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Abstract

Pretrained language models demonstrate
strong performance in most NLP tasks when
fine-tuned on small task-specific datasets.
Hence, these autoregressive models constitute
ideal agents to operate in text-based envi-
ronments where language understanding and
generative capabilities are essential. Nonethe-
less, collecting expert demonstrations in such
environments is a time-consuming endeavour.
We introduce a two-stage procedure to learn
from a small set of demonstrations and further
improve by interacting with an environment.
We show that language models fine-tuned
with only 1.2% of the expert demonstrations
and a simple reinforcement learning algorithm
achieve a 51% absolute improvement in
success rate over existing methods in the
ALFWorld environment.

1 Introduction

Over the past few years, successive generations
of language models (Radford et al., 2018, 2019;
Brown et al., 2020) have reshaped the way we
approach Natural Language Processing problems.
These Transformer-based (Vaswani et al., 2017)
networks scale to ever-increasing amounts of pa-
rameters, data and compute (Kaplan et al., 2020)
while demonstrating impressive transfer-learning
capabilities across a wide variety of benchmarks
(Wang et al., 2018, 2019; Rajpurkar et al., 2018;
Reddy et al., 2019).

However, the application of modern language
models to action generation in text-based environ-
ments (Côté et al., 2018; Hausknecht et al., 2019;
Shridhar et al., 2021) remains largely unexplored
(Yao et al., 2020). Intuitively, large-scale models
leveraging strong linguistic priors should thrive in
settings where observations and actions are textual
(Luketina et al., 2019), but several issues arise. In-
deed, agents must conform to an environment’s gen-
erative grammar and gameplay specificities making

Goal: Rinse the egg to put it in the microwave.
Obs: Looking quickly around you, you see a
cabinet, a garbagecan, a coffeemachine, [...], a
stoveburner, a sinkbasin and a microwave.
Action: go to sinkbasin
Obs: You arrive at sinkbasin. You see a but-
terknife, a potato, a spoon and a tomato.
Action: go to garbagecan
Obs: You arrive at garbagecan. You see an egg.
Action: take egg from garbagecan
Obs: You pick up the egg from the garbagecan.
Action: go to sinkbasin
Obs: You arrive at sinkbasin. You see a but-
terknife, a potato, a spoon and a tomato.
Action: clean egg with sinkbasin
Obs: You clean the egg using the sinkbasin.
Action: go to microwave
Obs: You arrive at microwave. The microwave
is closed.
Action: open microwave
Obs: You open the microwave.
Action: put egg in/on microwave

Figure 1: Example of a human-annotated, out-of-
distribution task instance solved by GPT?

partial.

off the shelf transfer fail in most games. A way to
overcome this problem is to acquire expert demon-
strations and resort to the widely used paradigm
of fine-tuning on task-specific data (Howard and
Ruder, 2018; Radford et al., 2018; Devlin et al.,
2019). Nevertheless, collecting demonstrations in
text-based environments requires far more time and
expert knowledge than for most NLP tasks. A sin-
gle demonstration includes tens of actions taken
over a long time horizon to solve multiple sub-
goals.

In this work, we propose a two-stage procedure
to address these issues and develop language mod-
els acting as agents in text-based environments.
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First, we train language models to imitate a few
dozens of expert demonstrations in order to respect
an environment’s grammar and acquire basic game-
sense. Second, we let the models interact with
the environment and iteratively treat successful tra-
jectories as additional expert demonstrations for
further fine-tuning. We demonstrate the effective-
ness of our approach in the recently introduced
ALFWorld environment (Shridhar et al., 2021)1,
which was designed with an extensive set of tasks
and expert demonstrations.

In summary, our contributions are the following:

1. We show that language models fine-tuned on
thousands of expert demonstrations consider-
ably outperform current methods in the ALF-
World environment.

2. We achieve strong results with a fraction of
the demonstrations by combining imitation
and reinforcement learning algorithms.

