
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9391–9407
November 7–11, 2021. c©2021 Association for Computational Linguistics

9391

ARMAN: Pre-training with Semantically Selecting and Reordering of
Sentences for Persian Abstractive Summarization

Alireza Salemi1, Emad Kebriaei1, Ghazal Neisi Minaei1, Azadeh Shakery1,2

1School of Electrical and Computer Engineering
College of Engineering, University of Tehran, Tehran, Iran

2School of Computer Science
Institute for Research in Fundamental Sciences (IPM), Iran

{alireza.salemi,emad.kebriaei,ghazal.minaei,shakery}@ut.ac.ir

Abstract

Abstractive text summarization is one of the ar-
eas influenced by the emergence of pre-trained
language models. Current pre-training works
in abstractive summarization give more points
to the summaries with more words in com-
mon with the main text and pay less attention
to the semantic similarity between generated
sentences and the original document. We pro-
pose ARMAN, a Transformer-based encoder-
decoder model pre-trained with three novel ob-
jectives to address this issue. In ARMAN,
salient sentences from a document are selected
according to a modified semantic score to be
masked and form a pseudo summary. To sum-
marize more accurately and similar to human
writing patterns, we applied modified sentence
reordering. We evaluated our proposed mod-
els on six downstream Persian summarization
tasks. Experimental results show that our pro-
posed model achieves state-of-the-art perfor-
mance on all six summarization tasks mea-
sured by ROUGE and BERTScore. Our mod-
els also outperform prior works in textual en-
tailment, question paraphrasing, and multiple
choice question answering. Finally, we estab-
lished a human evaluation and show that using
the semantic score significantly improves sum-
marization results.

1 Introduction

Abstractive text summarization is the task of gener-
ating a short, fluent, and concise text that contains
novel words and phrases other than the original
document, preserving the primary subjects in the
document. In contrast with extractive summariza-
tion, which aims to select the most important parts
of the text to generate a summary, in abstractive
summarization, the main goal is to generate a new
persuasive piece of text as the summary of a docu-
ment.

Earlier abstractive summarization works (Her-
mann et al., 2015; See et al., 2017; Rush et al.,

2015) focused on training with large datasets con-
taining pairs of documents and summaries in a
supervised manner. By introducing Transformer
(Vaswani et al., 2017) architecture and pre-training
objectives and their positive impact on most NLP
tasks, most current state-of-the-art (SOTA) meth-
ods focused on self-supervised objectives for pre-
training Transformer architecture in abstractive
summarization tasks (Liu and Lapata, 2019; Zhang
et al., 2020a; Qi et al., 2020). However, current
pre-training works give more points to the sum-
mary with more words in common with the main
text and pay less attention to the semantic similar-
ity between generated sentences and the original
document.

According to Simons (2017), the Persian lan-
guage is one of the top 25 spoken languages in the
world. However, there are limited research studies
in Persian document summarization, and most of
the prior works were mainly focused on extractive
summarization. The main focus of this work is on
Persian abstractive summarization. Nevertheless,
our proposed method is language-independent.

In this work, we first bring semantic similarity
scores into a sentence selection schema to create a
document’s pseudo summary. Briefly, we prepare
a summary corresponding to each document in a
dataset by selecting important sentences based on
semantic scores in a self-supervised manner. Next,
we propose three novel objectives for pre-training
a seq2seq Transformer. Our model, ARMAN, uses
Transformer encoder-decoder structure and intro-
duces a new combination of masking sentences
with sentence shuffling and reordering objectives.
We fine-tuned the models on six downstream tasks.
According to an experiment, we found that let-
ting the training model to copy pieces of the in-
put text into the output summary does not lead to
better results in downstream tasks. Experiment re-
sults showed that our proposed models obtained
SOTA performance in all Persian abstractive sum-

9392

marization datasets on both ROUGE (Lin, 2004)
and BERTScore(Zhang et al., 2020b). Our mod-
els generated even better summaries than previous
SOTA in zero and few shot settings when fine-tuned
with a small number of document-summary pairs.
We achieved SOTA results on two datasets with
only 1K examples. Moreover, our proposed mod-
els performed well in other NLU tasks, including
textual entailment, question paraphrasing, and mul-
tiple choice question answering. Finally, to ensure
the significant improvement in summarization, we
held a human evaluation, and we performed a stu-
dent t-test on its results.

The main contributions of this paper are three-
fold:

• We introduce a top-sentence selection algo-
rithm based on a semantic score to make
document-summary pairs in a self-supervised
manner.

• We propose three novel objectives to pre-train
a Transformer encoder-decoder architecture
for Persian abstractive text summarization that
outperforms previous state-of-the-art models
on six downstream tasks.

• We created an abstractive summarization
dataset called Tebyan.

2 Related Work

Automatic text summarization was mainly per-
formed based on statistical methods (Nenkova,
2005); most of them were striving to rank sen-
tences by extracting their features(Svore et al.,
2007; Erkan and Radev, 2004; Filippova and Altun,
2013). By rising of sequence to sequence learning
with neural networks (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014) and attention mecha-
nism (Bahdanau et al., 2015) usage in abstractive
summarization tasks (Nallapati et al., 2016), a new
era in abstractive summarization began.

By introducing Transformer (Vaswani et al.,
2017) and Masked Language Modeling (MLM)
methods of BERT (Devlin et al., 2019), most NLP
tasks achieved a vast improvement gain using these
pre-training methods and architectures. Following
BERT’s approach, many other Language Models
were trained (Liu et al., 2019; Joshi et al., 2020)
with differences in the amount of data used for
pre-training and some optimizations on BERT’s
pre-training method; most of them were only En-
coders. Furthermore, Encoder-Decoder models

were trained with a mixture of pre-training tasks;
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020) are two of them.

Since the pre-training of Transformer was suc-
cessful on most NLP tasks, some models were
pre-trained for specific duties; PEGASUS (Zhang
et al., 2020a) is a pre-trained model that was trained
specifically for summarization on C4 and Huge-
News corpora. PEGASUS trained with Gap Sen-
tence Generation (GSG) that masks the most im-
portant sentences based on syntactic similarity of
sentences of a document. ARMAN is different
from PEGASUS in that we mask the most impor-
tant sentences based on the semantic similarity of
sentences. Furthermore, we use only a single mask
token for any consecutive sentences that should
be masked. This approach helps the model learn
how many sentences should be generated for each
masked token in the input sequence. STEP (Zou
et al., 2020) is another pre-trained summarization
model trained with MLM, Next Sentence Genera-
tion (NSG), and Sentence Reordering (SR) objec-
tives. ARMAN uses SR as one of the pre-training
methods in a modified form; we change the order of
sentences in the input document. The model should
select the most important sentences using seman-
tic similarity of sentences to the document, then
reorder them in the actual order that they appeared
in the original document.

In the Persian language, some extractive sum-
marization methods exist (Khademi et al., 2018;
Rezaei et al., 2019; Kermani and Ghanbari, 2019;
Khademi and Fakhredanesh, 2020), but to the best
of our knowledge, we know just one model on ab-
stractive summarization. Farahani et al. (2020b)
have used ParsBERT (Farahani et al., 2020a) check-
point with Rothe et al. (2020)’s method to train a
new sequence to sequence model with pre-trained
weights for the encoder and decoder. In this re-
gard, ARMAN is one of the first works on abstrac-
tive summarization for the Persian language. Also,
ARMAN was able to achieve SOTA results on all
available datasets.

