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Abstract

There is a growing consensus that surface form
alone does not enable models to learn meaning
and gain language understanding. This war-
rants an interest in hybrid systems that combine
the strengths of neural and symbolic methods.
We favour triadic systems consisting of neural
networks, knowledge bases, and inference en-
gines. The network provides perception, that is,
the interface between the system and its envi-
ronment. The knowledge base provides explicit
memory and thus immediate access to estab-
lished facts. Finally, inference capabilities are
provided by the inference engine which reflects
on the perception, supported by memory, to
reason and discover new facts. In this work, we
probe six popular language models for seman-
tic relations and outline a future line of research
to study how the constituent subsystems can be
jointly realised and integrated.

1 Introduction

Recent works (Bender and Koller, 2020; Bender
et al., 2021) postulate that it is impossible to learn
meaning from surface form alone, and express con-
cerns about what is perceived as an over-reliance
on large-scale pretrained neural networks. This
line of thought supports the interest in hybrid sys-
tems that amalgamate elements from complemen-
tary learning paradigms (see, e.g., (Pearl, 2019;
Wang et al., 2019; Hohenecker and Lukasiewicz,
2020; van Bekkum et al., 2021)). In (Dahlgren
et al., 2021), we argue that this calls for an explicit
distinction to be made between the faculties of
perception, memory, and inference. We therefore
promote the development of systems that consist of
subsystems with responsibilities corresponding to
the three faculties. Such future systems would thus
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consist of a perception component realised by a
neural network, a component that provides explicit
memory in the form of a knowledge base, and a
third one performing symbolic inference, that is,
rule-based reasoning.

We suggest to study how the subsystems can
be aligned so for a seamless information flow be-
tween them. We view it as particularly important
that (i) the network and the knowledge base to-
gether yield a consistent treatment of semantic re-
lations and (ii) training takes the knowledge base
into account, so that the resulting embeddings are
consistent with established facts. Our conceptual
discussion is complemented by a preliminary em-
pirical evaluation of six popular English language
models, which we subject to linear probes to test
their abilities to capture central semantic relations.

After a brief discussion of related work in Sec-
tion 2, Section 3 discusses the role of semantic
relations in the context of our envisioned triad sys-
tem while Section 4 and 5 of this paper complement
our conceptual discussion with a preliminary em-
pirical evaluation of the chances to achieve (i) by
probing six popular language models with respect
to a semantic relation learning task.

2 Related work

There is a rapidly growing literature on relation
extraction and hybrid systems. Petroni et al. (2019)
observe that language models such as BERT (De-
vlin et al., 2019) and GPT-3 (Brown et al., 2020)
are imprinted with large amounts of common sense
and factual knowledge during training. If this infor-
mation can be reliably extracted then, they argue,
word embeddings could find a new use as knowl-
edge bases. To test the practicality of this approach,
they consider a knowledge extraction task where
a language model is given a sentence containing
a subject word x and a relation R, but where the
object word y has been removed, and the model
should guess the missing y (i.e., rank the vocabu-
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lary words) based on the fact that x and y are in the
relationR. The sentences are generated based on
manually constructed templates, one per relation.
For example, to the relation birth-place, they use
the template “〈subject〉 was born in 〈blank〉” and
instantiate it to “Dante was born in 〈blank〉”. The
most important baselines are two variations of the
relation extraction model by Sorokin and Gurevych
(2017). Key findings are that language models ap-
pear to be better at learning one-to-one relations,
whereas the relation extraction models are better
at picking out many-to-many relations. Petroni et
al. also find that the choice of template has an im-
pact on the performance of the language models,
and point this out as an item for future work.

Bouraoui et al. (2020) pick up this thread and
propose a method for extracting good template sen-
tences from BERT, and using these to fine-tune
BERT so as to improve its performance on relation
extraction. For a target binary relation R (repre-
sented as a set of ordered pairs) and a sample of
pairs R ⊆ R, they filter the training data for sen-
tences expressing that x and y, with (x, y) ∈ R,
have the relationR, and which would still be nat-
ural if x and y where simultaneously replaced by
some other (x′, y′) ∈ R. Finally, they fine-tune a
language model to predict, from an instantiation of
one of the remaining sentences with a pair (x′′, y′′),
whether (x′′, y′′) ∈ R. The most relevant aspect of
this work for the present effort is the evaluation of
the Bigger Analogy Test Set (also known as BATS)
which contains 40 relations with 50 instances per
relation (Gladkova et al., 2016). Bouraoui et al.
(2020) report a mixed performance on the type of
semantic relations considered here, namely hyper-
nyms and hyponyms.

