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Abstract

Visual question answering (VQA) is challeng-
ing not only because the model has to handle
multi-modal information, but also because it is
just so hard to collect sufficient training exam-
ples — there are too many questions one can
ask about an image. As a result, a VQA model
trained solely on human-annotated examples
could easily over-fit specific question styles or
image contents that are being asked, leaving
the model largely ignorant about the sheer di-
versity of questions. Existing methods address
this issue primarily by introducing an auxiliary
task such as visual grounding, cycle consis-
tency, or debiasing. In this paper, we take a
drastically different approach. We found that
many of the “unknowns” to the learned VQA
model are indeed “known” in the dataset im-
plicitly. For instance, questions asking about
the same object in different images are likely
paraphrases; the number of detected or anno-
tated objects in an image already provides the
answer to the “how many” question, even if the
question has not been annotated for that image.
Building upon these insights, we present a sim-
ple data augmentation pipeline SIMPLEAUG
to turn this “known” knowledge into train-
ing examples for VQA. We show that these
augmented examples can notably improve the
learned VQA models’ performance, not only
on the VQA-CP dataset with language prior
shifts but also on the VQA v2 dataset with-
out such shifts. Our method further opens up
the door to leverage weakly-labeled or unla-
beled images in a principled way to enhance
VQA models. Our code and data are pub-
licly available at https://github.com/
heendung/simpleAUG.

1 Introduction

“A picture is worth a thousand words,” which tells
how expressive an image can be, but also how chal-
lenging it is to teach a machine to understand an im-
age like we humans do. Visual question answering
(VQA) (Antol et al., 2015; Goyal et al., 2017; Zhu

Q: Where are the napkins?
Q: What is the oven made of?
Q: Is the dispenser beneath the microware full?

A: Table
A: Stainless steel

A: No 

Original QA Pairs

Q: How many bottles are visible?
Q: Is this a modern microwave?
Q: What color is the floor?

A: 1
A: Yes

A: Brown

Q: What is the oven made from?

Propagation QA Pairs

Paraphrasing QA Pairs

Q: What is the oven made from? A: Stainless steel

SIMPLEAUG

Figure 1: Illustration of our approach SIMPLEAUG. We
show a training image and its corresponding question-answer
pairs in VQA v2 (Goyal et al., 2017), and our generated pairs.
A VQA model (Anderson et al., 2018) trained on the original
dataset just cannot answer these new questions on the training
image correctly, and we use them to improve model training.

et al., 2016) is a principled way to measure such
an ability of a machine, in which given an image, a
machine has to answer the image-related questions
in natural language by natural language. While
after years of effort, the state-of-the-art machine’s
performance is still behind what we expect (Hu
et al., 2018; Yu et al., 2018; Anderson et al., 2018;
Lu et al., 2019; Hudson and Manning, 2019).

Several key bottlenecks have been identified. In
particular, a machine (i.e., VQA model) learned in
the conventional supervised manner using human-
annotated image-question-answer (IQA) triplets
is shown to overlook the image or language con-
tents (Agrawal et al., 2016; Goyal et al., 2017; Chao
et al., 2018a), over-fit the language bias (Agrawal
et al., 2018), or struggle in capturing the diversity
of human language (Shah et al., 2019; Chao et al.,
2018b). Many recent works thus propose to aug-
ment the original VQA task with auxiliary tasks or
losses such as visual grounding (Selvaraju et al.,
2019; Wu and Mooney, 2019), de-biasing (Cadene
et al., 2019; Clark et al., 2019; Ramakrishnan et al.,
2018), or (cycle-)consistency (Shah et al., 2019;
Gokhale et al., 2020a) to address these issues.

Intrigued by these findings and solutions, we in-
vestigate the bottlenecks further and argue that they
may result from a more fundamental issue — there

https://github.com/heendung/simpleAUG
https://github.com/heendung/simpleAUG
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are simply not enough training examples (i.e., IQA
triplets). Concretely, most of the existing VQA
datasets annotate each image with around ten ques-
tions, which are much fewer than what we humans
can ask about an image. Take the popular VQA v2
dataset (Goyal et al., 2017), for instance, the trained
VQA model can answer most of the training exam-
ples (on average, six questions per image) correctly.
However, if we ask some more questions about the
training images — e.g., by borrowing relevant ques-
tions from other training images — the same VQA
model fails drastically, even if the model has indeed
seen these images and questions during training
(see Figure 1). Namely, the VQA model just has
not learned enough through the human-annotated
examples, leaving the model unaware of the huge
amount of visual information in an image and how
it can be asked via natural language.

At first glance, this seems to paint a grim picture
for VQA. However, in this paper we propose to
take advantage of this weakness to strengthen the
VQA model: we turn implicit information already
in the dataset, such as unique questions and the rich
contents in the training images, into explicit IQA
triplets which can be directly used by VQA models
via conventional supervised learning.

We propose a simple data augmentation method
SIMPLEAUG, which relies on (i) the original image-
question-answer triplets in the dataset, (ii) mid-
level semantic annotations available on the training
images (e.g., object bounding boxes), and (iii) pre-
trained object detectors (Ren et al., 2016)1. Con-
cretely, we build upon the aforementioned obser-
vations — questions annotated for one image can
be valuable add-ons to other relevant images —
and design a series of mechanisms to “propagate”
questions from one image to the others. More
specifically, we search images that contain objects
mentioned in the question and identify the answers
using information provided by (ii) and (iii), such as
numbers of objects, their attributes, and existences.

SIMPLEAUG requires no question generation
step via templates or language models (Kafle et al.,
2017), bypassing the problems of limited diversity
or artifacts. Besides, SIMPLEAUG is completely
detached from the training phase of a VQA model
and is therefore model-agnostic, making it fairly
simple to use to improve VQA models.

1We note that (ii) is commonly provided in existing VQA
datasets like VQA v2 (Goyal et al., 2017), and (iii) has
been widely used in the feature extraction stage of a VQA
model (Anderson et al., 2018).

We validate SIMPLEAUG on two datasets, VQA
v2 (Goyal et al., 2017) and VQA-CP (Agrawal
et al., 2018). The latter is designed to evaluate VQA
models’ generalizability under language bias shifts.
With SIMPLEAUG, we can not only achieve compa-
rable gains to other existing methods on VQA-CP,
but also boost the accuracy on VQA v2, demon-
strating the applicability of our method. We note
that many of the prior works designed for VQA-CP
indeed degrade the accuracy on VQA v2, which
does not have language bias shifts between training
and test data. SIMPLEAUG further justifies that
mid-level vision tasks like object detection can ef-
fectively benefit high-level vision tasks like VQA.