3 Methodology

This section introduces a sentence selection method
based on semantic similarity scores to make a
pseudo summary. Then, we propose three novel
objectives for pre-training a seq2seq model for the
abstractive summarization tasks.

9393

3.1 Top Sentence Selection (TSS)

We introduce a new semantic-based approach for
selecting important document sentences to make
a pseudo summary in this work. The pseudo sum-
mary consists of important sentences of a given doc-
ument, and the models are supposed to generate an
output similar to the pseudo summary correspond-
ing to the document. For comparison, we also use
a syntactic-based metric to select sentences from
the original document. Inspired by recent work in
generating pseudo summaries (Zhang et al., 2020a),
we select sentences from a document based on two
strategies and concatenate them to create a pseudo
summary. For each document in a data collection,
we make a summary as described in Algorithm 1.
At first, we calculate a score function for each pair
of (sentence, document \ sentence). Then we
calculate the top m sentences and merge them to
make the pseudo summary. The parameter m is
calculated based on the number of sentences.

Algorithm 1: Top Sentence Selection
Input :Document
Output :Text, Summary

for si in Document do
ri := score_func(si, Document \ si)

end for
Summary := ∅
Text := Document
for j ← 1 to m do

k := argmax{ri}∀ si /∈Summary

Summary := Summary ∪ {sk}
Text := Text \ {sk}

end for

Syntactic-based approach: In this strategy, we
create a pseudo summary by selecting and merging
sentences from a document using a syntactic-based
approach. ROUGE is a mainly used metric that cal-
culates the similarity between a candidate sentence
and a collection of reference sentences based on
the overlap of N-grams (Lin, 2004). The higher
the ROUGE score between two pieces of text, the
more similar they are. The score-func in Algorithm
1 calculates the ROUGE1-F1 score between the
sentence and remaining sentences of the document.
PEGASUS (Zhang et al., 2020a) has used such a
method as Gap Sentence Generation.
Semantic-based approach: Although selecting
sentences based on the ROUGE metric is sim-
ple, cost-effective, and usable in low-resource

languages, ROUGE comes with some drawbacks
(Kryscinski et al., 2019). In particular, ROUGE
does not account for different words with the
same meaning since it only calculates syntactical
matches. Thus, if we have two sentences with the
same meaning but expressed with different words,
they will be assigned a low ROUGE score. To the
best of our knowledge, this paper is the first to
study semantic similarity in creating pseudo sum-
maries and its effect on the quality of generated
summaries.

To consider the semantic score in calculating
the similarity of two sentences, we used a recent
BERTScore metric. BERTScore computes a simi-
larity score for each token in the candidate sentence
with each in the reference sentence using contex-
tual embeddings (Zhang et al., 2020b). Due to the
high computational cost of calculating this metric
for each pair of (sentence, document\sentence),
we used FastText (Bojanowski et al., 2017) pre-
trained embeddings instead of BERT contextual
embeddings. According to BERTScore, for a ref-
erence x, and a candidate x̂, the recall, precision,
and F1 scores are:

RFT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

xi>x̂j ,

PFT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

xi>x̂j ,

F1FT = 2
PFT .RFT

PFT +RFT
.

For applying semantic score, the score function in
Algorithm 1 calculates F1FT

1.

3.2 Pre-training Objectives
In this work, we propose new pre-training objec-
tives and compare our models with the closely sim-
ilar work of PEGASUS (Zhang et al., 2020a). We
use Transformer encoder-decoder structure and in-
troduce a new combination of masking sentences
plus shuffling and reordering objectives. The gen-
eral procedure of pre-training with the proposed
objectives is shown in Figure 1.

TSS-ROUGE
In this objective, we implemented PEGASUS for
the Persian language to compare with our proposed
models. The base architecture of this model is a
Transformer encoder-decoder. Instead of masking
words, we mask sentences with <mask> tokens. In

1FT stands for FastText.

9394

Figure 1: The procedure of making input and output for pre-training Seq2Seq Transformer. TTS selects the salient
sentences and divides the original document into text and summary parts. The summary part is the desired output
that the Transformer should generate.

order to generate pseudo summaries as input to this
structure, the syntactic-based approach using the
ROUGE metric is applied.

TSS-Semantic Similarity (SS)
This objective takes semantically created pseudo
summaries into account. This method is the same
as the previous TSS-ROUGE. The semantic-based
approach using the modified BERTScore is applied
to generate pseudo summaries as input to the struc-
ture. The masking criterion is a bit different from
TSS-ROUGE. We put only one <mask> token for
any number of consecutive sentences that should be
masked. In this way, the model learns to guess the
number of sentences as well. In 20% of the cases,
instead of masking a sentence, we keep it in place;
this will make the model learn to bring some pieces
of the document into the summary. We call the
trained model with this objective ARMAN(SS-80).

TSS-Shuffling (SH)
In addition to considering a semantic-based ap-
proach for creating a pseudo summary, we apply
span shuffling in a sentence and the masking objec-
tive together in this objective. In particular, instead
of masking sentences 20% of the cases, we shuffle
a span of them. The intuition is that the model will
learn not to just copy sentences in the final sum-
mary and be sensitive to precedence and latency at
the span level. We call the trained model with this
objective ARMAN(SH).

TSS-Modified Sentence Reordering (MSR)
In this objective, we do masking as the TSS-
Semantic Similarity objective does in 90% of docu-
ments, and in 10% of other documents, we shuffle
all sentences. In the latter, the model should re-
order sentences and keep the top 30% of important
sentences of the original document according to

the semantic scores. The idea behind this method
is that the model will learn to arrange the sentences
in the correct order in the final summary. More-
over, the model will learn to care about important
pieces of the document. In addition to enriching
the summary semantically, this work also consid-
ers its brevity. We call the trained model with this
objective ARMAN(MSR).

4 Data Collection

This section introduces the datasets used for pre-
training and fine-tuning models and the procedure
of cleaning corpora.

4.1 Pre-training Datasets

We merged four large Persian corpora from
different sources for pre-training models, which
contained formal and informal texts.

irBlogs (AleAhmad et al., 2016) is a collection of
5M+ posts from 600K+ Persian weblogs. Some
blogs use informal language for their posts, so this
dataset has an enormous amount of informal texts,
which could help our models become familiar with
this type of Persian speech.

MirasText (Sabeti et al., 2018) is an automatically
produced text corpus for the Persian language by
crawling over 250 Persian websites. This corpus
contains around 2.8M articles and 1.4B words in
all of the articles.

CC100 (Conneau et al., 2020; Wenzek et al.,
2020) is a monolingual dataset for 100+ languages
constructed from Commoncrawl snapshots. This
dataset contains about 111GB of Persian raw text
with 13.3B different tokens.

9395

YJC News2 is a collection of articles gathered
from the Young Journalist Club website3. This
dataset contains news from various subjects, in-
cluding 1M+ articles.

4.2 Downstream Datasets

For the Summarization task, five datasets were
used. All datasets are publicly available and could
be used to reproduce our results. Following Grusky
et al. (2018), extractive density and coverage for
each summarization dataset has been reported
in Appendix A. Moreover, we used a Natural
Language Understanding (NLU) dataset to test our
models’ performances on language modeling tasks.

PN-Summary (Farahani et al., 2020b) is an
abstractive summarization dataset consisting of
93,207 articles of various news categories crawled
from six news agency websites.

