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Abstract

Most reinforcement learning methods for di-
alog policy learning train a centralized agent
that selects a predefined joint action concate-
nating domain name, intent type, and slot
name. The centralized dialog agent suffers
from a great many user-agent interaction re-
quirements due to the large action space. Be-
sides, designing the concatenated actions is
laborious to engineers and maybe struggled
with edge cases. To solve these problems,
we model the dialog policy learning problem
with a novel multi-agent framework, in which
each part of the action is led by a different
agent. The framework reduces labor costs for
action templates and decreases the size of the
action space for each agent. Furthermore, we
relieve the non-stationary problem caused by
the changing dynamics of the environment as
evolving of agents’ policies by introducing a
joint optimization process that makes agents
can exchange their policy information. Con-
currently, an independent experience replay
buffer mechanism is integrated to reduce the
dependence between gradients of samples to
improve training efficiency. The effectiveness
of the proposed framework is demonstrated
in a multi-domain environment with both user
simulator evaluation and human evaluation.

1 Introduction

Dialog policy optimization is one of the most crit-
ical tasks of task-oriented dialog modeling. Re-
cently, it has shown great potentials for using re-
inforcement learning (RL) based methods to for-
mulate dialog policy learning (Li et al., 2017; Peng
et al., 2017). However, most of these methods
learn a centralized agent based on the joint ac-
tion space that covers predefined atomic action
(Budzianowski et al., 2018), which is the concate-
nation of domain name, intent type, and slot name,
e.g. ‘restaurant-inform-address’, or both atomic
actions and the top-k most frequent atomic action
combinations(Lee et al., 2019a). The elaborate

concatenated actions may achieve acceptable per-
formance in simple cases, however, continuously
suffer from being laborious to engineers and strug-
gled with edge cases in multi-domain or complex
scenes. Another drawback of the centralized agent
is its exponential growth in the observation and ac-
tions spaces with the growing number of domains
(Lee et al., 2019b).

To alleviate the problem of large user-agent in-
teraction requirements caused by the large action
space, a hierarchical reinforcement learning frame-
work was proposed to learn the dialog policy that
operates at different temporal scales (Peng et al.,
2017). It has achieved promising results, however,
is still up against some challenges. Firstly, their
setting requires a rule-based critic to provide the
intrinsic reward for the low-level agent. However,
creating such a critic is not easy, especially in intri-
cate scenarios. The man-made critic, somewhat
inadvertently, may bias the convergent optimal.
Moreover, the action space composed of intent and
slot for the low-level agent can be still large, es-
pecially when there are a lot of intent types and
slot names. Drawing the structural features of dia-
log actions, we address the above problems with a
proposed collaborative multi-agent reinforcement
learning framework, where the concatenated dialog
action space is decomposed into subspaces corre-
sponding to the domain, intent type, and slot name.
Furthermore, each subspace is assigned to differ-
ent agents, which cooperate to make the final joint
action without any human knowledge. The agents
concatenate together and pass the output to the
next agent. To relieve the non-stationary problem
(Claus and Boutilier, 1998; Hu and Wellman, 2003)
caused by unexpected changes in the dynamics of
the environment as evolving of the agents’ poli-
cies and to reduce the dependence of the gradients
due to the non-independent data, we propose a new
approach which allows Joint Optimization based
on Independent Experience replay buffers for all
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agents, termed as JOIE. Our experiments show
that such a multi-agent framework reduces the
state-action space size significantly and make ex-
ploration more efficient. Furthermore, JOIE leads
to a better performance benefit from the proposed
optimization mechanism.

To the best of our knowledge, this is the first
work that strives to develop a multi-agent RL-based
dialog action decomposition framework. Our main
contributions are three-fold:

• We formulate dialog policy learning in the
mathematical framework of collaborative
multi-agent reinforcement learning.

• We propose an efficient and effective multi-
agent-based approach factoring the action
space size and learning each part by different
agents with joint optimization and indepen-
dent experience replay.

• We validate the effectiveness of the proposed
method in a multi-domain task with both user
simulators and human users.

2 Related Work

Many studies have been dedicated to optimizing
dialog policy with reinforcement learning, most
of which learn a centralized agent that maps the
observation to a joint action (Young et al., 2013;
Su et al., 2016; Williams et al., 2017; Peng et al.,
2018a,b; Lipton et al., 2018; Li et al., 2020a; Zhu
et al., 2020; Li et al., 2020b; Wang et al., 2020).
For more efficient exploration, (Peng et al., 2017)
factor the centralized spaces into hierarchical rein-
forcement learning paradigms.