In summary, our contributions are three-folded:
• We propose SIMPLEAUG, a simple and model-

agnostic data augmentation method that turns
information already in the datasets into explicit
IQA triplets for training VQA models.

• We show that SIMPLEAUG can notably improve
VQA models’ accuracy on both VQA v2 (Goyal
et al., 2017) and VQA-CP (Clark et al., 2019).

• We provide comprehensive analyses on SIM-
PLEAUG, including its applicability to weakly-
labeled and unlabeled images.

2 Related Work

VQA datasets. More than a dozen datasets have
been released (Lin et al., 2014; Antol et al., 2015;
Zhu et al., 2016; Goyal et al., 2017; Krishna et al.,
2017; Hudson and Manning, 2019; Gurari et al.,
2019). Most of them use natural images from large-
scale image databases, e.g., MSCOCO (Lin et al.,
2014). For each image, human annotators are asked
to generate questions (Q) and provide the corre-
sponding answers (A). Doing so, however, is hard
to cover all the knowledge in the visual contents.

Leveraging side information for VQA. A vari-
ety of side information beyond the IQA triplets
has been used to improve VQA models. For ex-
ample, human attentions are used to enhance the
explainability and visual grounding of VQA mod-
els (Patro and Namboodiri, 2018; Selvaraju et al.,
2019; Das et al., 2017; Wu and Mooney, 2019). Im-
age captions contain substantial visual information
and can be used as an auxiliary task (i.e., visual
captioning) to strengthen VQA models’ visual and
language understanding (Wu et al., 2019; Kim and
Bansal, 2019; Wang et al., 2021; Banerjee et al.,
2020; Karpathy and Fei-Fei, 2015). Several papers
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leveraged scene graphs and visual relationships as
auxiliary knowledge for VQA (Johnson et al., 2017;
Zhang et al., 2019; Hudson and Manning, 2019;
Shi et al., 2019). A few works utilized mid-level
vision tasks (e.g., object detection and segmenta-
tion) to benefit VQA (Gan et al., 2017; Kafle et al.,
2017). Most of these works use side information
by defining auxiliary learning tasks or losses to the
original VQA task. In contrast, we directly turn the
information into IQA triplets for training.

Data augmentation for VQA. Several existing
works investigate data augmentation. One stream
of works creates new triplets by manipulating im-
ages or questions (Chen et al., 2020; Agarwal et al.,
2020; Tang et al., 2020; Gokhale et al., 2020a).
See § 4.1.4 for some more details. The other cre-
ates more questions by using a learned language
model to paraphrase sentences (Ray et al., 2019;
Shah et al., 2019; Whitehead et al., 2020; Kant
et al., 2021; Banerjee et al., 2020) or by learning
a visual question generation model (Kafle et al.,
2017; Li et al., 2018; Krishna et al., 2019).

The closest to ours is the pioneer work of data
augmentation by Kafle et al. (2017), which also
creates new questions by using mid-level seman-
tic information annotated by humans (e.g., object
bounding boxes). Their question generation relies
on either pre-defined templates or a learned lan-
guage model, which may suffer limited diversity
or labeling noise. In contrast, we directly reuse
questions already in the dataset and show that they
are sufficient to augment high-quality questions
for other images. Besides, we further explore ma-
chine generated annotations (e.g., via an object
detector (Ren et al., 2016)), opening the door to
augment triplets using extra unlabeled images. Fur-
thermore, we benchmark our method on the popu-
lar VQA v2 (Goyal et al., 2017) and challenging
VQA-CP (Agrawal et al., 2018) datasets, which are
released after the publication of Kafle et al. (2017).
Overall, we view our paper as an attempt to revisit
simple data augmentation like Kafle et al. (2017)
for VQA, and show that it is indeed quite effective.

Robustness of VQA models. Goyal et al. (2017);
Chao et al. (2018a); Agrawal et al. (2018) pointed
out the existence of superficial correlations (e.g.,
language bias) in the datasets and showed that a
VQA model can simply exploit them to answer
questions. Existing works to address this can be
categorized into three groups. The first group at-
tempts to reduce the language bias by designing

new VQA models or learning strategies (Agrawal
et al., 2018; Ramakrishnan et al., 2018; Cadene
et al., 2019; Clark et al., 2019; Grand and Belinkov,
2019; Clark et al., 2019; Jing et al., 2020; Niu et al.,
2021; Shrestha et al., 2020; Gat et al., 2020). For
example, RUBi and Ensemble (Cadene et al., 2019;
Clark et al., 2019) explicitly modeled the question-
answer correlations to encourage VQA models to
explore other patterns in the data that are more
likely to generalize. The second group leverages
side information to facilitate visual grounding (Wu
and Mooney, 2019; Selvaraju et al., 2019; Teney
and Hengel, 2019). For example, Wu and Mooney
(2019) used extra visual or textual annotations to
determine important regions where a VQA model
should focus on. The third group implicitly or
explicitly augments the VQA datasets, e.g., via
self-supervised learning, counterfactual sampling,
adversarial training, or image and question manip-
ulation (Abbasnejad et al., 2020; Zhu et al., 2020;
Teney et al., 2020; Chen et al., 2020; Gokhale et al.,
2020a; Liang et al., 2020; Gokhale et al., 2020b;
Li et al., 2020; Ribeiro et al., 2019; Selvaraju et al.,
2020). SIMPLEAUG belongs to the third group but
is simpler in terms of methodology. Besides, SIM-
PLEAUG is completely detached from VQA model
training and thus model-agnostic. Moreover, SIM-
PLEAUG can improve on both VQA-CP (Agrawal
et al., 2018) and VQA v2 (Goyal et al., 2017).

3 SIMPLEAUG for Data Augmentation

3.1 Implicit information

SIMPLEAUG leverages three sources of informa-
tion that implicitly suggest extra IQA triplets be-
yond those provided in a VQA dataset. The first
one is the original IQA triplets in the dataset. We
find that for two similar images that locally share
common objects or globally share common layouts,
their corresponding annotated questions can either
be treated as paraphrases or extra questions for each
other. The second one is the object instance labels
like object bounding boxes that are annotated on
images, e.g., MSCOCO images (Lin et al., 2014).
These labels provide accurate answers to “how
many” or some of the “what” questions, and many
VQA datasets are built upon MSCOCO images.
The third one is an object detector pre-trained on
an external densely-annotated dataset like Visual
Genome (VG) (Krishna et al., 2017). This detector
can provide information not commonly annotated
on images, such as attributes or fine-grained class
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Q: What food is shown? 
A: Donut

Q: What color is the plate? 
A: White

Q: How many donuts are there? 
A: 1

Q: Is fruit on the counter? 
A: Yes

Q: What food is shown? 
A: Donut 

Q: What color is the plate? 
A: White

Q: How many donuts are there? 
A: 3

Q: Is fruit on the counter? 
A: Yes

Augmented QAs

Original QAs

Returned Images

…

…

…

Original Image

Figure 2: The SIMPLEAUG pipeline. We show four original question-answer pairs of the image on the left in VQA v2, and
how they are propagated to other images. The green boxes are annotated in MSCOCO or detected by Faster R-CNN; each of
them is associated with an object name and/or attribute. We only show boxes matched by nouns or used to derive answers.

names. We note that since the seminal work by
Anderson et al. (2018), many following-up VQA
models use the Faster R-CNN detector (Ren et al.,
2016) pre-trained on VG for feature extraction.