Wiki-Summary (Farahani, 2020b) is a dataset
that was extracted from Wikipedia dump files.
The main task of this dataset is to generate
highlights for each article. There are two versions
of this dataset; we used the first version in our
experiments, consisting of 56,363 articles and
highlight pairs.

VOA Dataset (Farahani, 2020a) is a medium-sized
corpus of 7.9 million words consisting of 38,952
articles of the VOA website4 from 2003 to 2008.
The main task that was performed on this dataset
was generating a headline for each article.

PerKey (Doostmohammadi et al., 2018) is a key
phrase extraction dataset for the Persian language
crawled from six Persian news agencies. There
are 553k articles available in this dataset. Some
of these articles have summaries, and all of them
have titles.

Tebyan Dataset accumulates 92,289 document-
summary pairs that we have collected from the
Tebyan website5. These articles consist of vari-
ous subjects and are not limited to news articles.
More information about this dataset is provided in
Appendix A.

2https://github.com/mohammadiahmad/
persian-dataset

3https://www.yjc.ir/
4https://www.voanews.com/
5https://www.tebyan.net/

ParsiNLU (Khashabi et al., 2020) is a collection
of NLU tasks for the Persian language including
Textual Entailment, Sentiment Analysis, Question
Paraphrasing, Multiple Choice Question Answer-
ing, and Reading Comprehension tasks. We have
fine-tuned our models on most of them to test their
performances on NLU tasks.

4.3 Preprocessing

Due to the necessity of a massive amount of data
for pre-training of language models, we needed
to collect large datasets, but those datasets need
to be cleaned. We adopted a heuristic function
to produce an automatic pipeline for cleaning our
pre-training datasets. First of all, for each docu-
ment in each dataset, we separated the sentences
and removed those which have the following char-
acteristics; 1) sentences with less than five words
2) sentences that do not end with valid Persian
end of sentence marks 3) sentences that contain
some specific keywords from Persian webpages
and javascript codes.

Furthermore, we omitted documents with less
than three sentences after the above cleaning. Next,
we used the langdetect6 package to filter out any
document which is not in Persian with the proba-
bility of 0.99. Lastly, we removed duplicate para-
graphs of documents. More information about the
size of each corpus after cleaning is reported in
Appendix A. Our heuristic was inspired by meth-
ods from Raffel et al. (2020)’s work. This pre-
processing procedure only has been used for the
pre-training datasets.

5 Experiments

In this section, we compare ARMAN with previous
works and conduct several experiments to assess
the performance of the proposed methods. The
codes for pre-training and fine-tuning of all models
are publicly available on GitHub7.

5.1 Pre-training and Implementation

Our model is based on Transformer (Vaswani et al.,
2017) encoder-decoder structure. We pre-trained
ARMAN, which contained a 12 layer encoder and a
12 layer decoder with 768 embedding/hidden size,
3072 feed-forward filter size, and 12 self-attention
heads. ARMAN and PEGASUS were trained on

6https://pypi.org/project/langdetect/
7https://github.com/alirezasalemi7/

ARMAN

https://github.com/mohammadiahmad/persian-dataset
https://github.com/mohammadiahmad/persian-dataset
https://www.yjc.ir/
https://www.voanews.com/
https://www.tebyan.net/
https://pypi.org/project/langdetect/
https://github.com/alirezasalemi7/ARMAN
https://github.com/alirezasalemi7/ARMAN

9396

Model PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

Transformerbase 34.49/16.03/28.91 23.96/6.14/17.66 31.53/11.71/27.41 55.86/43.49/52.22 45.33/29.88/42.85 23.82/6.79/18.55
PEGASUSbase 45.67/27.81/39.71 31.98/11.63/23.79 47.55/28.68/43.57 62.82/51.96/59.48 53.99/39.3/51.72 37.2/21.23/31.47
ParsBERTbase 44.01/25.07/37.76 27.34/7.1/25.5 43.54/24.24/40.76 - - -

mT5small 42.25/24.36/35.94 15.2/4.73/12.64 42.32/25.57/38.99 33.88/19.17/28.75 28.5/12.55/25.91 27.16/12.08/21.27

ARMAN(SS)base 45.98/28.2/40.09 32.27/11.72/23.91 47.91/28.9/43.75 62.97/52.11/59.64 54.18/39.39/51.84 37.53/21.73/31.77
ARMAN(SH)base 45.89/28.03/39.89 32.04/11.78/23.83 46.96/27.88/42.93 63.47/52.71/60.16 54.5/39.9/52.19 37.6/21.77/31.82

ARMAN(MSR)base 46.19/28.41/40.27 32.48/11.86/24.08 48.23/29.52/44.27 63.59/52.87/60.3 54.81/40.17/52.51 37.79/21.85/31.98

Table 1: A comparison of results for ARMAN(SS), ARMAN(SH), and ARMAN(MSR) with other pre-trained
models on downstream tasks. These results are reported using ROUGE metrics.

Model PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
P/R/F1 P/R/F1 P/R/F1 P/R/F1 P/R/F1 P/R/F1

PEGASUSbase 79.86/79.67/79.7 74.29/71.31/72.64 80.84/81.13/80.92 86.13/86.01/86.01 83.68/83.31/83.45 75.26/75.17/75.14

ARMAN(SS)base 80.08/79.74/79.85 74.24/71.48/72.71 81.02/81.13/81 86.27/86.01/86.09 83.65/83.36/83.46 75.48/75.32/75.32
ARMAN(SH)base 79.95/79.69/79.76 74.25/71.43/72.68 80.64/80.91/80.71 86.46/86.22/86.29 83.85/83.49/83.62 75.48/75.28/75.29

ARMAN(MSR)base 80.14/79.84/79.93 74.67/71.55/72.95 81.1/81.35/81.16 86.54/86.24/86.33 83.93/83.59/83.71 75.49/75.46/75.4

Table 2: A comparison of results for ARMAN(SS), ARMAN(SH), and ARMAN(MSR) with other pre-trained
models on downstream tasks. These results are reported using the original BERTScore metric.

the mentioned pre-training corpora in section 4.1.
The batch size and the training steps of pre-training
were set to 128 and 1M, respectively. Adafactor
(Shazeer and Stern, 2018) with square root learn-
ing rate decay and a dropout rate of 0.1 was used
in pre-training and fine-tuning. Pre-training ex-
periments were carried out on the Google Colab
platform with TPU v2-8. It took almost 11 days for
1M steps to train ARMAN. Also, we sampled 1M
documents from the CC100 dataset and used the
SentencePiece Unigram algorithm (Kudo, 2018) to
generate the vocabulary for our models. The size
of the vocabulary was 96K in all experiments.

5.2 Fine-tuning on Text Summarization

Abstractive summarization aims to produce a short,
fluent, and concise text using advanced natural lan-
guage techniques to extract essential information
from the original document. We fine-tuned our
pre-trained models on six downstream tasks. In
all experiments, we set the input length (Linput)
to 512 and output length to 256. Also, we used
beam-search as Wu et al. (2016)’s approach with a
beam-size of 8 and a length penalty of 0.8. More in-
formation about the experiments’ setup is reported
in Appendix B.