Meanwhile, cooperative multi-agent reinforce-
ment learning methods have started moving from
tabular methods to deep learning methods and
are widely applied especially on computer games
(Sunehag et al., 2017; Rashid et al., 2018; Jhun-
jhunwala et al., 2020). Towards multi-agent task-
oriented dialog policy, a lot of progress is being
made in modeling the interaction as a stochastic col-
laborative game, where dialog agent and the user
simulator are jointly optimized with their objec-
tives (Liu and Lane, 2017; Papangelis et al., 2019;
Takanobu et al., 2020). Building a user simulator in
this way is more flexible. However, different from
existing frameworks, our multi-agent framework is
devoted to decompose concatenated actions in or-
der to reduce the large action space size to improve
the performance of dialog agents.

3 Approach

Figure 1: Illustration of the collaborative multi-agent
framework for dialog policy learning.

Different from the previous methods that learn
a centralized agent or that adopt hierarchical RL
paradigms, we cast the policy learning as a multi-
agent RL framework, as shown in Figure 1. It
integrates three agents specified to be responsible
for the domain ad, intent type ai, and slot name
as, respectively. They share reward r and make
decisions cooperatively based on the state s from
the user. Consequently, a concatenation Aa from
the three agents is passed to the user.

3.1 Multi-agent Dialog Policy
Specifically, Agent1 perceives the state s and learns
the domain policy πd that selects a domain category
ad ∈ Ad. Meanwhile, Agent2 equipped with the
intent policy πi, takes as input the state s and the
selected domain ad, and decides the intent type
ai ∈ Ai. Then, Agent3 receives s, ad and ai, and
determines the slot names as ∈ As based on the
slot policy πs. Where Ad, Ai, and As are the sets
of all possible domain names, intent types, and slot
names, respectively.

Naturally, we aim to simultaneously optimize
all policies that achieve the maximal shared cu-
mulative rewards. Specifically, Agent1 aims
to learn the domain policy πd that maximizes
the expected sum of rewards condition on s
and ad that Eπd,st=s,adt=πd(st)

[∑
t γ

trt
]
, where

rt denotes the reward from the user at turn t,
and γ ∈ [0, 1] is a discount factor. Simi-
larly, the intent policy πi is trained to maxi-
mize Eπi,st=s,adt=ad,ait=πi(st||adt )

[∑
t γ

trt
]
, while

Agent3 tries to optimize πs that maximizes
Eπs,st=s,adt=ad,ait=ai,ast=πs(st||adt ||ait)

[∑
t γ

trt
]
.

All policies can be learned with DQN (Mnih
et al., 2015). Concretely, the domain policy es-
timates the optimal Q-function represented by a
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neural network parameterized by θd that satisfies
the following:

Qθd(s, a
d) = Eπd [ rt+

γmax
adt+1

Qθ′d(st+1, a
d
t+1)|st = s, adt = ad ] (1)

Where Qθ′d(.) is the target state-action value func-
tion that is only periodically updated. Similarly, the
intent policy πi estimates the optimal Q-function
parameterized by θi that satisfies the following:

Qθi(s||a
d,ai) = Eπi [ rt+

γmax
ait+1

Qθ′i(st+1||adt+1, a
i
t+1)|

st = s, adt = ad, ait = ai ]

(2)

Where Qθ′i(.) is the target value function, and || is
the tagger of concatenation. Meanwhile, the slot
policy estimates the optimal Q-function parameter-
ized by θs that satisfies the following:

Qθs(s||ad||ai, as) = Eπs [ rt+

γmax
ast+1

Qθ′s(st+1||adt+1||ait+1, a
s
t+1)|

st = s, adt = ad, ait = ai, ast = as ]

(3)

3.2 JOIE for Policy Learning

To alleviates the dependence of the gradients
caused by the non-independent data, the agents
maintain their independent experience replay
buffer, set as Dd, Di and Ds for the domain policy,
the intent policy, and the slot policy respectively.
Consequently, the Q-function Qθd for the domain
policy is learned by minimizing the following loss
function:

L(θd) = E(s,ad,r,s′)∼Dd

[
(ydi −Qθd(s, a

d))2
]

ydi = r + γmax
(ad)′

Qθ′d(s
′, (ad)′)

(4)
Similarly, the intent policy tries to minimize the
following loss function:

L(θi) = E(s,ad,ai,r,s′,(ad)′)∼Di [ (y
i
i−

Qθi(s||a
d, ai))2 ]

yii = r + γmax
(ai)′

Qθ′i(s
′||(ad)′, (ai)′)

(5)

Meanwhile, the loss function for the slot policy is:

L(θs) = E(s,ad,ai,as,r,s′,(ad)′,(ai)′)∼Ds [ (y
s
i−

Qθs(s||ad||ai, as))2 ]
ysi = r + γmax

(as)′
Qθ′s(s

′||(ad)′||(ai)′, (as)′)

(6)
As shown in Figure 1 and Equation 4, 5 and 6,

all agents can observe the global state and the pre-
vious agents’ actions during training. This setting
stabilizes the training procedure by alleviating the
non-stationary environment caused by unexpected
changes in the dynamics as evolving of the agents’
policies. Besides, we proposed to utilize a joint op-
timization process by adding up each agent’s losses
represented as Equation 7 based on a shared hidden
network. With the joint optimization, the agents do
not experience unexpected changes in the environ-
ment because different agents can exchange policy
information through the shared hidden layers φ.

L(θd,i,s;φ) =
∑

k∈{d,i,s}

L(θk;φ) (7)

A detailed summary of the learning algorithm of
the collaborative multi-agent reinforcement learn-
ing for dialog policy based on joint optimization
and independent experience replay buffer (JOIE) is
provided in Algorithm 1 in Appendix D.

4 Experiments

Comparison is on MultiWoz (Budzianowski et al.,
2018) with a public available agenda-based user
simulator (Zhu et al., 2020). The detail of the user
simulator and implementation is in Appendix B, C.
We first evaluate 2-agent based models that factor
the centralized spaces into two subspaces of the
domain and joint intent-slot on 3 different domains
sizes of 2, 4, and 7 on MultiWoz. Then we compare
3-agent based models that decompose the action
spaces into three subspaces of the domain, intent,
and slot. The dataset contains 7 domains, 13 in-
tents, and 28 slots totally. Details of the dataset are
provided in Appendix A.

4.1 Baseline Agents

We compare JOIE with DQN, Hierarchical DQN
(H-DQN), and two multi-agent RL agents. Note
that, we do not consider any other methods that
use demonstrations because our motivation is to
improve learning in a large action space without
human knowledge.

• DQN(Mnih et al., 2015) agent is learned with
one Deep Q-Network.

• H-DQN(Peng et al., 2017) is a hierarchical
deep RL approach consists of: (1) a top-level
agent that selects domain (sub-goal), (2) a
low-level agent that determines intent-slot to
complete the sub-goal.
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Table 1: The performance of the average turn (Turn) and the average reward (Reward) of the agents in different
numbers of domains (termed as #domains). Succ. denotes success rate.

Agent #domains = 2 #domains = 4 #domains = 7

Succ.↑ Turn↓ Reward↑ Succ.↑ Turn↓ Reward↑ Succ.↑ Turn↓ Reward↑

DQN 0.71 13.20 -2.68 0.28 16.29 -27.26 0.11 20.00 -54.90
H-DQN 0.87 7.68 53.08 0.80 9.31 39.76 0.80 10.16 35.95
JOIE 0.98 5.82 66.71 0.94 8.45 50.59 0.91 9.45 40.82
VDN 0.93 8.13 56.05 0.86 10.55 34.00 0.79 10.85 25.10
QMIX 0.87 9.92 49.52 0.90 10.18 42.57 0.81 10.97 29.68

(a) 2 domains. (b) 4 domains (c) 7 domains

Figure 2: Learning curves of the 2-agent based dialog agents trained on different numbers of domains.

• JOIE is our proposed collaborative multi-
agent framework factoring the joint action
space and learning each part by a different
agent with joint optimization and independent
experience replay, as described in Section 3.2.

• VDN(Sunehag et al., 2017) is a multi-agent
method that combines each agent’s state
action-value function as a simple sum for op-
timization with shared transitions.

• QMIX(Rashid et al., 2018) is a variant of
VDN which contains a mixing network that
centralizes each agent’s state action-value
function for optimization.

4.2 Main Results
All agents are evaluated with the success rate
(Succ.) at the end of the training, average turn
(Turn), average reward (Reward). The main sim-
ulation results are shown in Table 1 and Figure 2,
3. The results show that the proposed JOIE learns
much faster and performs consistently better in
cases with a statistically significant margin.

