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Abstract

A key problem in multi-task learning (MTL)
research is how to select high-quality auxil-
iary tasks automatically. This paper presents
GradTS, an automatic auxiliary task selec-
tion method based on gradient calculation in
Transformer-based models. Compared to AU-
TOSEM, a strong baseline method, GradTS
improves the performance of MT-DNN with
a bert-base-cased backend model, from 0.33%
to 17.93% on 8 natural language understand-
ing (NLU) tasks in the GLUE benchmarks.
GradTS is also time-saving since (1) its gradi-
ent calculations are based on single-task exper-
iments and (2) the gradients are re-used with-
out additional experiments when the candidate
task set changes. On the 8 GLUE classification
tasks, for example, GradTS costs on average
21.32% less time than AUTOSEM with com-
parable GPU consumption. Further, we show
the robustness of GradTS across various task
settings and model selections, e.g. mixed ob-
jectives among candidate tasks. The efficiency
and efficacy of GradTS in these case studies
illustrate its general applicability in MTL re-
search without requiring manual task filtering
or costly parameter tuning.

1 Introduction

MTL (Caruana, 1997) is widely used in NLU re-
search to improve the performance of machine
learning (ML) models by enlarging the training
data size with datapoints related to the primary
tasks. However, its efficacy is largely affected by
the selection of auxiliary tasks. The auxiliary task
selection problem is addressed mainly under two
settings. The first setting treats each task as a whole.
For example, Bingel and Søgaard (2017) assess
task relatedness by exhaustive experiments in all

†Work done when interning at the Minds, Machines, and
Society Lab at Dartmouth College.

task pairs. Nonetheless, high pairwise task corre-
lations are often not decisive features for choos-
ing auxiliary tasks. Glover and Hokamp (2019)
train a policy for task selection through counter-
factual estimation, but their learned policy brings
improvements only to one out of nine tasks on
GLUE benchmarks (Wang et al., 2019). The sec-
ond setting subsamples training instances from aux-
iliary tasks, e.g. with Bayesian optimization (Ruder
and Plank, 2017), but these methods are time- and
resource-consuming due to their reliance on multi-
task experiments involving all the candidate tasks.
AUTOSEM (Guo et al., 2019) combines the two
settings into one method, selecting candidate tasks
with Thompson sampling and deciding the ratio
with which to draw training instances from the se-
lected tasks via a Gaussian Process. Despite the
higher quality of the auxiliary task sets it gener-
ates, AUTOSEM is still costly, similar to Ruder
and Plank (2017).

To design a better-performing and less costly
auxiliary task selection method, we take advan-
tage of the characteristics of Transformer networks
(Vaswani et al., 2017). Prior research reveals that in
a Transformer-based model, each attention head at-
tends on specialized linguistic features (Clark et al.,
2019; Voita et al., 2019; Mareček and Rosa, 2019;
Lin et al., 2019; Vig and Belinkov, 2019; Kovaleva
et al., 2019). Since important linguistic features
strongly correlate with the goals of tasks, we fur-
ther hypothesize that a good auxiliary task shares
key linguistic features with the primary task. Thus,
we address the auxiliary task selection problem
by maximizing the overlap of important heads in
a Transformer-based model between primary and
auxiliary tasks. As Michel et al. (2019) claim, the
importance of attention heads to a task can be ap-
proximated by the absolute gradients accumulated
at each head. We design our auxiliary task selec-
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tion method, GradTS, accordingly, by ranking the
importance of attention heads for each individual
task and modeling the correlation between each
pair of tasks with their head rankings. By greed-
ily selecting the tasks most closely related to the
primary task, GradTS constructs auxiliary task sets
through trial experiments (GradTS-trial). GradTS
also enables task subsampling to further optimize
auxiliary task sets. To achieve this goal, we design
another setting of GradTS (GradTS-fg) that first
assesses the correlations between the primary task
and each training instance in an auxiliary task se-
lected by GradTS-trial and then filters the training
instances via thresholding.