Table 1 shows results based on standard ROUGE
metrics. To compare summaries generated by
our models with the state-of-the-art PEGASUSbase
with a text generation evaluation metric, we re-
ported results based on original BERTScore (Zhang
et al., 2020b) (using bert-base-multilingual-cased

as pre-trained contextual embeddings) in Table
2. Both tables show the performance improve-
ments of ARMAN(MSR)base on all downstream
datasets. According to tables 1 and 2, even
ARMAN(SS)base, our basic proposed method, out-
performs PEGASUSbase in all datasets. These re-
sults show that considering the semantic similarity
in pre-training objectives is critical in improving
the final summary.

In ARMAN(MSR)base, we encouraged the
model to learn the correct relative orders between
sentences by reordering at the sentence level. Re-
sults of this model show that the reordering objec-
tive gives an improvement in summarization. Our
second model, ARMAN(SH)base, does not help in
improving the quality of summaries. So, we con-
clude that shuffling at the span level leads to a
sub-optimal response, as reported in Raffel et al.
(2020).

5.3 To copy or not to copy!

We observed that PEGASUSlarge
8 tries to copy sen-

tences from the document into a generated sum-
mary when it is not fine-tuned on any summariza-
tion datasets.The intuition is that when the task is
to copy a sentence, and in return for that copying
the model gets an extra score, the model becomes
biased towards copying the sentences to increase
the probability of catching a significant match. In
other words, it always copies some sentences from

8https://huggingface.co/google/
pegasus-large

https://huggingface.co/google/pegasus-large
https://huggingface.co/google/pegasus-large

9397

Model PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

ARMAN(SS-80)base 45.98/28.2/40.09 32.27/11.72/23.91 47.91/28.9/43.75 62.97/52.11/59.64 54.18/39.39/51.84 37.53/21.73/31.77
ARMAN(SS-100)base 46.33/28.57/40.38 32.36/11.78/24.1 47.73/28.95/43.89 62.83/51.92/59.53 54.25/39.51/51.92 37.64/21.78/31.94

Table 3: Comparison of ARMAN(SS-80) and ARMAN(SS-100) results on tasks using ROUGE metrics.

Model PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
Dens/Cov Dens/Cov Dens/Cov Dens/Cov Dens/Cov Dens/Cov

ARMAN(MSR)base 8.29486/0.87188 2.55229/0.68437 4.59273/0.89648 13.08480/0.84591 2.50826/0.81320 18.56819/0.86931
PEGASUSbase 8.73796/0.87553 2.60724/0.68463 4.35264/0.88661 13.48538/0.84700 2.51945/0.81221 18.23422/0.87605

Table 4: Comparison of ARMAN(MSR) and PEGASUS results on tasks using Density(Dens) and Coverage(Cov)
(Grusky et al., 2018) metrics. ARMAN has less Density and Coverage in 4 out of 6 datasets.

Model PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
F1-T/P-S F1-T/P-S F1-T/P-S F1-T/P-S F1-T/P-S F1-T/P-S

ARMAN(MSR)base 0.71184/0.82143 0.29325/0.62210 0.58415/0.95609 0.58555/0.85361 0.61337/0.90528 0.33835/0.95138
PEGASUSbase 0.62983/0.81188 0.28139/0.60744 0.57440/0.94425 0.64304/0.85691 0.54963/0.89825 0.30000/0.86349

Table 5: Comparison of ARMAN(MSR) and PEGASUS results on tasks using F1-Target(F1-T) and Precision-
Source(P-S) (Nan et al., 2021). ARMAN has a higher F1-Target and Precision-Source in 5 out of 6 datasets.

the input to the output with the hope that it will
match the output because this yields a decrease in
the loss function value.

We set up an experiment to observe the behavior
of our models when they are not encouraged to
copy sentences of the input into the output. Ac-
cording to semantic score, all proposed methods
selected 30% of the top-ranked sentences. In this
experiment, we pre-trained ARMAN(SS)base with
two different values for masking rate in TSS ob-
jective; 1) ARMAN(SS-80)base masked only 80%
of important sentences and left the other 20% un-
changed in the input text, 2) ARMAN(SS-100)base
masked all of the important sentences without copy-
ing any sentences from input text into the pseudo
summary.

Results in Figure 2 show that in a zero-shot
setting, ARMAN(SS-100)base produces a higher
ROUGE score when we do not consider copying
in the pre-training objective. Additionally, we fine-
tuned ARMAN(SS-100) and ARMAN(SS-80) on
downstream tasks. Results in Table 3 and Figure
2 show that ARMAN(SS-100)base performs better
than ARMAN(SS-80) before and after fine-tuning.
Given these results, we used this more effective
criteria in our best model, ARMAN(MSR)base.

5.4 Factual Consistency and Abstractiveness

From another perspective, we compared the ab-
stractiveness and factual consistency of our best
model, ARMAN(MSR), with PEGASUS on down-
stream summarization tasks because they are impor-

tant factors for assessing the quality of summaries.
To compare the abstractiveness of models, we

calculated the coverage and density (Grusky et al.,
2018) of summaries generated by each model. A
higher value for coverage indicates that the sum-
mary uses fewer novel words, and a higher value
for density is an indicator of a more extractive sum-
mary. The average density and coverage of AR-
MAN(MSR) and PEGASUS on each dataset are
reported in table 4. The results show that ARMAN
has a lower density and coverage compared to PE-
GASUS in 4 out of 6 tasks. Also, in the Tebyan
dataset, ARMAN has a higher density but lower
coverage, which means ARMAN uses more novel
words compared to PEGASUS. Therefore we con-
clude that ARMAN’s summaries are more abstrac-
tive than PEGASUS.

To compare the factual consistency of models,
we calculated precision-source and F1-target (Nan
et al., 2021) metrics. While the mentioned metrics
evaluate entity-level factual consistency, they still
gives considerable information about the factual
consistency of models. In order to extract named
entities, we used the ParsBERT (Farahani et al.,
2020a) model, which was trained on the PAYMA
(Shahshahani et al., 2019) dataset9. The average
precision-source and F1-target of ARMAN(MSR)
and PEGASUS on each dataset are reported in Ta-
ble 5. The results show that ARMAN has a higher
F1-target and precision-source score than PEGA-

9https://huggingface.co/HooshvareLab/
bert-fa-base-uncased-ner-peyma

https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-peyma
https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-peyma

9398

Figure 2: A comparison of results for ARMAN(SS-80), ARMAN(SS-100), ARMAN(SH), ARMAN(MSR), and
PEGASUS on zero-shot learning using ROUGE metrics. ARMAN(SS-100) got remarkably better results in most
downstream tasks in zero-shot experiments. More details are reported in Appendix C.

Figure 3: Results of fine-tuning ARMAN(MSR) trained with 0, 10, 100, 1K, 10K examples of each downstream
dataset for 2K steps. Also, results of Transformerbase, which trained on the whole dataset for 150K steps, and
previous SOTA (if available) are shown. The results for other models are reported in Appendix C.

SUS in 5 out of 6 tasks. Therefore, it seems AR-
MAN is more factually consistent than PEGASUS.