3.2 The SIMPLEAUG pipeline

SIMPLEAUG processes each annotated IQA triplet
(i, q, a) in term, and propagates q to other relevant
images. To begin with, SIMPLEAUG extract mean-
ingful words from the question, similar to (Chen
et al., 2020; Wu and Mooney, 2019). We leverage a
spaCy part-of-speech (POS) tagger (Honnibal and
Montani, 2017) to extract “nouns” and tokenize
their singular and plural forms. We remove words
such as “picture” or “photo”, which appear in many
questions but are not informative for VQA2.

Given the meaningful “nouns” of a question, we
then retrieve relevant images and derive the an-
swers, using MSCOCO annotations or Faster R-
CNN detection. Concretely, we split questions into
four categories and develop specific question prop-
agation rules. Figure 2 illustrates the pipeline.

Yes/No questions. We apply the Faster R-CNN
detector trained on VG to each image i′ beside
image i. The detector returns a set of bounding
boxes and their labels. We ignore images whose
object labels have no overlap with the nouns of
question q, and assign answer “yes” or “no” to the
remaining images as follows.
• “Yes”: if the labels of image i′ cover all nouns

2For example, in a question, “What is the person doing in
the picture?”, the word “picture” refers to the image itself, not
an object within it. We found 8% of the questions like this
in VQA v2 (Goyal et al., 2017). Some questions really refer
to “pictures” or “photos” within an image (e.g., “How many
pictures on the wall?”), but there are <1% such questions.

of question q, we create (i′, q, yes).

• “No”: if the labels of image i′ only cover some of
the nouns of q, we create (i′, q, no). For instance,
if the question is “Is there a cat on the pillow?”
but the image only contains “pillow” but no “cat”,
then the answer is “no”.
We develop two verification strategies at the end

of this subsection to filter out outlier cases.
Color questions. To prevent ambiguous cases, we
only consider questions with a single noun (besides
the word “color”). We again apply the Faster R-
CNN detector, which returns for each image a set
of object labels that may also contain attributes like
colors. We keep images whose labels cover the
noun of question q. For each such image i′, we cre-
ate a triplet (i′, q, â), where â is the color attribute
provided by the detector. As there are likely some
other object-color pairs in i′, we investigate replac-
ing the noun in q by each detected object name and
create some more IQA triplets about colors.
Number questions. We again focus on questions
with a single noun (besides the word “number”).
We use MSCOCO annotations, which give each
image a set of object bounding boxes and labels.
We find all the images whose labels cover the noun
of question q. For each such image i′, we derive
the answer by counting annotated instances of that
noun and create a triplet (i′, q, â), where â is the
count. Some of the nouns (e.g., “animal”) are super-
categories of sub-category objects (e.g., “dog” or
“cat”). Thus, if the noun of q is a super-category
(e.g., q is “How many animals are there?”), we fol-
low the category hierarchy provided by MSCOCO
and count all its sub-category instances.
Other questions. We focus on “what” questions
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with a single noun and use MSCOCO annotations.
We find all the images whose labels cover the noun
of question q. (We also take the super-category
cases into account.) For each such image i′, we
check whether its MSCOCO labels contain the an-
swer a of question q, i.e., according to the original
(i, q, a) triplet. For instance, if q is “What animal is
this?” and a is “sheep”, then we check if image i′’s
labels contain “sheep”. If yes, we create a triplet
(i′, q, â = a). This process essentially discovers
“what” questions that can indeed be asked about i′.

Verification. The above rules simplify a question
by only looking at its nouns, so they may lead to
triplets whose answers are incorrect. To mitigate
this issue, we develop two verification strategies.

The first strategy performs self-verification on
the original (i, q, a) triplet, checking if our rules
can reproduce it. That is, it applies the aforemen-
tioned rules to image i to derive the new triplet
(i, q, â). If â does not match a, i.e., using the rules
creates a different answer, we skip this question q.

The second strategy verifies our rules using IQA
triplets annotated on retrieved image i′. For ex-
ample, if image i′ has an annotate triplet (i′, q′, a′)
whose q′ has the same category and nouns as q,
then we compare it to the created triplet (i′, q, â).
If â does not match a′, then we disregard (i′, q, â).

3.3 Paraphrasing by similar questions

Besides the four question propagation rules that
look at the image contents, we also investigate a
simple paraphrasing rule by searching similar ques-
tions in the dataset. Concretely, we apply the aver-
aged word feature from BERT (Devlin et al., 2018)
to encode each question as it better captures the
object-level semantics for searching questions men-
tioning the same objects. Two questions are similar
if their cosine similarity is above a certain thresh-
old (0.98 in the experiments). If two IQA triplets
(i, q, a) and (i′, q′, a′) have similar questions, we
create two extra triplets (i, q′, a) and (i′, q, a′) by
switching their questions as paraphrasing.

We choose a high threshold 0.98 to avoid false
positives. On average, each question finds 11.4 sim-
ilar questions, and we only pick the top-3 questions.
We found that with this design, an extra verification
step, like checking if the image i′ contains nouns
of the paraphrasing question q, does not further im-
prove the overall VQA accuracy. Thus, we do not
include an extra verification step for paraphrasing.

4 Experiments

4.1 Experimental setup
4.1.1 VQA datasets and evaluation metrics
We validate SIMPLEAUG on two popular datasets.
See Appendix for the results on other datasets.

VQA v2 (Goyal et al., 2017) collects images from
MSCOCO (Lin et al., 2014) and uses the same train-
ing/validation/testing splits. On average, six ques-
tions are annotated for each image. In total, VQA
v2 has 444K/214K/448K training/validation/test
IQA triplets.