Additional methods for choosing template sen-
tences are proposed by Jiang et al. (2020) who,
similar to Bouraoui et al. (2020), mine the training
data for suitable sentences. A dependency analysis
on candidate sentences makes it possible to extract
a larger variety of phrases that express the desired
relationship than Bouraoui et al. (2020) can. The
authors also generate candidate sentences by para-
phrasing. In short, they find that both mined and
paraphrasing have their usages, and that combina-
tions of template types, e.g., manually constructed
and mined, often perform well.

Poerner et al. (2019) question the conclusion
by Petroni et al. (2019) that BERT contains fac-
tual knowledge derived from the training data. The

authors believe that in may cases, BERT simply ex-
ploits superficial similarities and general patterns
to guess what is most likely. For example, from
the fact that a person has a typically French sur-
name, BERT could guess that that person is actually
French without having learned the nationality of
the particular person. To expose this weakness, (Po-
erner et al., 2019) remove what they believe are eas-
ily guessed pairs of subjects and objects from the
data set of (Petroni et al., 2019). They also provide
a modified version of BERT, E-BERT, in which
the embeddings of entities mentioned in Wikipedia
have been replaced by a symbolic entity embed-
ding. They find that E-BERT outperforms both
BERT and ERNIE on the trimmed data set, but
also that a combination E-BERT and BERT (taking
the average of or concatenating the embeddings)
give higher accuracy than either on its own.

Rosenbloom (2010) model different types of
declarative and procedural memory with what is
essentially weighted hypergraphs, in which nodes
correspond to actions and conditions, and edges
to activation functions. Procedural and declarative
memory are distinguished based on the direction
in which values are propagated through the hyper-
graph. The analogy to human cognition is that pro-
cedural memory contains information about how
to do something, whereas declarative memory con-
cerns facts and events.

3 The role of semantic relations

As the brief account given in the previous section
shows, there is a solid body of work on the extrac-
tion of relations from language models (see Sec-
tion 2), to derive facts such as that the birth place
of Olga Tokarczuk is Sulechów, Poland, and that
the capital of Bolivia is La Paz. Looking to knowl-
edge bases, it is natural to view them as graphs,
where nodes represent objects and properties, and
edges represent semantic relations. Finally, for

fish vertebrate craniate

centralised brainstarfish

hypernym

hyponym

synonym

meronym

meronym
/

Figure 1: In this work we focus on recovering syn-
onyms, hypernyms, hyponyms, and meronyms from
natural language models via probing to understand the
prerequisites of integration with knowledge bases.
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Synonymy Hyponymy Meronymy

band set assumption theory house library
circle miracle attic
ring audacity porch

office agency copper metal road bend
bureau penny crossing
authority policeman turnout

Table 1: Instances of the relations synonymy, hypernymy, and meronymy extracted from WordNet.

logical inference, basic semantic relations such as
synonymy, hyponymy, hypernymy, and meronymy
play a central role. We recall that words are syn-
onyms if they have (nearly) the same meaning; that
a hypernym of a concept is a generalisation of that
concept (e.g., ‘bird’ is a hypernym of ‘sparrow’),
while a hyponym is an instance of the concept (e.g.,
‘spider’ is a hyponym of ‘arachnid’), and that a
meronym of a concept is a part of the whole (e.g.,
‘branch’ is a meronym of ‘tree’); see Table 1 for
examples found in WordNet (Fellbaum, 1998).

For logical inference, we can infer that starfish
are not fish from knowing that ‘heart’ is a meronym
of ‘craniate’ but not of ‘starfish’ (all craniates have
hearts whereas starfish do not), ‘vertebrate’ is a
hypernym of ‘fish’ (fish are vertebrates), and ‘cra-
niate’ is a synonym of ‘vertebrate’. See Figure 1
and Table 1 for further examples.