5.5 Zero and Few Shot Summarization

We studied our models in zero and few shot set-
tings to make abstractive summarization a practi-
cal solution for real-world tasks where providing
a large supervised collection of training and test-
ing data is laborious. In a zero-shot setting, we
pre-trained models on pre-training datasets and ex-
amined them on downstream tasks without fine-
tuning. Results in Figure 2 show that our models
outperformed PEGASUS. In a few-shot setting, we
fed our best model with 10k (k = 1, 2, 3, 4) exam-
ples to study the model’s results on low resource
scenarios. In this experiment, Transformerbase and
ARMAN(MSR)base were trained for 150K and 2K
steps, respectively. According to Figure 3, we ob-
served that in Wiki Summary and VOA datasets,
our model has beaten the state-of-the-art model
with only seeing 1K samples. In a larger dataset,
Perkey, our model did not get a better result than
Transformerbase because it was fine-tuned on the
whole dataset with more steps. We conclude that
our model gets an acceptable outcome in lower
amounts of data and computational resources.

5.6 NLU Results

In order to study if ARMAN works well as a lan-
guage model, we tested our models in Natural Lan-
guage Understanding (NLU) tasks. According to

Khashabi et al. (2020), we selected multiple-choice
question-answering, textual entailment, sentiment
analysis, and question paraphrasing tasks to exam-
ine our models’ performance on them. For more
information about these tasks and datasets, see Ap-
pendix A and Khashabi et al. (2020).

According to the results in Table 6,
ARMAN(SH)base has beaten other models
in the natural part of Textual Entailment and
Question Paraphrasing. This model learned
how to arrange a disordered sentence. Thus, it
makes sense why it is powerful in recognizing the
same sentences with different written forms. In
Multiple-Choice QA, our best-performing model
achieves the highest accuracy in math and logic
questions. Our proposed model, with semantic
similarity and mask-only approach, surpasses
others in literature questions. In the common
knowledge task, WikiBERTbase (Pyysalo et al.,
2021) outperformed other models because it has
been trained over a large Wikipedia dataset. In
the Sentiment Analysis task, the proposed models
could not achieve acceptable results compared to
other models. A more detailed study about the
behavior of models on NLU tasks is outside the
scope of this work.

5.7 Human Evaluation

According to Kryscinski et al. (2019)’s work, we
held a human evaluation experiment by consider-
ing ROUGE’s drawbacks. Our purpose was to de-

9399

Texual Entailment Question Paraphrasing Sentiment Multiple-Choice Question Answering
(sentence sent.)

Model natural translated natural translated food movie literature com-know math & logic
(accuracy) (accuracy) (accuracy) (accuracy) (F1) (F1) (accuracy) (accuracy) (accuracy)

mBERTbase 48.7* 51.6* 80.4 75.3 55.2 48.6 31.1 28.6 33.8*
WikiBERTbase 52.8* 52.6* 80 75.5 52 58.5 34.0 31.4 32.1
ParsBERTbase 51.8* 53.9* 79.4 72 59.1 56.8 35.4 29.5 32.5*

mT5small 51.9 51 75.2 72 54.6 49.4 33.7* 24.9 39.1*
PEGASUSbase 54.5 52.6 80 76.1 51.9 56 40 27.7 45.1

ARMAN(SS-80)base 54.5 50.6 82.5 74.8 51.4 47 37.7 25.7 47.7
ARMAN(SS-100)base 54.2 53 79.9 72.8 50 52.9 41.4 27.4 43.1

ARMAN(SH)base 55.5 52.9 82.6 75.1 56.7 42 34.6 28.6 45.4
ARMAN(MSR)base 54.8 51.8 79.9 75.9 52 46 36.57 21.7 49.14

Table 6: A comparison of results on ParsiNLU tasks. Some of the reported results (marked with *) in Khashabi
et al. (2020)’s work could not be reproduced according to their policies. So we reported the numbers that we
ourselves got using their trained models in our experiments.

termine whether semantic similarity makes better
summaries than PEGASUS’ GSG in the experi-
ment. Also, we wanted to discover which model is
the best from the human’s viewpoint. We selected
30 documents from the PN-Summary dataset and
the corresponding generated summaries from PE-
GASUS, ARMAN(SS-80), and ARMAN(MSR)
models. We gave them to 10 participants and asked
them to rank the generated summaries from the best
to worst similar to Zou et al. (2020)’s work accord-
ing to fluency, informativeness, and succinctness
of the generated summaries. In order to perform
statistical tests, we converted rankings into scores
(score = 4− rank). The experiment result is re-
ported in Table 7. Moreover, we have performed
some student t-test between models, and results
are reported in Table 8. Those results show that
ARMAN(MSR) is significantly better than other
models (p < 0.05). Furthermore, results show that
ARMAN(SS-80) is not significantly better than
PEGASUS but has an extremely small p-value
(0.0507 > 0.05).

Model Rank 1 Rank 2 Rank 3 Score
PEGASUS 31% 35% 34% 1.97

ARMAN(SS-80) 38.33% 34.67% 27% 2.11
ARMAN(MSR) 50.33% 29% 20.67% 2.29

Table 7: Human evaluation results, proportions of
model rankings, and average scores. Different models
could have the same rankings in tests if they produced
the same summary.

6 Conclusion

There are few models for generating abstractive
summaries in the Persian language. This work in-
troduces ARMAN, a Transformer encoder-decoder-

p-value PEGASUS ARMAN(SS) ARMAN(MSR)

PEGASUS - 0.0507 2 × 10−5

ARMAN(SS) 0.0507 - 0.014
ARMAN(MSR) 2 × 10−5 0.014 -

Table 8: The p-values for models in comparison. AR-
MAN(MSR) significantly improves results in compari-
son with ARMAN(SS-80) and PEGASUS (p < 0.05).

based model pre-trained with a new combination
of masking sentences with sentence shuffling and
reordering objectives. We considered semantic sim-
ilarities for important sentence selection to make
document-summary input data in a self-supervised
manner. The results show that the modified sen-
tence selection and reordering model outperforms
the most recent SOTA models in all six downstream
tasks. Our model achieved a higher score than the
previous SOTA with only 1K examples in the case
of low supervised sample sizes. Finally, the human
evaluation results show significant improvement
over the dataset used for this experiment.

In future work, investigating the effect of using
contextual embeddings for selecting salient sen-
tences for producing text and summary pairs might
prove necessary. Furthermore, the ability of models
on extractive summarization is worth scrutinizing
since our objectives select salient sentences, which
is similar to extractive summarization.

Acknowledgements

We would like to thank the anonymous review-
ers for their thoughtful and constructive comments.
This research was supported in part by a grant from
the Institute for Research in Fundamental Sciences
(no. CS 1399-4-286).

9400

References
Abolfazl AleAhmad, MohammadSadegh Zahedi,

Maseud Rahgozar, and Behzad Moshiri. 2016.
irblogs: A standard collection for studying per-
sian bloggers. Computers in Human Behavior,
57:195–207.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ehsan Doostmohammadi, Mohammad Hadi Bokaei,
and Hossein Sameti. 2018. Perkey: A persian
news corpus for keyphrase extraction and generation.
2018 9th International Symposium on Telecommuni-
cations (IST).

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. J. Artif. Int. Res., 22(1):457–479.

Mehrdad Farahani. 2020a. News head-
line generation using bert2bert model.
https://github.com/m3hrdadfi/news-headline-
generation.

Mehrdad Farahani. 2020b. Summarization us-
ing bert2bert model on wikisummary dataset.
https://github.com/m3hrdadfi/wiki-summary.

Mehrdad Farahani, Mohammad Gharachorloo,
Marzieh Farahani, and Mohammad Manthouri.
2020a. Parsbert: Transformer-based model for
persian language understanding.