VQA-CP v2 (Agrawal et al., 2018) is a challeng-
ing adversarial split of VQA v2 designed to eval-
uate the model’s capability of handling language
bias/prior shifts between training and testing. For
instance, “white” is the most frequent answer for
questions that start with “what color...” in the train-
ing set whereas “black” is the most common one in
the test set. Such prior changes also reflect in indi-
vidual questions, e.g., the most common answer for
“What color is the banana?” changes from “yellow”
during training to “green” during testing. VQA-CP
v2 has 438K/220K training/test IQA triplets.

Evaluation metrics. We follow the standard eval-
uation protocol (Antol et al., 2015; Goyal et al.,
2017). For each test triplet, the predicted answer
is compared with answers provided by ten human
annotators in a leave-one-annotator-out fashion for
robust evaluation. We report the averaged scores
over all test triplets as well as over test triplets of
Yes/No, number, or other answer types.

4.1.2 Implicit knowledge sources

MSCOCO annotations (Lin et al., 2014).
MSCOCO is the most popular benchmark nowa-
days for object detection and instance segmenta-
tion, which contains 80 categories (e.g., “cat”) as
well as the corresponding super categories (e.g.,
“animal”). Object instances of all 80 categories are
exhaustively annotated in all images, leading to
approximately 1.2 million instance annotations.

Faster R-CNN detection (Anderson et al., 2018).
We use the object detection results from a Faster
R-CNN (Ren et al., 2016) pre-trained with Visual
Genome (VG) (Krishna et al., 2017). This pre-
trained detector can provide object attributes (e.g.,
color and material) whereas MSCOCO annotations
only contain object names (e.g., “person” and “bi-
cycle”). We use the detector provided by Anderson
et al. (2018), which detects 36 objects per image.
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4.1.3 Base VQA models

SIMPLEAUG is model-agnostic, and we evaluate it
by using its generated data to augment the training
set for training three base VQA models.

Bottom-Up Top-Down (UpDn) (Anderson et al.,
2018). UpDn is a widely used VQA model. It first
detects objects from an image and encodes them
into visual feature vectors. Given a question, UpDn
uses a question encoder to produce a set of word
features. Both visual and language features are
then fed into a multi-modal attention network to
predict the answer.

Learned-Mixin+H (LMH) (Clark et al., 2019).
LMH is a learning strategy to de-bias a VQA model,
e.g., UpDn. During training, LMH uses an auxil-
iary question-only model to encourage the VQA
model to explore visual-question related informa-
tion. During testing, only the VQA model is used.
LMH is shown to largely improve the performance
on VQA-CP v2 but can hurt that on VQA v2.

LXMERT (Tan and Bansal, 2019). We also study
SIMPLEAUG with a stronger, transformer-based
VQA model named LXMERT. LXMERT leverages
multi-modal transformers to extract multi-modal
features, and exploits a masking mechanism to bet-
ter (pre-)train the model. While such a masking
mechanism can be viewed as a way of data aug-
mentation, SIMPLEAUG is fundamentally different
from it in two aspects. First, SIMPLEAUG gener-
ates new triplets while masking manipulates ex-
isting triplets. Second, SIMPLEAUG is detached
from model training and is therefore compatible
with masking. As will be shown in the experimen-
tal results, SIMPLEAUG can provide solid gains to
LXMERT on both VQA v2 and VQA-CP.

4.1.4 Compared data augmentation methods

We compare SIMPLEAUG with three existing data
augmentation methods for VQA.

Template-based augmentation proposed by Kafle
et al. (2017) generates new question-answer pairs
using MSCOCO annotations (cf. § 2). We re-
implement the method following the paper.

Counterfactual Samples Synthesizing (CSS)
(Chen et al., 2020) generates counterfactual triplets
by masking critical objects in images or words in
questions and assigning different answers. These
new training examples force the VQA model to fo-
cus on those critical objects and words, improving
both visual explainability and question sensitivity.

Table 1: Statistics on VQA-CP v2 training data. Miss-
answered: the number of SIMPLEAUG examples that a UpDn
model trained on the original dataset cannot answer correctly.

# of samples All Y/N Num Other

Original 438K 183K 52K 202K
SIMPLEAUG 5,457K 2,062K 1,937K 1,458K

Miss-answered 3,081K 974K 1,489K 618K

MUTANT (Gokhale et al., 2020a) is a state-of-
the-art data augmentation method by manipulating
images and questions. For example, it applies a
GAN-based inpainting network to change the ob-
ject’s color to create extra color questions; it manip-
ulates object numbers using MSCOCO annotations;
it masks or negates words to mutate questions.

Comparison. SIMPLEAUG is different from CSS
and MUTANT in two aspects. First, CSS and MU-
TANT can only manipulate already annotated ques-
tions for an image, while we can create new ques-
tions for an image by borrowing them from other
images. Second, CSS needs a pre-trained attention-
based VQA model to identify critical objects/words
while MUTANT’s best version requires additional
loss terms for training. In contrast, SIMPLEAUG is
completely detached from model training.

4.2 Implementation details

Data augmentation by SIMPLEAUG. We speed
up the implementation by grouping IQA triplets
of the same unique question and only propagating
the question once. We remove redundant triplets
if the retrieved image already has the same ques-
tion. To prevent creating too many triplets from
paraphrasing (§ 3.3), for each question q we only
search for its top-3 similar questions q′ and only
create (i′, q, a′) if a′ is a rare answer to q — we
define a′ to be a rare answer if there are fewer than
five (q, a′) pairs in the dataset. We emphasize that
we only apply SIMPLEAUG to IQA triplets in the
training set and search images in the training set.

VQA models. For the base VQA models, we
use the released code from corresponding papers.
Please see Appendix for more details.

Training with SIMPLEAUG triplets. We explore
three ways to train with the original (O) triplets
and augmented triplets (A). The first is to train
with both from the beginning (A+O); the second
is to train with O first and then with both (O →
A + O); the third is to train with O first, then
with A, and then with O again (O → A → O).
The rationale of training with multiple stages is to
prevent the augmented data from dominating the
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Table 2: Performance on VQA v2 val set and VQA-CP v2 test set. Our method SIMPLEAUG (cyan background) consistently
improves all answer types for different base models on both VQA v2 and VQA-CP. Note that MUTANT (loss) (Gokhale et al.,
2020a) (gray color) applies extra loss terms besides data augmentation.