We assess the strength of GradTS via MTL eval-
uations on 8 GLUE classification tasks. We use
AUTOSEM and AUTOSEM-p1 1 as our baselines
since AUTOSEM is among the most advanced aux-
iliary task selection methods in the NLP field and
because it features both task selection and task sub-
sampling. For consistency, we use the bert-base-
cased model as the backend model of GradTS, AU-
TOSEM, and the MTL framework. Results show
that GradTS-trial produces better auxiliary task sets
than AUTOSEM-p1 in all 8 GLUE tasks while cost-
ing on average 6.73% less time. In experiments
with task subsampling, GradTS-fg again shows su-
perior strength to AUTOSEM on all 8 tasks while
costing 21.32% less time. These results strongly
support the efficacy and efficiency of GradTS.

In addition to the main experiments, we com-
pare GradTS to multiple intuitive auxiliary task
selections to show its high performance. We also
conduct case studies to show that GradTS is effec-
tive and robust on difficult tasks or candidate tasks
with mixed objectives. These findings reflect the
general applicability of GradTS in various task set-
tings. In comparison, auxiliary task sets produced
by AUTOSEM and AUTOSEM-p1 are often not op-
timal in these complicated scenes. Further, GradTS
reuses the head rankings when the candidate task
set grows larger, which makes it even more time-
and resource-efficient than existing methods.

The contributions of this paper are three-fold:
• we propose GradTS, an automatic auxiliary task

selection method based on gradient calculation
in pre-trained Transformer-based models;

• we illustrate the efficacy and efficiency of
GradTS through comprehensive MTL evalua-

1We refer to the AUTOSEM method without task subsam-
pling as AUTOSEM-p1.

tions; and
• we show, through case studies, the superior capa-

bility and robustness of GradTS to complicated
candidate task settings compared to both AU-
TOSEM and auxiliary task selections based on
human intuition.

2 Datasets

Datasets OBJ LBL Training Size
CoLA CLS 2 8,550
MRPC CLS 2 3,667
MNLI CLS 3 392,701
QNLI CLS 2 104,742
QQP CLS 2 363,845
RTE CLS 2 2,489

SST-2 CLS 2 67,348
WNLI CLS 2 634
STSB RGR - 5,748
POS SL - 14,040
NER SL - 14,987
SC SL - 8,936

MELD CLS 7 9,988
Dyadic-MELD CLS 7 12,839

Table 1: Details of datasets used in this paper. OBJ
denotes task objectives and LBL refers to the number
of classes for classification tasks. Training size rep-
resents the number of training instances in each task.
CLS, RGR, and SL are classification, regression, and
sequence labeling tasks, respectively.

Following Guo et al. (2019), we use the 8 classi-
fication tasks in GLUE benchmarks (Wang et al.,
2019), namely CoLA, MRPC, MNLI, QNLI, QQP,
RTE, SST-2, and WNLI, in our main experiments.
We apply the standard split of these datasets as
Wang et al. (2019) describe. 2

We also use one regression and three sequence
labeling tasks in our case studies about the efficacy
of GradTS on candidate tasks with mixed training
objectives. These tasks include STSB from GLUE
benchmarks, Part-of-Speech tagging (POS) from
Universal Dependencies 3, Named Entity Recogni-
tion (NER) from CoNLL-2003 challenges (Tjong
Kim Sang and De Meulder, 2003), and Syntactic
Chunking (SC) from CoNLL-2000 shared tasks

2We report scores on the development set of GLUE tasks
due to the submission quota limit. We sample 10% training
instances of each GLUE task with a random seed of 42 for
choosing thresholds and selecting auxiliary tasks.

3https://universaldependencies.org/
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(Tjong Kim Sang and Buchholz, 2000). The offi-
cial data split of all these datasets is applied.

Additionally, we introduce MELD and Dyadic-
MELD datasets (Poria et al., 2019) to verify the
applicability of GradTS to tasks that are difficult for
its backend model. While these two tasks are multi-
modal emotion recognition tasks, we use only the
textual data in the experiments. The MELD and
Dyadic-MELD datasets are annotated with 7 emo-
tion labels. The bert-base-cased model achieves
F-1 scores less than 50% on both tasks, lower than
its performance on most GLUE classification tasks.