Results of 2-agent based Models Figure 2
shows the learning curves of 2-agent based models.
Firstly, JOIE achieves the best Succ. (on average
0.98) with the highest learning efficiency for all do-
main sizes. Qmix and VDN adopt an optimization

fashion that estimates a concatenated action values,
which is originally for partial observability. JOIE
abandons this step to avoid the extra cost since we
assume the state is fully observed by all agents. Ad-
ditionally, the advantages of joint optimization that
relieves non-stationary problems and independent
experience replay buffer that reduces gradient de-
pendence make JOIE better-learning performance.
The improvement is slight on domain = 2, but
remarkable and impressive as the increasing sizes
of the domains. Besides, multi-agent-based models
outperform H-DQN, indicating that the proposed
collaborative multi-agent framework, which de-
composes the joint action space and is led each part
by a different agent, can alleviate the exploration
obstacles brought by large action space without hu-
man knowledge. Finally, DQN is consistently the
worst, which is not surprising since it explores and
learns from a flat and large action space without
any guidance. Noticed that, the performance of
DQN increase as the number of domains decreases,
which depicts that the growth of action space hin-
ders the learning speeds of RL agent. Meanwhile,
as illustrated in Table. 1, the comparison results of
Turn and Reward are consistent with that of Succ.

Results of 3-agent based Models Figure 3
shows the learning curves of 3-agent based models.
It can be seen that JOIE3 learns faster and performs
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Figure 3: Learning curves of 3-agent based dialog
agents trained on all domains.

significantly better with a clear margin compared
with VDN3 and Qmix3, which depicts that the
decentralized policy with joint optimization and in-
dependent experience replay buffer is more capable
of and robust to dialog policy learning. JOIE3 fac-
tors the concatenated intent-slot action space and
assigns them to two agents, which further reduces
the action space and balance load for each agent.
As a consequence, JOIE3 learns faster than JOIE
that based on joint intent-slot action space. More-
over, compared with VDN3 applying a simple sum
centralization, Qmix3 adopts a trainable network
centralization and achieves better performance.

4.3 Human Evaluation

User simulators are not sufficient to fully mimic
the complexity of real users (Dhingra et al., 2017),
therefore human evaluation is given to further as-
sess the feasibility of JOIE in real scenarios. we
deploy the agents in Figure 2 and 3 to interact with
human users in 2-agent based models and 3-agent
based models 1 trained on all (seven) domains for
2.0× 105 simulation epochs.

In each evaluation session, each human user is
assigned with a goal sampled goal and instructed
to communicate with a randomly selected agent to
achieve the goal. Users can end the session at any
time if the agent Keeps repeating or they believe the
dialog is going to be a failure. At the end of each
session, users are required to give explicit feedback
on whether the dialog succeeded with all the user
constraints satisfied. Moreover, evaluators rate the
dialog session on a scale from 1 to 5 about the qual-
ity (5 is the best, 1 is the worst). We collect 50

1For the time and cost consideration, the experiments are
only conducted on all (seven) domains.

dialogues for each agent. The results are listed in
Table 2, which reflects JOIE of both 2-agent based
and 3-agent based models perform consistently bet-
ter than other baselines, which is consistent with
what we have observed in simulation evaluation.

Table 2: Human evaluation results on 2-agent based
policy models and 3-agent based policy models trained
on all domains for 2.0 × 105 simulation epochs. Succ.
denotes success rate.

Model 2-agent based 3-agent based

Succ.↑ Rating↑ Succ.↑ Rating↑

DQN 0.02 0.06 \ \
H-DQN 0.76 3.68 \ \
JOIE 0.88 4.52 0.90 4.60
VDN 0.76 3.60 0.68 3.12
QMIX 0.78 3.82 0.76 3.64

5 Conclusion and Future Work

We presented JOIE, a generally applicable collab-
orative multi-agent framework for policy learning.
It factors action space and learning each part by a
different agent with joint optimization and indepen-
dent experience replay. The experiment results of
the simulation show that the proposed agents are
efficient and effective in multi-domain with large
action space settings.

Directions of future work include: (1) extending
JOIE to multi-action policy. (2) improving JOIE
with demonstration.
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Table 3: The data annotation schema.