Base Method VQA v2 val VQA-CP test

All Y/N Num Other All Y/N Num Other

UpDn

Baseline (Anderson et al., 2018) 63.48 81.18 42.14 55.66 39.74 42.27 11.93 46.05
AdvReg (Ramakrishnan et al., 2018) 62.75 79.84 42.35 55.16 41.17 65.49 15.48 35.48
RUBi (Cadene et al., 2019) 61.16 – – – 44.23 67.05 17.48 39.61
CF-VQA (SUM) (Niu et al., 2021) 63.54 82.51 43.96 54.30 53.55 91.15 13.03 44.97
SimpleReg (Shrestha et al., 2020) 62.60 – – – 48.90 69.80 11.30 47.80
HINT (Selvaraju et al., 2019) 63.38 81.18 42.99 55.56 46.73 67.27 10.61 45.88
SCR+VQA-X (Wu and Mooney, 2019) 62.20 78.80 41.60 54.50 49.45 72.36 10.93 48.02
RandImg (Teney et al., 2020) 57.24 76.53 33.87 48.57 55.37 83.89 41.60 44.20
Template-based (Kafle et al., 2017) 63.83 81.61 41.98 56.10 39.75 43.03 14.98 44.83
CSS (Chen et al., 2020) 63.47 80.81 43.33 55.62 41.16 43.96 12.78 47.48
MUTANT (plain) (Gokhale et al., 2020a) – – – – 50.16 61.45 35.87 50.14
MUTANT (loss) (Gokhale et al., 2020a) 62.56 82.07 42.52 53.28 61.72 88.90 49.68 50.78
SIMPLEAUG (paraphrasing) 63.66 81.44 42.56 55.72 52.57 86.56 13.52 45.47
SIMPLEAUG (propagation) 64.37 81.91 44.13 56.40 52.27 65.15 45.32 47.42
SIMPLEAUG (propagation + paraphrasing) 64.34 81.97 43.91 56.35 52.65 66.40 43.43 47.98

LMH

Baseline (Clark et al., 2019) 56.34 65.05 37.63 54.68 52.01 72.58 31.11 46.96
RMFE (Gat et al., 2020) – – – – 54.44 74.03 49.16 45.82
CSS (Chen et al., 2020) 59.91 73.25 39.77 55.11 58.95 84.37 49.42 48.21
CSS+CL (Liang et al., 2020) 57.29 67.27 38.40 54.71 59.18 86.99 49.89 47.16
MUTANT (loss) (Gokhale et al., 2020a) – – – – 55.38 90.99 39.74 40.99
SIMPLEAUG (paraphrasing) 61.67 78.70 40.21 54.41 53.29 74.12 33.06 47.93
SIMPLEAUG (propagation) 62.67 79.24 41.44 55.70 53.58 73.58 37.07 47.63
SIMPLEAUG (propagation + paraphrasing) 62.63 79.31 41.71 55.48 53.70 74.79 34.32 47.97

LXMERT

Baseline (Tan and Bansal, 2019) 73.06 88.30 56.81 65.78 48.66 47.49 22.24 56.52
Template-based (Kafle et al., 2017) 72.30 85.36 54.47 67.10 49.63 49.96 36.33 53.10
MUTANT (plain) (Gokhale et al., 2020a) – – – – 59.69 73.19 32.85 59.29
MUTANT (loss) (Gokhale et al., 2020a) 70.24 89.01 54.21 59.96 69.52 93.15 67.17 57.78
SIMPLEAUG (paraphrasing) 74.37 88.78 57.95 67.76 59.09 73.17 28.72 60.04
SIMPLEAUG (propagation) 74.96 89.00 60.00 68.25 61.82 68.39 53.35 60.69
SIMPLEAUG (propagation + paraphrasing) 74.98 89.04 59.98 68.25 62.24 69.72 53.63 60.69

training process (see Table 1 for the statistics). We
note that, there is a huge number of SIMPLEAUG

examples that a VQA model trained with O only
cannot answer. Thus, when training with multiple
stages, we remove SIMPLEAUG examples that the
model can already answer. We mainly report results
using O → A → O, but compare the three ways
in § 4.4.

4.3 Main results on VQA v2 and VQA-CP v2

Table 2 summarizes the main results on VQA v2 val
and VQA-CP v2 test. We experiment SIMPLEAUG

with different base VQA models and compare it
to state-of-the-art methods. SIMPLEAUG achieves
consistent gains against the base models on all an-
swer types (columns). When paired with LXMERT,
SIMPLEAUG obtains the highest accuracy on both
datasets, except MUTANT (loss) which applies
extra losses besides data augmentation.

SIMPLEAUG improves all answer types. On
VQA-CP v2, SIMPLEAUG boosts the overall ac-
curacy of UpDn from 39.74% to 52.65%, outper-

forming all but three methods. One key strength
of SIMPLEAUG is that it improves all the answer
types, including a ∼2% gain on “Other” where
many methods suffer. Specifically, compared to
CF-VQA (Niu et al., 2021) and RandImg (Teney
et al., 2020) which have higher overall accuracy
than SIMPLEAUG, SIMPLEAUG outperforms them
on the challenging “Num” and “Other”. On VQA
v2, SIMPLEAUG achieves the highest accuracy us-
ing UpDn, improving +0.86% on “All”, +0.79%
on “Yes/No”, +1.77% on “Num”, and +0.69% on
“Other”. Other methods specifically designed for
VQA-CP v2 usually degrade on VQA v2.

SIMPLEAUG is model-agnostic. SIMPLEAUG

can directly be applied to other VQA models. Be-
sides UpDn, in Table 2 we show that SIMPLEAUG

can lead to consistent gains for two additional VQA
models. LMH is a de-biasing method for UpDn,
which however hurts the accuracy on VQA v2.
With SIMPLEAUG, LMH can largely improve on
VQA v2. LXMERT is a strong transformer-based
VQA model, and SIMPLEAUG can also improve
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Table 3: SIMPLEAUG (propagation) w/ or w/o verifica-
tion (cf. § 3.2) on VQA-CP v2, using the UpDn model.

Method Verification All Y/N Num Other

UpDn – 39.74 42.27 11.93 46.05

SIMPLEAUG
7 51.96 64.02 44.44 47.70
3 52.27 65.15 45.32 47.42

upon it, achieving the highest accuracy on VQA v2
(all answer types) and on VQA-CP v2 (“Other”).

Comparison to data augmentation baselines.
SIMPLEAUG notably outperforms the template-
based method (Kafle et al., 2017), the closest
method to ours. We attribute this to the question
diversity via question propagation and paraphras-
ing. Compared to CSS (Chen et al., 2020; Liang
et al., 2020), SIMPLEAUG performs better on all
answer types on both datasets, using UpDn. While
CSS outperforms SIMPLEAUG on VQA-CP v2 us-
ing the de-biasing LMH, its improvement on VQA
v2 is smaller than SIMPLEAUG. Since LXMERT
is a general VQA method like UpDn, we expect
that SIMPLEAUG will outperform CSS. Finally,
compared to MUTANT (Gokhale et al., 2020a),
SIMPLEAUG achieves better results on VQA-CP
v2 against the version without extra loss terms (i.e.,
MUTANT(plain)). It is worth noting that while
CSS and MUTANT both generate extra data, they
cannot improve but degrade on VQA v2 (when us-
ing UpDn or LXMERT). In contrast, SIMPLEAUG

improves on all cases, suggesting it as a more gen-
eral data augmentation method for VQA.