Details of the datasets are displayed in Table
1. We evaluate both accuracy and F-1 scores for
MRPC and QQP, accuracy for QNLI, RTE, SST-2,
MNLI 4 and WNLI, Matthew’s correlation coeffi-
cient (MCC) for CoLA, Pearson’s correlation coef-
ficient and Spearman’s correlation coefficient for
STSB, and F-1 score for POS, NER, SC, MELD,
and Dyadic-MELD tasks.

3 Methodology

We design GradTS based on the hypothesis that bet-
ter auxiliary tasks share more important linguistic
features with the primary task. Since each attention
head in a Transformer-based model functions simi-
larly as a standalone feature extractor on a special-
ized set of features, we approximate the important
feature set of each task by the heads contributing
the most to the task. As the key feature sets are
task-specific, GradTS does not require multi-task
experiments to rank auxiliary tasks given a primary
task. This makes GradTS a time- and resource-
economic method especially when the set of candi-
date auxiliary tasks is large or growing.

GradTS consists of three successive modules re-
sponsible for (1) ranking attention heads for a task
based on their contributions, (2) ranking auxiliary
tasks based on inter-task correlations, and (3) final-
izing the auxiliary task sets, respectively.

3.1 Attention Head Ranking Module

We estimate the importance of attention heads to
a task using the absolute gradients accumulated at
each head, following Michel et al. (2019). Specif-
ically, we achieve the goal in four steps: (1) We
fine-tune a pre-trained Transformer-based model
on a task. (2) We repeat the fine-tuning step on the
training set of the task with the fine-tuned model,

4We report accuracy scores separately on the matched and
mismatched splits of MNLI.

without updating parameters, to get gradients of
the model. (3) We sum up the absolute gradients
accumulated at each attention head during the last
fine-tuning step. (4) We layer-wise normalize the
accumulated gradients and scale the gradients to
the range [0, 1] globally to represent the importance
of each head for the given task.

In practice, we use pre-trained bert-base-cased
model as the backend of GradTS and we fine-tune
the model for three epochs before starting to accu-
mulate gradients on each head 5. This fine-tuning
stage is designed to avoid large gradients on unim-
portant heads when the model is exposed to a down-
stream task for the first time.

3.2 Auxiliary Task Ranking Module
Given a primary task, we rank each candidate aux-
iliary task by the correlation between its head rank-
ing matrix and that of the primary task. As Puth
et al. (2015) suggest, we use Kendall’s rank cor-
relation coefficients (Kendall’s τ ) since the impor-
tance scores of heads seldom result in a tie, based
on our observations. We visualize the head im-
portance matrix of the bert-base-cased model on
MRPC and task correlations for the 8 GLUE clas-
sification tasks in Figures 3 and 4 in Appendix.

While the rankings of auxiliary tasks produced
by GradTS are intuitive in some cases, e.g. the
three natural language inference (NLI) tasks are
good auxiliary tasks for each other, the correlation
scores between many seemingly unrelated tasks,
e.g. WNLI and CoLA, are also high. This re-
veals the difficulty of manually designing auxiliary
task sets since the factors affecting the appropriate-
ness of auxiliary tasks are multi-faceted, e.g. text
lengths and label distributions. As a result, design-
ing automatic methods for selecting auxiliary tasks
makes up a crucial part of MTL research, especially
at a time when candidate auxiliary tasks are rapidly
growing both larger in amount and more complex.

3.3 Auxiliary Task Selection Module
After obtaining the rankings of candidate auxil-
iary tasks for each primary task, we finalize the
auxiliary task selection process through trial exper-
iments. We also study the potential of GradTS to
subsample the selected auxiliary tasks. Our exper-
iments show that with one additional fine-tuning
pass of its backend model on the individual tasks,

5Our preliminary experiments show that fine-tuning the
backend model for three to seven epochs at the warm up stage
does not have much effect on the predictions of GradTS.
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GradTS produces subsampled auxiliary training
sets higher in quality than the task-level selections.