#domains = 2 #domains = 4 #domains = 7
Domain Restaurant, Hotel,

Booking
Restaurant, Hotel, Booking,
Attraction, Taxi

Attraction, Hospital, Booking,
Hotel, Restaurant, Taxi, Train,
Police, General

Intent Welcome, Greet, Bye, Reqmore, Inform, Request, Book, OfferBooked, NoBook,
NoOffer, Recommend, OfferBook, Select

Slot Name, none, Area, Choice, Type, Price, Addr, Leave, Food, Phone, Stars, Day,
Post, Car, Arrive, Internet, Parking, Dest, Depart, Fee, Ref, Id, People, Time,
Ticket, Stay, Open, Department

A Data Annotation Schema

Table. 3 lists all annotated dialog domains, intents,
and slots for MultiWoz at a different number of
domains in detail. Noted that, we didn’t count the
"General" and the "Booking" as a domain for they
cannot define a task independently.

B User simulator

During training, the simulator initializes with a goal
and takes system acts as input and outputs user acts
with reward, which is set as -1 for each turn, and a
positive (2 · T ) for successful dialog or a negative
of −T for failed one, where T (set as 40) is the
maximum number of turns in each dialog. A dialog
is considered successful only if the agent helps the
user simulator accomplish the goal and satisfies all
the user’s search constraints (Wang et al., 2020).

C Hyperparameters and Implementation

Set m ∈ 2, 4, 9 as the numbers of domains. We
adopt 2-layer MLP with 100 hidden dimensions
and Relu as the activation function for all m. In-
putting state with dimension as 393, DQN’s output
dimension is m ∗ 364. Where 364 is the number
of action concatenating intent and slot. 2-agent
based models with combined intent and slot ac-
tion space, i.e. H-DQN, VDA, Qmix, JOIE, utilize
two networks with different output heads of m and
364 dimensions. Noted that, VDA, Qmix, JOIE
share input, and hidden layers. 3-agent based mod-
els with separated domain, intent, and slot action
space, i.e. VDA3, Qmix3, JOIE3, apply three dif-
ferent output heads of m, 13, and 28 dimensions
and share input and hidden. ε-greedy is utilized for
policy exploration. We set the discount factor as
γ = 0.9. The target networks are updated at every
1000 training epochs. To mitigate warm-up issues,
We apply the rule-based agent of ConvLab (Lee

et al., 2019a) to provide experiences at the begin-
ning, the warm_start epoch for all agents is 1000.
The learning rate is set as 0.001 for DQN, 0.0005
for JOIE3, and 0.00005 for the other models. The
decay rate and step size are 0.95 and 1000.

D Algorithms

Algorithm 1 outlines the full procedure for training
multi-agent-based dialogue policies based on joint
optimization and independent experience replay
buffers.

Algorithm 1 JOIE for dialog policy learning
Input: N,Z, ε, θd, θi, θs, Dd, Di, Ds, γ,
Output: Qθd(s, a

d), Qθi(s||a
d, ai), Qθs(s||ad||ai, as).

1: init experience replay Dd, Di, Ds as empty.
2: init Qθd , Qθi , Qθs , Qθ′

d
, Qθ′i , Qθ′s)) with θd = θ′d, θi =

θ′i, and θs = θ′s.
3: for n=1:N do
4: start dialog simulator and get state s.
5: while s is not terminal do
6: with probability ε select a random action ad.
7: otherwise ad = argmaxa Qθd(s, a).
8: with probability ε select a random action ai.
9: otherwise ai = argmaxa Qθi(s||a

d, a).
10: with probability ε select a random action as.
11: otherwise as = argmaxa Qθs(s||ad||ai, a).
12: execute (ad, ai, as), obtain next state s′, reward r.
13: set (ad)′ as none and (ai)′ as none, store tran-

sition (s, ad, s′, r) in Dd, (s, ad, ai, s′, (ad)′, r)
in Di and update the last transition (ad)′ = ad,
(s, ad, ai, as, s′, (ad)′, (ai)′, r) in Ds and update
the last transition (ad)′ = ad, (ai)′ = ai.

14: end while
15: update the last transition in Di, Ds.
16: Sample batch1 of (s, ad, r, s′) from Dd
17: Sample batch2 of (s, ad, ai, (ad)′, r, s′) from Di
18: Sample batch3 of (s, ad, ai, as, s′, (ad)′, (ai)′, r)

from Ds
19: update Qθd , Qθi , and Qθs via minibatch Q-learning

according to gradient of equ.7.
20: every Z steps reset Qθd = Qθ′

d
, Qθ′i = Qθ′i , and

Qθ′s = Qθ′s .
21: end for