To achieve a seamless integration of a neural
network with a knowledge base of relations and an
inference engine, we propose to devise methods for
(i) enabling the network to utilise the knowledge
base, but fall back on the less certain information
in the embedding when necessary and (ii) taking
the relations in the knowledge base into account
during network training, so that the trained net-
work reflects the contents of the knowledge base.
In this endeavour, we believe that particular em-
phasis should be placed on the treatment of lexico-
semantic relations such as meronymy, hyponymy,
and synonymy because of their central role in logi-
cal deduction and lexical semantics.

4 Empirical study: method

To gain some initial insight into how well state-
of-the-art pretrained contextual embeddings han-
dle lexico-semantic relations, we conducted ex-
periments on word embeddings generated by AL-
BERT (Lan et al., 2020), ROBERTa (Liu et al.,
2019), BERT (Wolf et al., 2019), and GPT-

2 (Radford et al., 2019). We also included
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) models in our experiments, for
comparison. These are all self-supervised learning
algorithms, based on neural networks and built to
translate words into vector representations. BERT
and GPT-2 are transformer models, each having 12
encoder layers. ROBERTa is a retraining of BERT
on a larger data set, while ALBERT is an extension
of BERT that has a higher data throughput with
10x fewer parameters, and thus scales better.

In contrast to the works discussed in Section 2,
we do not extract relations from the embeddings by
means of linguistic templates. Rather, we view sen-
tence extraction as an instance of probing (Rogers
et al., 2018; Conneau et al., 2018; Yaghoobzadeh
et al., 2019; Hupkes et al., 2020), a diagnostic
method to reveal what aspects of the input the em-
bedding actually encodes. Probing tasks should
ideally be agnostic as to the underlying encoder ar-
chitecture, so that results are transferable between
embeddings (Hewitt and Liang, 2019; Dahlgren
et al., 2021). Random control tasks (Hewitt and
Liang, 2019) are implemented, see discussion in
Section 5. In our experiments, we considered the
following probing task: Given a pair of word vec-
tors, we ask whether the encoded words are in
relation R. This avoids the optimisation problem
linked to the choice of template seen in (Petroni
et al., 2019).

All experiments are on the English language, and
the data set used in our experiments was obtained
from WordNet as follows. We first built a vocabu-
lary V by taking the 5 000 most common nouns in
the Brown corpus (Kucera and Francis, 1967) and
removing those not found in WordNet (Fellbaum,
1998). This resulted in a vocabulary of 3497 words.
For each word w in the vocabulary V and tar-
get relation R ∈ {hypernym,meronym, synonym}
we then picked words v and v in V such that
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Embedding Synonyms (50.1) Meronyms (54.2) Hypernyms (51.0) Hyponyms (50.7)

Word2Vec 61.5 (1.8) 68.8 (5.0) 69.1 (1.5) 54.1 (1.7)
GloVe 63.2 (2.3) 73.3 (6.0) 68.7 (2.0) 55.7 (1.7)

ALBERT 51.9 (2.6) 48.7 (2.2) 51.2 (1.8) 51.7 (2.9)
ROBERTa 61.7 (1.9) 62.7 (5.9) 64.1 (1.2) 58.2 (2.8)
BERT 56.7 (1.2) 57.2 (3.6) 64.2 (1.6) 51.1 (0.3)
GPT-2 58.0 (1.2) 61.8 (5.3) 65.0 (1.3) 52.4 (2.5)

Table 2: The probing accuracy on the semantic relations, with variance given in parentheses. The accuracy of a
“largest class” strategy is shown next to each relation. All transformers give embeddings of 768 dimensions, with
word2vec and GloVe using 300 dimension. Each relation contain 1712, 306, 2740, and 1630 samples, respectively.

(w, v) ∈ R and (w, v′) /∈ R, and stored these
as triples (w, v, v′).