Mehrdad Farahani, Mohammad Gharachorloo, and Mo-
hammad Manthouri. 2020b. Leveraging parsbert
and pretrained mt5 for persian abstractive text sum-
marization.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1481–1491, Seattle, Washington, USA. Association
for Computational Linguistics.

Max Grusky, M. Naaman, and Yoav Artzi. 2018. News-
room: A dataset of 1.3 million summaries with di-
verse extractive strategies. In NAACL.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proceedings of the 28th Inter-
national Conference on Neural Information Process-
ing Systems - Volume 1, NIPS’15, page 1693–1701,
Cambridge, MA, USA. MIT Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Fatemeh Hojati Kermani and Shirin Ghanbari. 2019.
Extractive persian summarizer for news websites. In
2019 5th International Conference on Web Research
(ICWR), pages 85–89.

Mohammad Ebrahim Khademi and Mohammad
Fakhredanesh. 2020. Persian automatic text summa-
rization based on named entity recognition. Iranian
Journal of Science and Technology, Transactions of
Electrical Engineering.

Mohammad Ebrahim Khademi, Mohammad
Fakhredanesh, and Seyed Mojtaba Hoseini. 2018.
Conceptual text summarizer: A new model in
continuous vector space.

Daniel Khashabi, Arman Cohan, Siamak Shakeri,
Pedram Hosseini, Pouya Pezeshkpour, Malihe
Alikhani, Moin Aminnaseri, Marzieh Bitaab, Faeze
Brahman, Sarik Ghazarian, Mozhdeh Gheini,
Arman Kabiri, Rabeeh Karimi Mahabadi, Omid
Memarrast, Ahmadreza Mosallanezhad, Erfan
Noury, Shahab Raji, Mohammad Sadegh Rasooli,
Sepideh Sadeghi, Erfan Sadeqi Azer, Niloofar Safi
Samghabadi, Mahsa Shafaei, Saber Sheybani,
Ali Tazarv, and Yadollah Yaghoobzadeh. 2020.
Parsinlu: A suite of language understanding
challenges for persian.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 540–
551, Hong Kong, China. Association for Computa-
tional Linguistics.

https://doi.org/https://doi.org/10.1016/j.chb.2015.11.038
https://doi.org/https://doi.org/10.1016/j.chb.2015.11.038
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/istel.2018.8661095
https://doi.org/10.1109/istel.2018.8661095
http://arxiv.org/abs/2005.12515
http://arxiv.org/abs/2005.12515
http://arxiv.org/abs/2012.11204
http://arxiv.org/abs/2012.11204
http://arxiv.org/abs/2012.11204
https://www.aclweb.org/anthology/D13-1155
https://www.aclweb.org/anthology/D13-1155
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1109/ICWR.2019.8765279
https://doi.org/10.1007/s40998-020-00352-2
https://doi.org/10.1007/s40998-020-00352-2
http://arxiv.org/abs/1710.10994
http://arxiv.org/abs/1710.10994
http://arxiv.org/abs/2012.06154
http://arxiv.org/abs/2012.06154
https://doi.org/10.18653/v1/D19-1051

9401

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In ACL.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar GuÌ‡lçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero
Nogueira dos Santos, Henghui Zhu, Dejiao Zhang,
Kathleen McKeown, and Bing Xiang. 2021. Entity-
level factual consistency of abstractive text summa-
rization. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 2727–
2733, Online. Association for Computational Lin-
guistics.

Ani Nenkova. 2005. Automatic text summarization of
newswire: Lessons learned from the document un-
derstanding conference. In Proceedings of the 20th
National Conference on Artificial Intelligence - Vol-
ume 3, AAAI’05, page 1436–1441. AAAI Press.

Sampo Pyysalo, Jenna Kanerva, Antti Virtanen, and
Filip Ginter. 2021. WikiBERT models: Deep trans-
fer learning for many languages. In Proceedings
of the 23rd Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 1–10, Reykjavik,
Iceland (Online). Linköping University Electronic
Press, Sweden.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-SequencePre-training. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2401–2410, Online. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Hosein Rezaei, Seyed Amid Moeinzadeh, A. Shahgho-
lian, and M. Saraee. 2019. Features in extractive su-
pervised single-document summarization: Case of
persian news. ArXiv, abs/1909.02776.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging Pre-trained Checkpoints for Se-
quence Generation Tasks. Transactions of the Asso-
ciation for Computational Linguistics, 8:264–280.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Behnam Sabeti, Hossein Abedi Firouzjaee, A. J.
Choobbasti, S. J. Najafabadi, and Amir Vaheb. 2018.
Mirastext: An automatically generated text corpus
for persian. In LREC.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mahsa Sadat Shahshahani, Mahdi Mohseni, Azadeh
Shakery, and Heshaam and Faili. 2019. Payma: A
tagged corpus of persian named entities. Signal and
Data Processing, 16(1).

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596–4604.
PMLR.

Gary Simons. 2017. Ethnologue. SIL International,
Dallas.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Vol-
ume 2, NIPS’14, page 3104–3112, Cambridge, MA,
USA. MIT Press.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://aclanthology.org/2021.eacl-main.235
https://aclanthology.org/2021.eacl-main.235
https://aclanthology.org/2021.eacl-main.235
https://aclanthology.org/2021.nodalida-main.1
https://aclanthology.org/2021.nodalida-main.1
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.29252/jsdp.16.1.91
https://doi.org/10.29252/jsdp.16.1.91
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html

9402

Krysta Svore, Lucy Vanderwende, and Christopher
Burges. 2007. Enhancing single-document sum-
marization by combining RankNet and third-party
sources. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 448–457, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Y. Wu, M. Schuster, Z. Chen, Quoc V. Le, Moham-
mad Norouzi, Wolfgang Macherey, M. Krikun, Yuan
Cao, Q. Gao, Klaus Macherey, J. Klingner, Apurva
Shah, M. Johnson, X. Liu, Lukasz Kaiser, Stephan
Gouws, Y. Kato, Taku Kudo, H. Kazawa, K. Stevens,
George Kurian, Nishant Patil, W. Wang, C. Young,
J. Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
G. Corrado, Macduff Hughes, and J. Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
ArXiv, abs/1609.08144.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer. In
NAACL.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 11328–11339.
PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Yanyan Zou, Xingxing Zhang, Wei Lu, Furu Wei, and
Ming Zhou. 2020. Pre-training for abstractive doc-
ument summarization by reinstating source text. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3646–3660, Online. Association for Computa-
tional Linguistics.

A Datasets Statistics

In this section, extra information about downstream
datasets and pre-training text corpora is reported.
Some of the datasets did not provide any valida-
tion split; however, the number of examples in the
train/validation/test split and the average length of
articles and summaries for each dataset is reported
in Table 11. Additionally, the size of pre-training
texts corpora before and after preprocessing is re-
ported in Table 9.

Following Grusky et al. (2018) and Zhang et al.
(2020a), we have plotted the extractive fragment
density/coverage plot for each downstream dataset
in Figure 4. Grusky et al. (2018) defined them as

COVERAGE(A, S) =
1

|S|
∑

f∈F(A,S)

|f|

DENSITY(A,S) =
1

|S|
∑

f∈F(A,S)

|f|2

where A is an article and S is the corresponding
summary, and F (A,S) is the set of shared se-
quences of tokens in A and S. The density for
extractive summaries is higher than more abstrac-
tive summaries. Lower coverage shows the novelty
of text fragments in summary. Figure 4 shows that
our downstream datasets range from more extrac-
tive summaries to more abstractive ones.