3. We illustrate the robustness of the models de-
veloped to human-annotated goals in realistic
scenarios.

2 Methods

2.1 Background: goal-based textual
environments

A goal-based textual environment can be rep-
resented as a partially observable Markov deci-
sion process P = (S,O,A,G, R, T,M) where
observations, actions and goals are specified in
natural language. In state st ∈ S, an agent
takes action at ∈ A conditioned on context
ct = (g, o0, a0, ..., ot). It receives reward rt =
R(st, at, g), which is an indicator variable for the
completion of goal g ∈ G, and a new observation
ot+1 =M(T (st, at)), whereM : S → O is a map-
ping from states to observations and T : S ×A →
S is the transition function.

2.2 Learning from demonstrations

A demonstration d consists of a sequence of obser-
vations and actions (o0, a0, o1, a1, ..., oT , aT ) for
reaching goal g based on contexts (c0, c1, ..., cT ).
We consider a dataset D of N demonstrations. A
parameterized model pθ is trained to minimize the

1ALFWorld aligns both text and embodied environments,
but here we only refer to the text environment.

mean demonstration loss LD = 1
N

∑N
i=1 Ldi with

Ldi = −
T∑
t=0

log pθ(at|ct). (1)

As noted by Yao et al. (2020),

log pθ(a|c) =
m∑
j=1

log pθ(a
j |a<j , c), (2)

where aj is the j-th token generated in action a of
length m.

We use a per-demonstration loss instead of a
per-action loss to reduce computational costs. In-
deed, with this formulation a Transformer-based
autoregressive model can leverage previous com-
putations when considering a new context from the
same demonstration. In addition, early experiments
suggested that a per-demonstration loss does not
harm performance.

We call action modeling the process of minimiz-
ing the mean demonstration loss, which is concep-
tually very similar to language modeling, except
that we only maximize the likelihood of action to-
kens instead of maximizing the likelihood of the
full trajectory cT .

2.3 Learning from interactions

While action modeling is a powerful training ob-
jective, a model learning from demonstrations is
ultimately limited by the size of the training set.
To circumvent this issue, we propose an iterated
action modeling (IAM) algorithm:

1. A language model pretrained on expert
demonstrations is tasked to solve a batch of
goals in the environment.

2. The language model is further fine-tuned with
action modeling on successful trajectories.

The key advantage of this algorithm is that we can
easily combine imitation learning with reinforce-
ment learning since we are optimizing the same
objective over two distinct sources of data: demon-
strations and successful attempts. Moreover, the
extensively pretrained language/action modeling
head is kept during reinforcement learning instead
of initializing a new RL-specific head from scratch,
which was shown to lead to better performance in
NLP tasks (Gao et al., 2021).
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ALFWorld goals Human goals

Seen split Unseen split Seen split Unseen split

Seq2Seq (Shridhar et al., 2021) 10 9
BUTLER (Shridhar et al., 2021) 40 37
GPTpartial 47 40 17 22
GPT?partial 69 60 32 37
GPT 91 95 42 57

Table 1: Success percentages per evaluation split (in-distribution and out-of-distribution) with and without human-
annotated goals. GPTpartial and GPT are GPT2-based models fine-tuned with action modeling on 42 and 3553
demonstrations, respectively. GPT?

partial corresponds to the former model subsequently trained with iterated action
modeling in ALFWorld. Our results are averaged over 5 seeds. Standard deviations are upper bounded by 9 for
GPTpartial, 8 for GPT?

partial, and 3 for GPT.

3 Experiments

Experiments were implemented with the Trans-
formers (Wolf et al., 2020) and PyTorch (Paszke
et al., 2019) libraries and were conducted on an
NVidia RTX 3090.2

3.1 Environment and dataset

ALFWorld (Shridhar et al., 2021) is a goal-based
textual environment mirroring the embodied AL-
FRED benchmark (Shridhar et al., 2020) with the
TextWorld game engine (Côté et al., 2018). The
environment was created with the aim of learn-
ing high-level language policies inside of it and
transferring them to the embodied setting. ALF-
World inludes 6 tasks that are compositional and
require multiple sub-goals to be solved over vari-
ous time horizons. Any string of words constitute
a valid action making the action space unbounded
and the training of a policy consequently difficult.
In total there are 3553 training task instances {task-
type, object, receptacle, room}, 140 in-distribution
evaluation task instances (seen split) and 134 out-
of-distribution evaluation task instances (unseen
split). A task instance specifies the type of the task
to solve, the object to interact with, the receptacle
where the object should be put and the room layout
(e.g. {heat and place, egg, countertop, kitchen 12}).
Besides, each training task instance in ALFWorld
comes with an expert demonstration, enabling the
development of imitation learning agents.

