1.5
https://doi.org/10.18653/v1/2020.sigmorphon-1.5
https://doi.org/10.18653/v1/2020.sigmorphon-1.5
https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.1109/TKDE.2005.186
https://doi.org/10.1109/TKDE.2005.186

9468

Algorithm 1: Tri-training in this work.
Input: L: Labelled data

U : Unlabelled data
A: Maximum number of items to
add per iteration and learner
T : Number of tri-training iterations
d: Decay parameter, 0 ≤ d ≤ 1

Output: Models {h1, h2, h3} for ensemble.
1 for i ∈ {1, 2, 3} do
2 Bi ← Sample(L, size = 2.5× |L|)
3 hi ← Learn(Bi)

4 end for
5 for t = 1 to T do
6 U ′ ← Sample(U, size = 16×A),
7 reject_duplicates = True)
8 Lt,i ← {}, i = 1, 2, 3
9 for x ∈ U ′ do

10 if hj(x) = hk(x), j 6= k then
11 if h1(x) = h2(x) = h3(x) then
12 C ← {1, 2, 3}
13 else
14 C ← {1, 2, 3} \ {j, k}
15 end if
16 i←RandomChoice(C)
17 Lt,i ← Lt,i ∪ {(x, hj(x))}
18 end if
19 end for
20 for i ∈ {1, 2, 3} do
21 if |Lt,i| > A then
22 Lt,i ← Sample(Lt,i, size = A)
23 end if

24 R←
t⋃

t′=1

Sample(Lt′,i, size =

25 min{|Lt′,i|, A× dt−t
′})

26 hi ← Learn(Bi ∪R)

27 end for
28 end for

data would not be practical for most languages in
our experiments (Section 3.4).15, 16

Lines 5, 8–18 Each tri-training iteration t com-
piles three sets of automatically labelled data Lt,i

one for each learner i, feeding predictions that two
learners agree on17 to the third learner (lines 10–
17). In case all three learners agree, we randomly
pick a receiving learner.18 While Zhou and Li
(2005) do not state in their pseudo code that j and
k must be different, this is clear from their descrip-
tion.

Lines 21 and 22 We limit the size of the data sets
Lt,i to A, downsampling them if needed.

Lines 19, 23–35 While Zhou and Li (2005) up-
date the models hi by directly training on L ∪ Lt,i,
we experiment with concatenating data from pre-
vious tri-training iterations (lines 24–25) and we
use Bi instead of L (line 26). 19 The parameter
d controls how much weight is given to data from
previous iterations. The current iteration’s data is
always used in full. No data from previous itera-
tions is added with d = 0. For d = 1, all available
data is concatenated. With d < 1, we apply ex-
ponential decay to the dataset weights, e. g. for
d = 0.5 we take 50% of the data from the previous
iteration, 25% from the iteration before the last one
etc. (line 25). 20 At the end of each tri-training iter-
ation in (line 26), the three models hi are updated
with new models trained on the concatenation of
the manually labelled and automatically labelled
data selected for the learners.21

15In Zhou and Li (2005)’s experiments, all datasets are
small, that largest having 3772 items.

16We set the size of U ′ so that we do not expect it to be a
limiting factor. In preliminary experiments with the English
LinEs treebank, we observed that 4A is sufficient to obtain at
least A new labelled items. We set the size of U ′ to 16A to
account for likely variation in the rate of agreement between
models when switching to other treebanks.

17See Footnote 2.
18See Footnote 3.
19Initially, the latter was an error on our side but, given that

we ensure that each item in L is included in each Bi at least
twice, keeping the Bi seems better fitted as L no longer pro-
vides additional labelled data, the diversity of learner models
is improved and moderate oversampling of L can be expected
to be helpful.

20We do not restrict experiments to a single value of d as
tri-training is considerably faster with d ∈ {0, 0.5} than for
d = 1, see Section B.2.

21For the reasons described in Section E, we do not use the
model update conditions of Zhou and Li (2005) that are based
on (a) the estimated label noise in R to be lower than in the
previous iteration and on (b) R to be sufficiently big for the
noise not to be harmful under certain assumptions.