Tebyan dataset contains articles and summaries
from a well-known Persian lifestyle website that
includes various articles from different categories.
In order to produce the Tebyan dataset, we have
crawled 100K pages of their site. We removed all
HTML tags using beautifulsoup410 for each page,
and each page’s primary content was stored with
the author’s provided summary, and paragraphs
were separated with a newline character. Lastly,
we have used Langdetect11 to remove articles that
were not in Persian. After to this procedure, 92,289
articles and summaries were collected, so we sepa-
rated them into three parts, 85% for train, 7.5% for
validation, and 7.5% for test split.

We have tested ARMAN on NLU tasks with the
ParsiNLU (Khashabi et al., 2020), which is a Per-
sian NLU dataset. This dataset consists of 5 main
tasks and translation as an extra task. In Table 10,
the number of examples for train/validation/test of
ParsiNLU is reported. It should be noted that we

10https://pypi.org/project/
beautifulsoup4/

11https://pypi.org/project/langdetect/

https://www.aclweb.org/anthology/D07-1047
https://www.aclweb.org/anthology/D07-1047
https://www.aclweb.org/anthology/D07-1047
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.emnlp-main.297
https://doi.org/10.18653/v1/2020.emnlp-main.297
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/langdetect/

9403

Figure 4: Density and coverage distributions across downstream datasets.

did not test ARMAN on the Reading Comprehen-
sion of this dataset due to resource leakage. The
Sentiment Analysis task of this dataset has two sub-
tasks; sentence-level sentiment and aspect-based
sentiment of a sentence. We have tested ARMAN
on the sentence-level sentiment task. The Senti-
ment Analysis task of this dataset has two subtasks;
sentence-level sentiment and aspect-based senti-
ment of a sentence. We have tested ARMAN on the
sentence-level sentiment task. For Question Para-
phrasing and Textual Entailment, this dataset con-
tains two subtasks; sentences written by humans
and sentences translated from English datasets into
Persian, so we have reported the accuracy of mod-
els for each subtask separately.

B ARMAN Hyper Parameters and
Training Settings

In this section, we have described pre-training
and fine-tuning parameters and settings. In Ta-
ble 12, pre-training settings for ARMANbase are
reported. Tables 13 and 14 contain information
about settings used in fine-tuning ARMANbase and
Transformerbase on summarization tasks. Also, the
fine-tuning settings for NLU tasks are reported in

Table 15. Finally, we have reported each model’s
parameter counts used in summarization tasks in
Table 16.

C Low Resource Numbers and Settings

Table 17 contains information about fine-tuning set-
tings for low resource experiments in Section 5.5.
The numbers in Figures 2 and 3 are reported in Ta-
ble 18. We did not report the results of low resource
experiments for ARMAN(SH), ARAMN(SS-80),
ARMAN(SS-100), and PEGASUS in the main part
of the paper, but they are reported in Tables 19, 20,
21, and 22.

D Samples

Two samples of ARMAN(SS), ARMAN(MSR),
and PEGASUS generated summaries that were
used in the human evaluation test are shown in
Figures 5 and 6. More than 50% of participants be-
lieved that ARMAN(MSR)’s summaries were the
best among all models in the human evaluation test,
which shows that its summaries have high quality.

9404

Pre-train Corpus/Dataset Original Corpus/Dataset Size Cleaned Corpus/Dataset Size
irBlogs 7.1GB 2.6GB

MirasText 15.7GB 6.8GB
YJC News 3GB 2.3GB

CC100 111GB 53GB

Total 136.8GB 64.7GB

Table 9: Size of pre-training text corpora in GB for each corpus before and after cleaning.

Task Number of Train Examples Number of Validation Examples Number of Test Examples
Reading Comprehension 600 125 575

Multiple-Choice 1271 139 1050
Sentiment Analysis 1894 235 294
Textual Entailment 756 271 1751

Question Paraphrasing 1830 898 1916

Table 10: Task name and the number of examples for ParsiNLU dataset.

Dataset Train Count Validation Count Test Count Article Average Length Summary Average Length
PN-Summary 82022 5592 5593 335 31

Wiki-Summary 45653 5073 5637 425 82
VOA 31550 3506 3896 179 11

Perkey (summary) 42077 - 19796 218 28
Perkey (title) 526445 - 24930 224 11

Tebyan 78445 6922 6922 819 37

Table 11: The number of articles and summaries and the average length of them for each downstream dataset
(lengths are reported in words count).

Model Learning rate Label Smoothing Steps Batch Size Objective Max Input Length Max Output Length
PEGASUSbase 0.01 0.0 1M 128 Ind-Orig 512 128

ARMAN(SS)base 0.01 0.0 1M 128 TSS 512 128
ARMAN(SH)base 0.01 0.0 1M 128 TSS+Shuffling 512 128

ARMAN(MSR)base 0.01 0.0 1M 128 TTS+MSR 512 128

Table 12: Pre-training settings for ARMANbase models. We have used PEGASUSlarge (Zhang et al., 2020a) settings
for maximum input and output length since they have searched for the best setting.

Dataset Learning rate Label Smoothing Steps Batch Size Beam Size Beam alpha Max Input Max Output
Perkey (summary) 5 × 10−4 0.1 50K 128 8 0.8 512 256

Perkey (title) 5 × 10−4 0.1 50K 128 8 0.8 512 256
PN-Summary 5 × 10−4 0.1 50K 128 8 0.8 512 256

Tebyan 5 × 10−4 0.1 50K 128 8 0.8 512 256
VOA 5 × 10−4 0.1 20K 64 8 0.8 512 256

Wiki-Summary (v1) 5 × 10−4 0.1 50K 64 8 0.8 512 256

Table 13: Fine-tuning settings for ARMANbase models on downstream summarization tasks and datasets.

Dataset Learning rate Label Smoothing Steps Batch Size Beam Size Beam alpha Max Input Max Output
Perkey (summary) 5 × 10−4 0.1 150K 128 8 0.8 512 256

Perkey (title) 5 × 10−4 0.1 150K 128 8 0.8 512 256
PN-Summary 5 × 10−4 0.1 150K 128 8 0.8 512 256

Tebyan 5 × 10−4 0.1 150K 128 8 0.8 512 256
VOA 5 × 10−4 0.1 150K 64 8 0.8 512 256

Wiki-Summary (v1) 5 × 10−4 0.1 150K 64 8 0.8 512 256

Table 14: Fine-tuning settings for Transformerbase models on downstream summarization tasks and datasets.

9405

Dataset Learning rate Label Smoothing Steps Batch Size Beam Size Beam alpha Max Input Max Output
Multiple-Choice 5 × 10−4 0.1 20K 48 8 0.8 512 256

Sentiment Analysis 5 × 10−4 0.1 20K 48 8 0.8 512 256
Textual Entailment 5 × 10−4 0.1 20K 48 8 0.8 512 256

Question Paraphrasing 5 × 10−4 0.1 20K 48 8 0.8 512 256

Table 15: Fine-tuning settings for ARMANbase models on NLU tasks. Batch size 48 was chosen to be the same
as other models that were trained on those tasks. We have converted the classification problem into the text to text
problems.