We introduce the two settings of GradTS to se-
lect tasks from the task correlations as follows:
[Task-level Trial-based] We select auxiliary tasks
greedily under this setting. Starting from the most
closely-correlated task to a primary task, we keep
adding tasks to the auxiliary task set and run MTL
evaluations on the primary task and all the chosen
auxiliary tasks. GradTS stops adding new tasks
when the evaluation score starts to decrease on the
validation set we leave for parameter tuning and
finalizes the auxiliary task set with the tasks chosen
at the previous step.
[Instance-level] We re-run the base model of
GradTS on all the individual tasks once, with gradi-
ent calculation but not parameter updates. For each
instance, we take the absolute value of its gradients
on all the attention heads, layer-wise normalize the
gradients, and scale the numbers to the range [0,
1]. Then we calculate and record the correlation
score between the normalized gradient matrix and
the head ranking matrix of each candidate auxiliary
task. Last, we use a threshold to select auxiliary
training instances from tasks chosen by the task-
level trial-based method to form a subsampled aux-
iliary task set. The threshold we use in this paper is
tuned by experiments on RTE, MRPC, and CoLA
tasks, which is a Kendall’s τ of 0.42.

We refer to GradTS with the task-level trial-
based and instance-level task selection settings as
GradTS-trial and GradTS-fg, respectively.

4 Experiments and Analysis

4.1 Experimental Settings

To show the strength of GradTS, we run evaluations
with MT-DNN (Liu et al., 2019a) as the MTL evalu-
ation framework on 8 classification tasks in GLUE
benchmarks. The bert-base-cased model is used as
the backend of MT-DNN and all the auxiliary task
selection methods. For tasks whose input contains
multiple sentences, we concatenate the sentences
together with a [SEP] token in between. We use the
Huggingface (Wolf et al., 2020) implementation of
BERT (Devlin et al., 2019) and other pre-trained
models in this paper. In each experiment, we fine-
tune MT-DNN for 7 epochs with a learning rate of
5e-5 and report the highest score 6.

6We apply the same set of hyper-parameters in all the
experiments for fair comparison. We also use official dataset
splits to minimize randomness in all our experiments.
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Figure 1: Task selection results by two AUTOSEM and
two GradTS methods on 8 GLUE classification tasks.
Y and X axes represent primary and auxiliary tasks, re-
spectively. Darker color in a cell indicates that a larger
portion of an auxiliary task is selected.

4.2 Auxiliary Task Selection Results

Figure 1 shows the auxiliary task sets selected
by AUTOSEM-p1, AUTOSEM, GradTS-trial, and
GradTS-fg methods. Each auxiliary task is labeled
as 1 (selected) or 0 (not selected) for methods un-
der the task-level auxiliary task selection setting
(AUTOSEM-p1 and GradTS-trial). The percentage
of selected training data amount in each auxiliary
task is reflected for AUTOSEM and GradTS-fg.

While some common task combinations ap-
pear in the auxiliary task sets constructed by both
GradTS-trial and AUTOSEM-p1, e.g. CoLA-
WNLI and QNLI-MNLI, the two methods gener-
ally make very different selections. We note that
GradTS-trial usually generates larger auxiliary task
sets than AUTOSEM-p1 on tasks with small train-
ing data size, e.g. WNLI, RTE, and MRPC. Differ-
ent from AUTOSEM-p1 which balances exploita-
tion with exploration at the task selection phase, the
auxiliary task ranking mechanism of GradTS-trial
is in full charge of controlling the risk of select-
ing improper auxiliary tasks. The task selection
module of GradTS-trial greedily chooses auxiliary
tasks based on the task rankings and it is thus more
likely to also select auxiliary tasks marginally im-
proving the performance of the primary task than
AUTOSEM-p1. There are more disagreements be-
tween the task selection ratios of GradTS-fg and
AUTOSEM than the task-level selections. For ex-
ample, while WNLI is constantly discarded by AU-
TOSEM at its second phase due to the small size
of WNLI, GradTS-fg ranks WNLI highly for three
primary tasks (CoLA, MRPC, and RTE). Benefit-
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Methods
Primary Tasks