We formulate a classification task for each rela-
tionR, and probe each of the investigated models
for their ability to capture each relation in their
respective embeddings. Each classification task
is based on 1 712, 306, 2 740, 1 630 samples for
synonyms, meronyms, hypernyms, and hyponyms
respectively. We use a linear classifier probe as
these better reflect the availablity of the informa-
tion probed for, as shown in (Hewitt and Liang,
2019; Dahlgren et al., 2021). From (w, v, v′), posi-
tive (w, v) and negative (w, v′) examples are drawn
with equal probability, labeled either 0 or 1, to rep-
resent if the tuple represents a negative or a posi-
tive pair. The binary labels are given together with
either (w, v) or (w, v′) as input to the probe by
concatenating both word embeddings. We train the
probe for 10 epochs using 5-fold cross validation,
using softmax activation, dropout of 0.2 to prevent
memorising samples, and cross-entropy loss with
the Adam optimizer using a lr = 0.001. We av-
erage the results over 5 runs. The experiment is
implemented with Pytorch for CPU and uses the
Huggingface (Wolf et al., 2019) library for all pre-
trained transformers, and the Gensim (Rehurek and
Sojka, 2011) library for word2vec and GloVe. The
experiments completed within 1 hour on an Intel
i7-based Linux laptop with 32GB RAM. The code
is available on Github1.

5 Results and discussion

Table 2 displays the numerical results, with the
header row showing, for each relationR, the size of
the larger of the two classes. This number coincides
with the control tasks implemented to measure se-

1https://github.com/dali-does/semprof

lectivity, which are omitted to limit redundancy.
The table shows linear probe classification accu-
racy for each language model, with the variance
written out within parentheses. As can be expected,
the variance is highest for meronyms where there
is least data.

Various observations can be made by comparing
the results for the individual embeddings. Particu-
larly worthwhile noting is the fact that GloVe and
word2vec performs on par or better than the contex-
tual embeddings, except for the case of hyponyms.
This behaviour was seen with 5 and 20 training
epochs as well.

The relatively strong performance of the pre-
transformer solutions may not be surprising as far
as synonyms are concerned, since their construc-
tion builds around aligning words found in the same
context. However, we would not have expected
similar results for hypernyms and even lesser so
for meronyms. We note that ALBERT does not
accessibly encode any of the relations, resulting in
random guesses. This could be because ALBERT
is trained using tenfold fewer parameters to pro-
duce much smaller embeddings, and might have
less room for this type of information. Since AL-
BERT is comparable in performance to, e.g., BERT
on many data sets and other metrics, this needs
further investigation to see to what extent these re-
lations are present in the data sets. The complexity
of the probe could also be the culprit, as an em-
bedding with lower dimensionality poses a more
difficult task for a probe with limited capabilities
of separating intertwined concepts. These results
do not mirror those of Lan et al. (2020), which in-
dicates that the relations studied here could receive
more attention in future evaluations of language
embeddings. ROBERTa seems to generally outper-

https://github.com/dali-does/semprof
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form the other transformers, especially on the hy-
ponyms, taking into account that not all results are
statistically significant. Hypo-/hypernym relations
usually follows a tree hierarchy, with hypernyms
directed towards the root. This gives a decreasing
number of hypernyms, for example, fish has six
hypernyms but 39 hyponyms in WordNet, and it is
likely that less common words will be chosen as
a positive example for hyponyms. Weighting the
words according to frequency could show differ-
ent results, but filtering words based on the data
the models are trained on is counterproductive to
the purpose of these probes. ROBERTa is better
able to capture synonyms, which could be an effect
of the much larger dataset used in training com-
pared to the other BERT-models leading to more
of the less common examples of hyponyms being
seen more. One hypothesis on why GPT-2 also
shows poor performance is that Wikipedia is re-
moved from the training data. The proposition is
that many Wikipedia articles explicitly outlines hy-
ponym relations, e.g. in “The cat is a [domestic
species of small carnivorous] mammal” 2.

Summarising the results, the fact remains that
according to our probes no model covers the rela-
tions reliably. If this observation is confirmed by
further experiments, it supports the case for a com-
bination of neural networks, traditional relational
knowledge bases, and inference engines. With this
architecture, established facts could be retrieved
from the knowledge base and complemented by
less certain facts deduced by the network to cover
up for missing information without causing incon-
sistencies. The results also indicate that a signif-
icant threshold should be applied for transferring
relational knowledge derived from an embedding
to a knowledge base, if this should be done at all,
to avoid large error propagation. This is especially
important if the “facts” in the knowledge base are
considered to be absolute truths rather than tenta-
tive findings.

In conclusion, the reliability of the probe could
improve with evaluation sets from relations found
in knowledge bases, and a correlational study be-
tween probing accuracy and downstream NLP tasks
could further support the usefulness of studying
these relations.

2https://en.wikipedia.org/wiki/Cat
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