Model Parameters Transformer Type
ARMANbase 223M Vaswani et al. (2017)’s Encoder-Decoder

Transformerbase 223M Vaswani et al. (2017)’s Encoder-Decoder
ParsBERTbase (Farahani et al., 2020b) 221M Rothe et al. (2020)’s Encoder-Decoder
PEGASUSbase (Zhang et al., 2020a) 223M Vaswani et al. (2017)’s Encoder-Decoder

mT5small (Xue et al., 2021) 300M Vaswani et al. (2017)’s Encoder-Decoder

Table 16: Parameters count for each tested model that was used for summarization. Reported numbers are in
millions.

Dataset Learning rate Label Smoothing Steps Batch Size Beam Size Beam alpha Max Input Max Output
Perkey (summary) 5 × 10−4 0.1 2K 128 8 0.8 512 256

Perkey (title) 5 × 10−4 0.1 2K 128 8 0.8 512 256
PN-Summary 5 × 10−4 0.1 2K 128 8 0.8 512 256

Tebyan 5 × 10−4 0.1 2K 128 8 0.8 512 256
VOA 5 × 10−4 0.1 2K 64 8 0.8 512 256

Wiki-Summary (v1) 5 × 10−4 0.1 2K 64 8 0.8 512 256

Table 17: Fine-tuning settings for ARMANbase and PEGASUSbase models on downstream summarization tasks
and datasets for low resource experiments.

examples PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

0 25.28/11.09/19.18 24.14/5.05/13.89 26.69/13.89/23.3 23.83/11.39/19.22 16.65/6.26/13.88 20.93/9.25/15.85
10 34.01/17.19/27.83 24.48/5.22/15.09 29.85/15.82/26.39 34.66/19.94/29.65 18.96/7.31/16.13 25.03/9.95/19.4
100 38.47/20.71/32.32 27.87/7.24/18.76 40.35/23.07/36.38 40.24/25.7/35.67 28.81/12.37/26.03 28.95/13.33/23.32
1K 40.96/22.66/34.78 29.86/9.03/21.1 44.67/26.08/40.42 43.04/28.01/38.42 31.43/14.32/28.61 32.42/16.33/26.55
10K 43.21/24.85/37.07 30.09/10.73/22.89 46.38/27.82/42.48 45.43/30.71/41 35.18/17.83/32.32 35.17/19.2/29.36

Table 18: Low resource results of ARMAN(MSR) from Figures 2 and 3. By less than 1000 examples, AR-
MAN(MSR) has beaten the previous SOTA on VOA and Wiki-Summary datasets. Also, 10K examples and 2K
fine-tuning steps got comparable results with previous SOTA in the Pn-Summary dataset.

examples PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

0 24.08/10.34/18.37 22.73/4.58/13.24 27.13/14.14/23.67 23.91/12.07/19.6 16.69/6.36/13.9 20.1/8.74/15.23
10 34.71/17.63/28.51 24.6/5.43/15.27 33.88/18.5/30.06 38.27/23.88/33.61 22.93/8.97/20.15 25.91/11.4/20.27
100 38.67/20.67/32.49 27.41/7.42/19.03 41.05/23.39/37.03 41.34/26.31/36.58 26.83/11.28/24.09 29.13/13.49/23.52
1K 40.95/22.78/34.7 30/8.68/20.75 44.22/25.11/39.77 43.11/28.06/38.45 31.2/14.17/28.28 33.1/17.24/27.31
10K 43.07/24.84/37.05 29.83/10.43/22.58 46.8/27.87/42.86 45.19/30.43/40.76 34.79/17.53/31.83 34.71/18.83/28.97

Table 19: Low resource results of ARMAN(SH). By less than 1000 examples, ARMAN(SH) has beaten the pre-
vious SOTA on VOA and Wiki-Summary datasets. Also, 10K examples and 2K fine-tuning steps got comparable
results with previous SOTA in the Pn-Summary dataset.

9406

examples PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

0 18.92/7.96/15.04 21.87/4.14/13.22 21.8/10.81/19.02 17.19/7.36/14.02 13.33/4.8/11.31 17.67/7.05/13.7
10 37.1/19.18/30.54 24.84/5.99/16.45 33.84/17.6/30.09 35.36/21.14/30.58 25.17/10.47/22.21 27.74/12.97/22.39

100 39.26/21.2/33.21 27.54/7.28/18.89 41.17/23.15/37.31 40.6/25.89/36.22 28.54/12.23/25.72 30.83/15.42/25.33
1K 40.51/22.38/34.43 29.75/8.66/20.72 44.09/25.51/39.9 42.64/27.58/38.05 30.73/13.87/27.89 32.27/16.31/26.49

10K 43.03/24.82/36.91 29.36/10.2/22.33 46.88/27.96/42.91 44.94/30.18/40.51 34.53/17.31/31.65 34.78/18.74/28.94

Table 20: Low resource results of ARMAN(SS-80). By less than 1000 examples, ARMAN(SS-80) has beaten
the previous SOTA on VOA and Wiki-Summary datasets. Also, 10K examples and 2K fine-tuning steps got
comparable results with previous SOTA in the Pn-Summary dataset.

examples PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

0 35.53/18.91/29.78 18.86/3.42/14.4 26.18/11.51/22.75 36.15/20.89/31.37 19.58/7.34/16.73 22.04/9.67/19.04
10 38.49/20.79/32.49 24.05/6.47/17.59 33.45/16.42/29.66 38.55/23.05/33.72 24.85/10.18/21.74 28.53/14.13/23.84
100 39.26/21.19/33.17 27.76/7.46/19.31 41.52/22.97/37.52 40.71/25.27/35.84 28.63/12.27/25.7 30.32/14.29/24.73
1K 41.25/22.89/35.16 30.15/8.88/21.01 44.88/25.58/40.67 42.97/27.75/38.36 31.38/14.32/28.52 32.85/17.02/27.26
10K 43.51/25.28/37.42 29.48/10.16/22.31 46.98/28.33/43.07 45/30.08/40.52 35.29/17.95/32.42 34.95/19/29.22

Table 21: Low resource results of ARMAN(SS-100). By less than 1000 examples, ARMAN(SS-100) has beaten
the previous SOTA on VOA and Wiki-Summary datasets. Also, 10K examples and 2K fine-tuning steps got
comparable results with previous SOTA in the Pn-Summary dataset.

examples PN-Summary Wiki-Summary VOA Perkey(summary) Perkey(title) Tebyan
R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

0 25.32/11.25/19.45 23.11/4.49/13.24 21.51/9.56/18.36 23.34/10.41/18.68 12.93/4.2/10.81 19.27/8.16/14.64
10 35.18/17.65/28.99 24.06/5.49/16.36 30.14/14.83/26.5 34.49/19.2/29.36 16.75/6.14/14.29 26.81/11.39/20.98

100 37.94/20/31.71 27.27/6.81/18.32 40.23/22.68/36.46 39.97/25.06/35.4 26.47/11.08/23.75 28.86/13.12/23.27
1K 39.91/21.88/33.82 29.46/8.61/20.61 42.67/23.8/38.53 42.11/27.09/37.48 29.97/13.46/27.19 31.87/16.01/26.2

10K 42.27/24.06/36.2 29.3/10.13/22.22 46.04/27.15/41.91 44.72/29.97/40.37 33.98/16.93/31.11 34.59/18.73/28.91

Table 22: Low resource results of PEGASUS.

9407

Figure 5: The First sample of models’ generated summaries in human evaluation tests.

Figure 6: The Second sample of models’ generated summaries in human evaluation tests.