CoLA MRPC MNLI QNLI QQP RTE SST-2 WNLI
Single-Task 51.00 78.19/84.58 83.52/83.88 90.26 90.34/87.15 63.18 91.63 53.52
NO-SEL 50.89 79.17/84.96 82.68/83.18 90.06 90.44/87.16 66.98 91.40 47.89
AUTOSEM-p1 54.13 81.62/86.77 83.41/83.40 90.48 90.65/87.39 67.15 92.09 48.97
AUTOSEM 56.25 84.24/75.25 83.65/83.43 90.13 90.67/87.44 67.87 91.74 49.29
GradTS-trial 55.24 83.58/88.35 83.95/83.55 90.62 90.87/87.72 76.53 92.31 54.93
GradTS-fg 58.38 84.07/88.74 83.79/83.96 90.87 90.89/87.73 76.90 92.63 57.75

Table 2: MTL evaluation results on 8 GLUE classification tasks. Single-Task refers to the single-task performance
of the bert-base-cased model. NO-SEL includes all the candidate tasks in the auxiliary task set of each primary
task. The highest score for each task is in bold.

Methods Time Cost GPU Usage
AUTOSEM-p1 114 37,003
AUTOSEM 194 46,361
GradTS-trial 107 39,551
GradTS-fg 153 35,610

Table 3: Average time and GPU consumption for 4 aux-
iliary task selection methods on each of the 8 GLUE
classification tasks. The units are minutes for time cost
and megabytes for GPU usage.

ing from its training instance ranking mechanism
which treats each record independently, GradTS-fg
is robust to the higher overall impact of a few noisy
instances in smaller datasets. As such, GradTS has
a lower chance of underestimating the importance
of small auxiliary datasets than AUTOSEM.

While some auxiliary task selection results are
intuitive, they are mostly beyond the scope of man-
ual designs. For example, QQP is not chosen by
either AUTOSEM or GradTS as a good auxiliary
task for CoLA or MRPC, despite its large size. It
is also counter-intuitive that GradTS does not se-
lect MNLI or QNLI into the auxiliary task set of
WNLI though these tasks share similar goals. Due
to the gap between the automatic auxiliary task se-
lection results and human intuitions, we assess the
strength of these task selection methods via MTL
evaluations and show the results in Table 2.

4.3 MTL Evaluation Results

While MTL is designed to enhance model per-
formance, our evaluations reveal that simply us-
ing all the available auxiliary tasks without selec-
tion is not sufficient. Despite the enlarged train-
ing dataset, MTL with all the candidate auxiliary
tasks brings only marginal improvements to 3 out
of the 8 GLUE classification tasks. On the con-

trary, the MTL performance is generally higher
than single-task evaluation scores when an auxil-
iary task selection method is applied. We attribute
this phenomenon to the greater discrepancies in
some primary-auxiliary task combinations without
carefully selecting auxiliary tasks. These results
show that while MTL provides a promising way to
boost the performance of ML models, a good auto-
matic auxiliary task selection method is necessary.

Between the two task-level auxiliary task selec-
tion methods, GradTS-trial produces better aux-
iliary task sets than AUTOSEM-p1 for all the 8
primary tasks. MTL performance with GradTS-
trial also beats the single-task baseline in all the
evaluations, while AUTOSEM-p1 produces low-
quality auxiliary task sets on tasks whose training
sets are extremely large (MNLI) or small (WNLI)
compared to the other tasks. This demonstrates
that GradTS-trial is more robust to the design
of candidate auxiliary task sets than AUTOSEM-
p1. Though the auxiliary task sets selected by
AUTOSEM-p1 and GradTS-trial overlap a lot for
CoLA, MRPC and RTE, no training instance is
drawn from WNLI in its second phase, resulting
in large performance gaps between AUTOSEM
and GradTS-fg on these tasks. For comparison,
GradTS-fg samples 59.94%, 70.98%, and 60.25%
of the WNLI dataset, respectively, for CoLA,
MRPC, and RTE, and achieves 3.79%, 17.93%,
and 13.30% higher MTL evaluation scores than
AUTOSEM on these tasks. Despite the generally
higher fragility of small datasets to noisy annota-
tions, these datasets may contain useful datapoints
as auxiliary training instances and should not be
completely ignored. GradTS-fg subsamples tasks
on the instance level, which is more efficient and
flexible in picking highly-correlated training in-
stances than the second phase of AUTOSEM.
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Primary
Tasks