2Source code and links to models available at: https:
//github.com/vmicheli/lm-butlers

3.2 Training

We train two GPT2-medium (345M parameters)
(Radford et al., 2019) models with action modeling
on the set of demonstrations. The first model, GPT,
has access to the full set of demonstrations while
the second model, GPTpartial, only has access to 42
demonstrations. GPTpartial is subsequently trained
with iterated action modeling in the environment
and is then denoted as GPT?partial. When interact-
ing with the environment, models greedily decode
actions token-per-token until an end of action token
is reached. See Appendix A for training details.

3.3 Evaluation

We select model checkpoints according to their
evaluation performance on the seen split and fur-
ther evaluate them on the unseen split. During
evaluation, we employ greedy action decoding and
a sliding context window which depends on the
maximum number of tokens the language models
can handle. This implies that the contexts given to
the models consist of the goal, the first observation
and as many of the previous observations and ac-
tions as possible. We compare our models with the
ones developed by Shridhar et al. (2021):

• BUTLER: trained with Dagger (Ross et al.,
2011) for 50k episodes and handling failed
actions with beam search.

• Seq2Seq: trained with the full set of demon-
strations.

Contrary to our approach, these models do not en-
capsulate prior linguistic knowledge except from
pretrained word embeddings.

https://github.com/vmicheli/lm-butlers
https://github.com/vmicheli/lm-butlers
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3.4 Robustness

In ALFWorld, goals follow a generative grammar
specific to the environment, e.g. "put a hot apple
in fridge". However, when interacting with au-
tonomous agents, humans may formulate goals
that deviate from this grammar, e.g. "warm up
apple to put in fridge". The ability to general-
ize to human-annotated goals is quantitatively as-
sessed with crowd-sourced goal annotations (Shrid-
har et al., 2020, 2021). We evaluate the best per-
forming models from Section 3.3 on the human-
annotated seen and unseen splits.

4 Results

4.1 Language models strongly outperform
existing methods in ALFWorld

We report the entirety of the results in Table 1.
GPT achieves success rates of 91% and 95%, re-
spectively, on the seen and unseen splits. That is,
absolute improvements of 81% and 86% over the
Seq2Seq model trained on the same data. Even
when compared to BUTLER, trained with 14 times
more expert-guided demonstrations and manually
handling failed actions, we observe absolute im-
provements of 51% and 58%. GPTpartial is also
competitive with BUTLER and outperforms the
Seq2Seq model with only 0.07% and 1.2% of the
expert demonstrations available. However, there
remains a large performance gap between the two
GPT2-based models.

4.2 Iterated action modeling retains most of
the performance with few demonstrations

With iterated action modeling, GPTpartial’s perfor-
mance improves by 22% and 20%, respectively,
on the seen and unseen splits. In other words,
GPT?partial retains 76% and 63% of GPT’s results
with only 1.2% of the expert demonstrations avail-
able.

4.3 Agents with linguistic priors are robust to
human-annotated goals

Evaluation on the seen and unseen splits with
human-annotated goals reveals that language mod-
els fine-tuned with action modeling on expert
demonstrations and successful trajectories are ca-
pable of solving a large proportion of goals formu-
lated in open-ended natural language. For example,
GPT and GPT?partial solve respectively 57% and
37% of human-annotated, out-of-distribution task

instances. Figure 1 illustrates GPT?partial solving
one of these tasks.