4.4 Ablation studies of SIMPLEAUG

Question propagation vs. paraphrasing. SIM-
PLEAUG leverages the original IQA triplets by
propagating questions to other images (§ 3.2) or
by paraphrasing question using similar questions
(§ 3.3). Propagation can ask more questions about
an image. For example, the propagated questions
in Figure 1 and Figure 3 ask about image contents
different from the original questions. In contrast,
paraphrasing only paraphrases the original ques-
tions of that image. As shown in Table 2, question
propagation generally leads to better performance,
especially on “Num” and “Other” answers, suggest-
ing the importance of creating additional questions
to cover image contents more exhaustively.

On verification for question propagation. Ta-
ble 3 compares SIMPLEAUG (propagation) with
and without the verification strategies (cf. § 3.2).
Verification improves accuracy at nearly all cases.

Table 4: A comparison of training strategies on VQA-CP
v2 with the UpDn model. O: original triplets. A: augmented
triplets by SIMPLEAUG.

Method Strategy All Y/N Num Other

UpDn O 39.74 42.27 11.93 46.05
O → O → O 39.47 43.11 11.75 45.16

SIMPLEAUG
A + O 47.50 59.76 38.18 43.63

O → A + O 49.73 59.67 36.58 48.12
O → A → O 52.65 66.40 43.43 47.98

Table 5: Effects of different augmention types (cf. § 3.2).
We report results on VQA-CP v2, using the UpDn model.

Method Aug Type All Y/N Num Other

UpDn – 39.74 42.27 11.93 46.05

SIMPLEAUG

Y/N 47.20 68.63 12.12 45.68
Num 44.62 42.87 43.80 45.77
Color 40.97 43.11 12.39 47.68
Other 41.22 43.17 12.19 48.16
All 52.65 66.40 43.43 47.98

Multiple-stage training. In Table 4, we compare
the three training strategies with original triplets
(O) and augmented triplets (A). We also train
on O for multiple stages (i.e., more epochs) for
a fair comparison. O → A → O in general out-
performs others, and we attribute this to the clear
separation of clean and noisy data — the last train-
ing stage may correct noisy information learned in
early stages (Zhang et al., 2021).

Training with SIMPLEAUG triplets alone. We
further investigate training the UpDn model with
augmented triplets alone (A). On VQA-v2, we
get 39.62% overall accuracy, worse than the base-
line trained with original data (63.48%). This is
likely due to the noise in the augmented data. On
VQA-CP, we get 51.60%, much better than the
baseline (39.74%) but worse than training with
both augmented and original triplets (52.65%). We
surmise that SIMPLEAUG triplets help mitigate the
language bias shifts in VQA-CP. Please see Ap-
pendix for a human study on assessing the quality
of the triplets augmented by SIMPLEAUG.

Effects of augmentation types. We experiment
with propagating each question type alone on VQA-
CP v2, using UpDn as the base model. In Table 5,
we show the separate results of SIMPLEAUG with
different question types. The augmented questions
notably improve the corresponding answer type.

4.5 SIMPLEAUG in additional scenarios

We explore SIMPLEAUG in the scenarios where
there are (i) limited questions per image, and (ii)
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Table 6: Learning with limited IQA triplets on VQA-CP
v2. We keep a certain fraction of QA pairs per image.

Method Fraction All Y/N Num Other

UpDn 1.00 39.74 42.27 11.93 46.05

SIMPLEAUG

1.00 52.65 66.40 43.43 47.98
0.50 47.67 57.65 37.77 45.17
0.25 46.03 52.01 37.96 45.12
0.10 42.91 45.09 30.24 45.25

extra weakly-labeled or unlabeled images. For (ii),
both have no IQA triplets but the weakly-labeled
ones have human-annotated object instances.

Learning with limited triplets. We randomly
keep a fraction of annotated QA pairs for each
training image on VQA-CP v2. Table 6 shows
that even under this annotation-scarce setting (e.g.,
only 10% of QA pairs are kept), SIMPLEAUG can
already be effective, outperforming the baseline
UpDn model trained with all data. This demon-
strates the robustness of SIMPLEAUG on dealing
with the challenging setting with limited triplets.

Learning with weakly-labeled or unlabeled im-
ages. We simulate the scenarios by keeping the
QA pairs for a fraction of images (i.e., labeled data)
and removing the QA pairs entirely for the other
images. Conventionally, a VQA model cannot ben-
efit from the images without QA pairs, but SIM-
PLEAUG could leverage them by propagating ques-
tions to them. Specifically, for images without QA
pairs, we consider two cases. We either keep their
MSCOCO object instance annotations (i.e., weakly-
labeled data) or completely rely on object detectors
(i.e., unlabeled data). Table 7 shows the results, in
which we only apply SIMPLEAUG to the weakly-
labeled and unlabeled images. As shown, SIM-
PLEAUG yields consistent improvements, opening
up the possibility of leveraging additional images
to improve VQA.

4.6 Qualitative results

We show a training image and its augmented QA
pairs by SIMPLEAUG in Figure 3. A VQA model
trained on the original IQA triplets cannot answer
many of the newly generated questions, even if the
image is in the training set, showing the necessity
to include them for training a stronger model. More
qualitative results can be found in Appendix.

5 Conclusion

We proposed SIMPLEAUG, a data augmentation
method for VQA that can turn information already

Table 7: Learning with weakly-labeled and unlabeled im-
ages for VQA v2. Fraction: the portion of images with anno-
tated QA pairs. GT: MSCOCO ground truth annotations. OD:
Faster R-CNN object detection. 7: supervised training with
only labeled VQA training examples.

Fraction SIMPLEAUG All Y/N Num Other

1.00 7 63.48 81.18 42.14 55.66
3 64.34 81.97 43.91 56.35

0.50
7 60.93 78.45 40.74 52.96

GT 61.47 78.92 41.43 53.50
OD 61.47 78.93 41.42 53.50

0.25
7 56.70 74.02 37.81 48.53

GT 57.54 74.49 39.08 49.54
OD 57.56 74.63 38.67 49.57

0.10
7 51.06 69.18 33.46 41.93

GT 52.18 69.76 35.95 43.10
OD 52.27 69.98 35.07 43.34

Augmented Question Answer

How many baseball bats are in the picture? 
How many baseball gloves are showing? 
What color is the helmet? 
How many people are in the field? 