9469

Our training.conllu files produced by tri-training
for each parsing model start with the manually la-
belled data followed by the automatically labelled
data. In case of oversampling Bi to match the
size of R (option not mentioned in the description
above), the oversampling also changes the order of
the manually labelled data. Similarly, the Lt′,i are
only re-ordered if |Lt′,i| > A× dt−t

′
.

For clarity, when we use the set union operator
in Algorithm 1 we mean concatenation of data sets.
Duplicates are not removed. It is also clear that
vanilla tri-training concatenates sets as set oper-
ations in the mathematical sense would damage
the samples with replacement of manually labelled
data.

B Parameter Search

This section describes our parameter search,
analysing four distinct aspects of tri-training: sam-
pling of seed data, reusing data from previous iter-
ations, sample size and oversampling.

B.1 Effect of Sampling of Seed Data

B.1.1 Seed Sampling Methods Considered
The seed data Bi in tri-training is the labelled data
that is used to train the initial models. This data is
also included in the training data of the remaining
tri-training iterations in our version of tri-training,
see Algorithm 1. Each learner usually uses a differ-
ent sample of the original training data.

In initial experiments with the English side of
the LinES Parallel Treebank (en_lines) as seed
data, we observed a degradation of performance of
the learners’ models when sampling the manually
labelled data with replacement – as in vanilla tri-
training (Zhou and Li, 2005) – compared to models
trained directly on the labelled data. Neither com-
bining three models in an ensemble nor additional
training data obtained through tri-training in up to
two tri-training iterations compensated for the loss
of performance.

The reason why vanilla tri-training uses sam-
pling is to ensure variation between the three learn-
ers. Neural models, however, naturally vary due
to random initialisation of network weights, or-
der of training data, stochastic kernels and numer-
ical effects when intermediary results computed
in parallel are combined in unpredictable order.
We therefore tried using the original manually la-
belled training data in all learners and relying on
random initialisation to instill variation. This re-

moved the degradation of performance but as tri-
training proceeded performance stayed within 0.6
LAS points of the average LAS of ensembles of
three initial models. We suspected that more vari-
ation is needed. Therefore, we re-introduced sam-
pling but modified it to ensure that all manually la-
belled data is available to each learner. We change
the sampling to pick half of the data twice and the
remaining half three times, resulting in a sample
size of 250% of the original data.22 With this sam-
pling, tri-training performance clearly improved
in the en_lines experiment and exceeded the
range of results due to random initialisation and
other sources of variation in neural models.

The results for our four development languages
shown in Table 3 mostly confirm these findings. Us-
ing 2.5 copies consistently gives the highest LAS,
though the improvements over vanilla tri-training,
which uses sampling only for the initial models
and then continues with the full labelled data, and a
variant using the full data from the start are small.

B.1.2 Seed Sampling Results

B.2 Effect of Using Data from Previous
Iterations

The tri-training parameter d controls how much
data from previous tri-training iterations is used
in the current iteration. We experiment with d ∈
{0, 0.5, 1} as we expect that training a model on
data obtained with different models, initialised with
different seeds, may have similar benefits as using
ensemble predictions, which Yu et al. (2020) show
to improve self-training. Furthermore, data com-
bination may limit negative effects of an iteration
with poorly performing models hi.

The results are shown in Table 4. For all but the
Uyghur parser udpf, i. e. without external word em-
beddings, we found the best development results
when predictions of all tri-training iterations are
combined. The difference in LAS to the combi-
nation method that exponentially reduces the size
of data taken from previous iterations (d = 0.5) is
small.

B.3 Effect of Sample Size A

The tri-training parameter A controls how much un-
labelled data is combined with labelled data during

22We confirmed that UDPipe-Future does not employ meth-
ods for handling unknown words based on applying a fre-
quency threshold on the training data as oversampling may
interfere with such methods.

