@inproceedings{vu-etal-2021-strata,
title = "{ST}ra{TA}: Self-Training with Task Augmentation for Better Few-shot Learning",
author = "Vu, Tu and
Luong, Minh-Thang and
Le, Quoc and
Simon, Grady and
Iyyer, Mohit",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2021.emnlp-main.462/",
doi = "10.18653/v1/2021.emnlp-main.462",
pages = "5715--5731",
abstract = "Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, which stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective."
}
Markdown (Informal)
[STraTA: Self-Training with Task Augmentation for Better Few-shot Learning](https://preview.aclanthology.org/jlcl-multiple-ingestion/2021.emnlp-main.462/) (Vu et al., EMNLP 2021)
ACL