5 Related work

Yao et al. (2020) used language models to prune
the action space in text-based games. The authors
introduced the ClubFloyd dataset, which contains
gameplay transcripts collected over a multitude of
games, and fine-tuned a GPT2-small (117M param-
eters) (Radford et al., 2019) model on that dataset
for action generation. This contextual action lan-
guage model (CALM) was then queried to generate
a small list of action candidates based on the last
few observations and actions. CALM was com-
bined with game-specific models trained with re-
inforcement learning (He et al., 2016) to pick the
best action candidate among CALM’s generations.
This approach aims to transfer a general-purpose
language model across multiple new environments
without game-specific imitation or reinforcement
learning. In our work, we optimize for performance
instead of generalization by training language mod-
els with game-specific demonstrations and interac-
tions. In fact, preliminary experiments with CALM
in ALFWorld reveal that the model is unable to
produce valid actions both in terms of grammar
and task completion.

Goal-conditioned supervised learning (Ghosh
et al., 2021) treats every trajectory as an expert
demonstration for reaching the final state encoun-
tered in that same trajectory. This hindsight goal-
relabeling is possible because there exists a straight-
forward mapping between goals and states in the
environments considered (i.e. the identity map). In
ALFWorld, learning such a mapping is highly non-
trivial and constitutes another research direction for
extending existing methods (Cideron et al., 2019)
to this environment. Therefore, during iterated
action modeling we only consider successful tra-
jectories as expert demonstrations and initialize the
agent with a few demonstrations in order to start
the RL procedure with a non-zero success rate.

6 Conclusion

We developed new agents for text-based environ-
ments with pretrained language models. These
agents acquired game knowledge through demon-
strations and interactions to drastically outperform
current methods in the ALFWorld environment.
While we investigated learning under the stan-
dard fine-tuning paradigm, more sophisticated ap-
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proaches could be explored (Schick and Schütze,
2020) and recent works (Brown et al., 2020; Zhao
et al., 2021) even suggest that scaled-up and care-
fully calibrated models achieve great downstream
results without requiring any parameter updates.
Thus, in the near future one can imagine language
models solving text-based environments with only
a few demonstrations for priming.
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A Hyperparameters and sample
selection

We do not leverage any (potentially large) held-
out set of demonstrations to tune hyperparameters
or learning objectives. As mentioned in 3.3, we
solely optimize the success rate over a small set of
validation task instances that we can freely query
rather than a validation loss on held-out examples.
Hyperparameters for the action modeling and it-
erated action modeling experiments are displayed
in Table 2 and Table 3. For the action modeling
experiments with GPTpartial, we randomly select 7
demonstrations per task-type from the pool of 3553
demonstrations.

Hyperparameter GPT GPTpartial
Epochs {10, 20} 100
Batch size 1 1
Gradient acc. steps 8 7
Learning rate 5e-5 {1e-5, 5e-5}
LR schedule Linear Constant
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Max gradient norm 1.0 1.0
Dropout 0.1 0.1
Max sequence length 1000 1000

Table 2: Action modeling hyperparameters.

Hyperparameter GPT?partial
Iterations 20
Episodes per iteration {100, 200, 400}
Batch size 1
Gradient acc. steps 8
Learning rate {1e-6, 1e-5, 5e-5}
LR schedule Constant
Adam β1 0.9
Adam β2 0.999
Max gradient norm 1.0
Dropout 0.1
Max action length 20
Max sequence length 1000
Action selection Sampling

Table 3: Iterated action modeling hyperparameters.

B Performance as a function of the
number of training demonstrations

In Figure 2, we provide a curve of model perfor-
mance as a function of the number of training

demonstrations for the action modeling stage.
Around 168 demonstrations are necessary to

achieve a success rate equivalent to that of
GPT?partial. In other words, adding the iterated
action modeling procedure brings improvements
similar to those we would get if we multiplied the
number of demonstrations by 4.

Figure 2: Unseen split performance as a function of the
number of training demonstrations.

C Input representation

In practice, a context is formed in the following
way:

1. Append the goal to the first observation.

2. Preprend modality strings "[STATE]" and
"[ACTION]" to observations and actions.

3. Concatenate past observations and actions in
a single string of text.