9470

Lang. Parser W.R. Vanilla 100% 250%

En
udpf 75.3 77.2 77.9 78.0
elmo 82.9 83.8 84.0 84.3

Hu
udpf 77.9 80.3 80.6 80.8
elmo 84.1 85.3 85.5 85.5

Ug
udpf 66.4 67.9 68.1 68.3
elmo 70.5 71.4 71.6 71.7

Vi
udpf 61.6 63.7 63.7 63.9
elmo 66.3 67.5 67.6 67.6

Average 73.13 74.63 74.87 75.01

Table 3: Effect of seed data sampling on tri-training performance (average development LAS over eight tri-training
runs, selecting, for each run, the best tri-training iteration according to development LAS): W.R. is sampling with
replacement, Vanilla uses sampling with replacement for the initial models and a full copy of the labelled data for
t > 0, 100% uses a full copy of the labelled data in all iterations, i. e. the only source of variation is the random
seed used in parser training, 250% uses 2.5 copies of L for each learner, providing additional variation due to the
random selection of the last half of the data.

d
Lang. Parser 0 0.5 0.71 1

En
udpf 77.9 78.3 78.4 78.6
elmo 84.1 84.3 84.4 84.9

Hu
udpf 80.7 81.1 81.5 81.5
elmo 85.5 85.7 85.8 85.8

Ug
udpf 68.3 68.7 68.6 68.6
elmo 71.6 71.8 71.8 72.0

Vi
udpf 63.9 64.0 64.2 64.5
elmo 67.3 67.7 67.9 67.8

Table 4: Effect of data combination across iterations
on tri-training performance (average development LAS
over multiple tri-training runs, selecting, for each run,
the best tri-training iteration according to development
LAS); two runs for each setting (language, parser, data
combination method) with A = 80k, T = 8, seed
data sampled as 250% of labelled data and o ∈ {True,
False}.

training. Table 5 presents results for augmenta-
tion sizes A from 5k to 160k tokens.23 We see
good improvements for all development languages
except Vietnamese as the size of the set of automat-
ically labelled data added in each tri-training round
increases. For Vietnamese with parser elmo, the
range of scores is small and there is no consistent
pattern.

B.4 Effect of Oversampling

Table 6 compares average LAS with and without
oversampling of the manually labelled data Bi to
match the size of the automatically labelled data R.
The results suggest that the effects is negligible and
since oversampling slows down training we carry
out the main experiment without oversampling.24

C Error Analysis: Dependency Labels

Table 7 shows the most frequent LAS improve-
ments by dependency label.

D Learning Rate Schedule

Table 8 compares the learning rate schedule we use
with UDPipe-Future and its default schedule,

23For comparison, the labelled data L has about 20k tokens
in our experiments and the samples Bi have about 50k tokens
for our best seed data sample size 250%.

24Preliminary results for English with oversampling the
manually labelled data three times in all iterations, including
the seed models (Table 3), however, show a positive effect
of oversampling. Maybe oversampling is more important in
early iterations where the amount of automatically labelled
data is relatively small. Future work should investigate the
effect of oversampling further.

9471

(i) Small A (ii) Medium A (iii) Big A
Language Parser 5k 10k 20k 20k 40k 80k 80k 160k

English
udpf 77.5 77.9 78.2 77.4 77.8 78.3 78.0 78.4
elmo 84.1 84.4 84.6 84.2 84.4 84.5 84.2 84.4

Hungarian
udpf 80.2 81.1 81.1 80.3 80.7 81.1 80.8 81.3
elmo 85.3 85.7 85.7 85.3 85.4 85.7 85.6 85.8

Uyghur
udpf 67.5 67.9 68.5 67.6 67.9 68.4 68.2 68.4
elmo 71.6 71.7 71.7 71.4 71.5 71.7 71.7 71.9

Vietnamese
udpf 63.6 63.7 64.2 63.4 63.8 64.2 63.9 64.0
elmo 67.8 67.7 67.7 67.5 67.6 67.6 67.6 68.0

Table 5: Effect of augmentation size A on tri-training performance (average development LAS over multiple tri-
training runs): (i) two runs with T = 16 and d = 1, (ii) three runs (Uygur) or four runs (other languages) with
T = 8 and d = 1, (iii) six runs with T = 4 and d = 0.5.