1
1

Blue
3

✘
✘
✘
✓

Original Question Answer

What color are the empty seats? 
How many people are on the field? 
What team is playing? 

Green
3

Orioles

✘
✓
✓

Figure 3: Qualitative results. We show the training image
and its QA pairs from VQA-CP, and the generated QA pairs
by SIMPLEAUG. 3/7 indicates if the baseline VQA model
(trained without SIMPLEAUG) answers correctly/incorrectly.
In augmented QA pairs, the first three are from question prop-
agation and the last one is by paraphrasing.

in the datasets into explicit IQA triplets for train-
ing. SIMPLEAUG is simple but by no means trivial.
First, it justifies that mid-level vision tasks like ob-
ject detection can effectively benefit VQA. Second,
we probably will never be comprehensive enough
in annotating data, and SIMPLEAUG can effectively
turn what we have at hand (i.e., “knowns”) to ex-
amples a VQA model wouldn’t have known (i.e.,
“unkowns”). SIMPLEAUG can notably improve the
accuracy of VQA models on both VQA v2 (Goyal
et al., 2017) and VQA-CP v2 (Clark et al., 2019).
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Discovering the Unknown Knowns:
Turning Implicit Knowledge in the Dataset into Explicit Training

Examples for Visual Question Answering
(Appendix)

In this appendix, we provide details and results
omitted in the main text.

• Appendix A: additional implementation details.
(§ 4.2 of the main paper)

• Appendix B: results on GQA dataset. (§ 4.1 of
the main paper)

• Appendix C: human study for assessing the qual-
ity of triplets generated by SIMPLEAUG. (§ 4.4
of the main paper)

• Appendix D: additional qualitative results gener-
ated by SIMPLEAUG. (§ 4.6 of the main paper)

A Additional Implementation Details

A.1 Baseline VQA models.
We validate SIMPLEAUG with three VQA mod-
els in our experiments: Bottom-Up Top-Down
(UpDn)3 (Anderson et al., 2018), Learned-
Mixin+H (LMH)4 (Clark et al., 2019), and
LXMERT5 (Tan and Bansal, 2019). All base-
line models are implemented using officially re-
leased codebase. More details of code and data are
publicly available at https://github.com/
heendung/simpleAUG.

A.2 Optimization

UpDn and LMH. We maintain the default set-
tings in UpDn and LMH except for using the
mini-batch size of 512 on VQA v2 and 1, 024 on
VQA-CP v2. Following the official implementa-
tions, our visual features are the output of Faster
R-CNN (Ren et al., 2016) object detector trained
on Visual Genome (Krishna et al., 2017), provided
by Anderson et al. (2018). We optimize UpDn and
LMH using stochastic gradient descent (SGD) with
Adamax (Kingma and Ba, 2015) and learning rate

3UpDn model implementation: https://github.
com/yanxinzju/CSS-VQA.

4LMH model implementation: https://github.
com/chrisc36/bottom-up-attention-vqa.

5LXMERT model implementation: https://github.
com/airsplay/lxmert.

2×10−4. Training a baseline UpDn or LMH model
on a single NVIDIA RTX A6000 takes around 2
hours for convergence.

LXMERT. Similar to UpDn and LMH models,
LXMERT leverages the object features from the
Faster R-CNN detection provided by Anderson
et al. (2018). We train a LXMERT model using the
mini-batch size of 256. Following Tan and Bansal
(2019), we use Adam (Kingma and Ba, 2015) as
the optimizer with a linear decayed learning rate
schedule. Training a baseline LXMERT model on
a single NVIDIA RTX A6000 takes around 8 hours
for convergence.

Multi-stage training. As discussed in § 4.2 and
§ 4.4 of the main paper, we train the VQA models
with a three-stage paradigm (O → A → O): first
with original triplets O, then with the SIMPLEAUG

triplets A, and then with O again. In each of these
three stages, we follow the same optimization pro-
cedures as we train the baseline VQA models in the
first stage. We report the best results on VQA v2
validation set (Goyal et al., 2017) and VQA-CP v2
test set (Agrawal et al., 2018).

A.3 Additional details of SIMPLEAUG

As mentioned in the main paper, for each annotated
IQA triplet (i, q, a) in the dataset, SIMPLEAUG

propagates q to other relevant images. To begin
with, we find unique questions by filtering out any
duplicate sentences. We then extract meaningful
words from the unique questions in line with (Chen
et al., 2020; Wu and Mooney, 2019). Concretely,
we remove the question type from q and then apply
a spaCy part-of-speech (POS) tagger (Honnibal and
Montani, 2017) to extract “nouns”. To handle the
synonyms, we further consider the singular/plural
forms and super-categories of nouns6. Moreover,
we remove non-informative words (e.g., “picture”
or “photo”) in the sentence. For example, in a
question, “What is the man doing in the picture?”,
the word “picture” refers to an image itself but not

6Paraphrase database (Ganitkevitch et al., 2013) or Word-
Net (Miller, 1995) could be used to handle other synonyms.

https://github.com/heendung/simpleAUG
https://github.com/heendung/simpleAUG
https://github.com/yanxinzju/CSS-VQA
https://github.com/yanxinzju/CSS-VQA
https://github.com/chrisc36/bottom-up-attention-vqa
https://github.com/chrisc36/bottom-up-attention-vqa
https://github.com/airsplay/lxmert
https://github.com/airsplay/lxmert
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any specific object. There are around 8% of triplets
like this in VQA v2 (Goyal et al., 2017). While
it is possible that both sentence and image may
contain such non-informative contents (e.g., “How
many pictures on the wall?”), there are <1% such
questions.

B Results on GQA Dataset

We further conduct a preliminary study of SIM-
PLEAUG on the popular GQA dataset (Hudson and
Manning, 2019), which focuses on compositional
VQA tasks and consists of 22M questions about
various day-to-day images. Each image in GQA
is associated with a scene graph (Johnson et al.,
2015) which consists of the objects, attributes, and
relationships.

We focus on binary questions (35% of all ques-
tions) and propagate a question q to an image i
according to the image’s scene graph. Particularly,
we leverage the semantic type of the question (e.g.,
“attribute”, “relation”) and the scene graph to gen-
erate the answer. For example, suppose q asks if
an object contains a certain “attribute”, we check
the scene graph’s node of that object to determine
the answer. SIMPLEAUG can improve the accuracy
of UpDn from 56.06% to 56.52%, justifying its
generalizability and applicability.