Language Parser No Yes ∆

English
udpf 77.4 77.7 0.288
elmo 84.0 84.0 0.055

Hungarian
udpf 80.2 80.3 0.117
elmo 85.3 85.3 0.015

Uyghur
udpf 68.1 68.1 0.026
elmo 71.7 71.7 -0.001

Vietnamese
udpf 63.8 63.8 -0.022
elmo 67.7 67.7 -0.048

Table 6: Effect of oversampling the labelled data on tri-
training performance (average development LAS over
multiple tri-training runs)

E Model Selection

We select the tri-training iteration with the best
ensemble performance according to development
LAS. We do not use Zhou and Li (2005)’s stopping
criterion that is based on conditionally updating the
learners’ models in line 26 of Algorithm 1 for the
following reasons:

• The model update condition is designed for
binary classification tasks. It is not clear how
the condition would have to be updated for
joint prediction of dependency trees, lemmata
and multiple tags.

• The model update condition uses the training
data to estimate label noise. We do not expect
such estimates to be useful for neural models
that tend to considerably overfit the training
data.

• The model update condition rejects models
trained on an amount of automatically labelled
data that is too small to avoid harm from label

noise under certain assumptions. In Zhou and
Li (2005)’s experiments, the size of the unla-
belled data is quite small.25 In contrast, we
can avail of orders of magnitude more unla-
belled data. Hence, we do not expect the issue
of insufficient data to arise.

• The inherent performance variation of neural
models, e. g. due to random initialisation, can
trigger Zhou and Li (2005)’s stopping crite-
rion too early as it requires the error rate to
drop in each iteration. When tri-training is
run long enough for the improvements due to
the additional training data to be smaller than
the performance variation due to randomness
in model training, we expect that patience is
needed to bridge a temporary degradation.26

• Furthermore, tri-training can reduce perfor-
mance if wrong decisions are amplified.

F BERT Layer Selection

We experiment with using different BERT layers
and pooling functions for combining BERT’s sub-
word vectors to token vectors. We explore 45 set-
tings for each language, nine choices of layers (in-
dividual layers and average of layers, excluding
bottom layers) and five choices of token pooling
functions. For each language, we choose three dif-
ferent settings, one for each learner in tri-training,

25Zhou and Li (2005)’s largest dataset has only 3772 items.
The size of the unlabelled data never exceeds 3772× 0.75×
0.80 ≈ 2263 items.

26We do find variation in performance and performance re-
covery after a few iterations looking at a sample of tri-training
runs. Future work can analyse our data for the trade-off be-
tween the lengths of patience and compute costs (or spending
the same compute budget on more runs with lower patience
each).

9472

Parsers English Hungarian Uyghur Vietnamese

base udpf -> tri udpf
acl,fixed nummod,csubj parataxis,mark compound,mark
compound,xcomp cop,nsubj obj,nummod xcomp,cop
parataxis,iobj case,advmod aux,nsubj case,csubj

base udpf -> base elmo
flat,discourse cop,advcl appos,conj amod,ccomp
fixed,parataxis nsubj,acl parataxis,flat mark,obj
acl,appos flat,ccomp fixed,nummod discourse,compound

base elmo -> tri elmo
fixed,ccomp nummod,csubj discourse,appos csubj,mark
advcl,flat advcl,appos cop,compound parataxis,compound
obl,punct acl,parataxis ccomp,obl amod,cop

Table 7: Top 6 largest LAS improvements by dependency type. Those shared by at least 3 languages are highlighted
in bold. Labels with fewer than 20 occurrences are excluded.

Total Learning Rate
Setting Epochs 0.001 0.0006 0.0004 0.0003 0.0002 0.0001
Parser default 60 40 0 0 0 0 20
In this work 60 30 5 5 5 5 10

Table 8: Learning rate schedule used in the experiments and the parser’s default learning rate: number of epochs
at each learning rate

starting with the top-performing setting, eliminat-
ing all settings with the same choice of layers or the
same choice of token pooling and then repeating
the process for the next learner.

Table 9 shows the results of this experiment. Our
observations confirm that middle layers typically
perform best (Rogers et al., 2020). Uyghur, for
which multilingual BERT does not perform well
with UDPipe-Future, has a different pattern show-
ing no large differences and a preference for the top
layer that is less informative for the other languages.
Different languages seem to prefer different pool-
ing functions for combining vectors of subword
units to vectors for UD tokens. Table 9 shows our
choices for each development language in bold.