C Human Evaluation on SIMPLEAUG
Triplets

SIMPLEAUG requires no sentence/image genera-
tion steps, and thus all examples are natural annota-
tions from humans, largely alleviating the artificial
noise that the previous methods may have. To fur-
ther evaluate the quality of the augmented triplets,
we randomly select 500 images and pick 5 aug-
mented QA pairs per image from each type (4 by
propagation Y/N, Num, Other, Color and 1 by para-
phrasing). For those 2, 500 triplets, we ask 5 differ-
ent crowd workers to evaluate “relatedness (1/0)”
of the augmented questions and “correctness (1/0)”
of the answer given the question and image. That is,
if the question makes sense for the corresponding
image, rate 1, otherwise 0; if the answer is correct,
rate 1, otherwise 0 (see Figure 4). Table 8 shows
the human study results. The average relatedness /
correctness are 86.75% / 67.60% for propagation
and 80.80% / 64.40% for paraphrasing.

We note that these generated data are based on
human-annotated questions in the dataset. There-
fore, there are no artifacts in the questions. More-

Table 8: Human evaluation. The Relatedness and Correct-
ness are shown on different types / question types.

SIMPLEAUG Type Relatedness (%) Correctness (%)

Y/N 82.60 52.20
Color 87.20 77.20

Propagation Num 89.20 60.80
Other 88.00 80.20

Overall 86.75 67.60

Paraphrasing Overall 80.80 64.40

over, these generated data are to augment the origi-
nal data. Thus, even if they contain noise, they can
consistently improve the model’s performance.

D Additional Qualitative Results by
SIMPLEAUG

Figure 5 provides more qualitative results. We note
that the baseline model has still suffered in learn-
ing many IQA relationships. Even for simple cases
(e.g., What color is the elephant?), the model is not
able to answer them correctly. Thus, augmenting
IQA triplets with the implicit information in the
dataset can notably improve the model’s perfor-
mance on both VQA v2 and VQA-CP v2.
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Image Type Question Answer Relatedness
(1 / 0)

Correctness
(1 / 0)

Y/N

Color

Num

Other

Paraphrasing

• Is the ramp completely covered in snow?

• What color is his shirt?

• How many people are standing on there surfboard?

• What sport is depicted?

• Is this man wearing any safety gear?

No

Blue

1

Skateboarding

yes

Y/N

Color

Num

Other

Paraphrasing

• Are there waves shown in this picture?

• What color is the sky?

• How many people are gathered around?

• What sport is represented in this scene?

• What is the man walking on?

Yes

Blue

1

Surfing

Surfboard

Y/N

Color

Num

Other

Paraphrasing

• Is this photo pulling into a station?

• What color is his shirt?

• How many trains can you see?

• What vehicle is shown?

• Is the boy walking?

Yes

Black

2

Train

Yes

Y/N

Color

Num

Other

Paraphrasing

• Is the water clean and safe?

• What is the color of the grass?

• How many people might live here?

• What are the yellow vehicle?

• Is that the ocean?

Yes

Green

3

Car

No

Y/N

Color

Num

Other

Paraphrasing

• Are these sheep marked?

• What is the color of the grass?

• How many cows are stacked?

• Which animal is it?

• What color is the photo frame?

Yes

Green

2

Cow

Yellow

Y/N

Color

Num

Other

Paraphrasing

• Is the elephant crying?

• What is the color of the grass?

• How many animal is there in the picture?

• What type of animal is behind them?

• Which elephant is bigger?

Yes

Green

2

Elephant

Right

Y/N

Color

Num

Other

Paraphrasing

• Is it on display?

• What color is the button?

• How many cats are in the picture?

• What kind of animal is pictured?

• What color are the cat's eyes?

Yes

Black

1

Cat

Blue

Figure 4: Examples in human study. For each image, we pick 5 triplets created by SIMPLEAUG (4 by propagation Y/N, Num,
Other, Color and 1 by paraphrasing) and ask crowd workers to evaluate the IQA triplets by the question’s relatedness (1 / 0) to
the image and the answer’s correctness (1 / 0) to the image and question.
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Image
Augmented QA Pairs Original QA Pairs

Question Answer Question Answer

• How many giraffe? 

• What color is his eyes? 

• What color is the giraffe?

• What color is the sign?  

3

Black

Brown

Red

✘
✓
✘
✘

• Are the giraffes resting their heads? 

• Are the humans on the ground? 

• What is the fence made of? 

Yes

Yes

Wood

• How many animals are in this?

• How many cows are visible?

• Are the cows hornless?

• What color is the cow?

• What color are the rocks?

1

1

Yes

White

Gray

✘
✘
✘

✘
✘

• Which animals are seen?

• Is this a farm?

• Is the cow under a tree?

Cow

No

Yes

• How many of these animals are laying down?

• How many cats are pictured?

• What color is the suitcase?

• How many suitcases are they?

1

1

Brown

1

✘
✘
✘

✘

• Is this a good place for the cat to sleep?

• Is this an old suitcase?

• What kind of cat? 

• What are the cats laying on?

Yes

Yes

Black

Suitcase

• How many people are clearly visible in this picture? 

• How many people are standing around? 

• How many people are actually in the photo?

• What color is the sky? 

2

2

2

Blue

✘
✘
✘

✘

• How many tires are there? 

• What sport is the equipment for?

• About what time of day is it?

6

Biking

Daytime

• What color is the elephant?

• What color are his legs?

Gray

Gray

✘
✘

• Are the elephants mad?

• How many animals are here?

• What animals are shown?

Yes

4

Elephant

• What color is the stove? 

• What color is the hair? 

• What color is the pants? 

• What color is the table? 

• How many people are actually in this photo? 

White

Black

Black

Gray

2

✓
✘
✘

✘
✘

• How sanitary does the counter look? 

• How many clear glass bowls are on the counter? 

• What is the counter made of?

Clean

5

Steel

• What color are the leaves on the tree? 

• What color is the field?

• What is the color of the cloud? 

• How many elephants in the picture? 

• How many animals are seen? 

Green

Green

White

4

5

✓
✘
✘

✘
✘

• Sunny or overcast?

• Is the water fresh looking? 

• Is there a man in the picture? 

• Are any of the elephants on the dirt road?

• What is the water on the ground? 

Overcast

No

Yes

Yes

Mud

Figure 5: Additional qualitative results on VQA-CP. We show the original image, the generated QA pairs by SIMPLEAUG,
and the original QA pairs. 3/7 indicates if the baseline VQA model (trained without SIMPLEAUG) predicts correctly/incorrectly.