9473

English
Pooling \ Layer 08 09 10 11 12 A4 A4E A5 A5E Average
Avg 85.5 85.4 85.3 84.7 83.0 85.1 85.2 85.4 85.4 85.0
First 85.3 85.3 85.1 84.6 83.0 84.9 85.1 85.3 85.3 84.9
Last 85.4 85.4 85.2 84.6 83.0 85.0 85.1 85.3 85.3 84.9
Max 85.3 85.4 85.2 84.6 83.0 85.0 85.2 85.2 85.2 84.9
Z50 85.4 85.4 85.2 84.7 83.0 85.0 85.2 85.3 85.4 85.0
Average 85.4 85.4 85.2 84.7 83.0 85.0 85.2 85.3 85.3 –

Hungarian
Pooling \ Layer 08 09 10 11 12 A4 A4E A5 A5E Average
Avg 85.0 85.2 85.1 84.6 83.4 85.0 84.9 85.0 85.1 84.8
First 84.9 84.8 84.7 84.4 82.9 84.6 84.6 84.5 84.6 84.4
Last 85.3 85.5 85.3 85.0 83.6 85.2 85.3 85.4 85.3 85.1
Max 84.9 85.2 84.9 84.5 83.1 84.7 84.7 84.8 84.9 84.6
Z50 84.9 85.1 84.9 84.5 83.3 84.9 84.8 84.8 84.8 84.6
Average 85.0 85.2 85.0 84.6 83.3 84.9 84.9 84.9 84.9 –

Uyghur
Pooling \ Layer 08 09 10 11 12 A4 A4E A5 A5E Average
Avg 66.8 67.0 66.8 66.8 67.2 66.8 67.0 67.2 66.9 66.9
First 66.9 66.8 66.9 66.9 67.1 66.9 67.0 67.0 67.0 66.9
Last 66.5 66.6 66.8 66.7 66.8 66.8 66.6 66.8 66.8 66.7
Max 67.0 66.8 66.7 66.6 67.0 66.9 66.9 66.9 66.8 66.9
Z50 67.0 67.0 66.9 66.8 67.2 66.9 66.8 67.0 66.9 66.9
Average 66.8 66.9 66.8 66.8 67.1 66.9 66.9 67.0 66.9 –

Vietnamese
Pooling \ Layer 08 09 10 11 12 A4 A4E A5 A5E Average
Avg 68.5 68.6 68.4 68.3 67.4 68.5 68.3 68.5 68.4 68.3
First 68.7 68.3 68.4 68.1 67.6 68.2 68.3 68.7 68.4 68.3
Last 68.7 68.4 68.5 68.2 67.2 68.4 68.3 68.6 68.5 68.3
Max 68.5 68.3 68.3 68.1 67.5 68.4 68.2 68.3 68.4 68.2
Z50 68.5 68.5 68.3 67.9 67.6 68.3 68.3 68.4 68.5 68.3
Average 68.6 68.4 68.4 68.1 67.5 68.4 68.3 68.5 68.5 –

Average over all languages
Pooling \ Layer 08 09 10 11 12 A4 A4E A5 A5E Average
Avg 76.5 76.6 76.4 76.1 75.3 76.3 76.4 76.5 76.4 76.3
First 76.4 76.3 76.3 76.0 75.1 76.1 76.2 76.4 76.3 76.1
Last 76.5 76.5 76.4 76.1 75.2 76.4 76.3 76.5 76.5 76.3
Max 76.4 76.5 76.3 76.0 75.1 76.3 76.3 76.3 76.3 76.2
Z50 76.4 76.5 76.3 76.0 75.3 76.3 76.3 76.4 76.4 76.2
Average 76.4 76.5 76.3 76.0 75.2 76.3 76.3 76.4 76.4 –

Table 9: Development set LAS for training UDPipe-Future with word embeddings taken from different BERT
layers. Each inner cell shows the average over 25 runs. Pooling methods are average, first, last, maximum and
weighted average with binonimal distribition with p = 0.5 (Z50). Layer A4 (A5) stands for using the average
of the top 4 (5) layers. The E suffix means that the 768-dimensional BERT_BASE vectors are expanded to 1024
components so that all (A4E) or most (A5E) final components can be the average of fewer input components. The
three settings selected for the three learners of each language are shown in bold.