Methods
AUTOSEM-p1 AUTOSEM GradTS-trial GradTS-fg Single-Task NO-SEL

CoLA 57.04 57.38 61.81 62.66 51.00 46.50
MRPC 78.43/85.14 80.39/85.97 82.35/87.32 83.33/88.40 78.19/84.58 78.92/84.91
MNLI 81.18/81.70 83.67/83.56 83.53/83.42 83.51/84.06 83.52/83.88 83.24/83.34
QNLI 90.63 90.57 90.66 90.85 90.26 90.52
QQP 90.89/87.32 90.36/87.21 90.65/87.39 90.72/87.47 90.34/87.15 89.37/85.72
RTE 75.45 76.73 75.45 77.62 63.18 72.20
SST-2 91.86 92.55 91.86 92.66 91.63 89.30
WNLI 45.07 52.11 56.34 57.75 53.52 43.66
MELD 39.96 42.59 45.36 47.02 39.14 39.26
D-MELD 43.46 43.37 47.53 47.61 37.44 37.44

Table 4: MTL evaluation results with AUTOSEM and GradTS auxiliary task selection methods on 10 classification
tasks. Single-Task indicates single-task performance of bert-base-cased and NO-SEL indicates performance of MT-
DNN, with the bert-base-cased backend, trained on all 10 tasks. D-MELD refers to Dyadic-MELD.
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Figure 2: Task selection results by two GradTS meth-
ods on 12 tasks with mixed objectives. Y and X axes
represent primary and auxiliary tasks, respectively.

4.4 Running Time Analysis

As Table 3 shows, the average GPU usage is compa-
rable for all the four auxiliary task selection meth-
ods in the main experiments. All the experiments
are run with a batch size of 32 on an NVIDIA RTX-
8000 graphics card.

Among the four methods, GradTS-trial is the
most time-efficient mainly because its task rank-
ings are generated from single-task experiments
and they are fixed for all the evaluations. While
GradTS-fg filters training instances based on the
output of GradTS-trial, the additional time cost
is only linearly correlated with the training data
size of auxiliary tasks. On average, GradTS-fg
takes longer time to finish than AUTOSEM-p1 but
is more efficient than AUTOSEM. Since GradTS
reuses the task-specific head importance matrices
and the thresholds for subsampling auxiliary tasks,
it becomes gradually more time-economic than AU-
TOSEM and AUTOSEM-p1 when the candidate
task set is larger or growing. Thus, GradTS is a su-
perior choice to AUTOSEM on large and complex

task sets in terms of both efficacy and efficiency.

5 Discussions

GradTS is shown to be effective on 8 classification
NLU tasks in our main experiments. In this section,
we conduct case studies to (1) explore whether
GradTS is effective on tasks that are difficult or
have different training objectives, (2) validate that
GradTS selects better auxiliary task sets than hu-
man intuition, and (3) justify our use of bert-base-
cased as the backend model of GradTS and the
MTL evaluation framework.

5.1 Task Selection with Difficult Tasks

GradTS relies on the hypothesis that the amount of
gradients distributed on each attention head reflects
the important linguistic features for a task. How-
ever, tasks that are difficult for a model introduce
more noise to its gradient calculations and thus may
have negative effects on GradTS. To study the ef-
fect of difficult tasks, we evaluate GradTS on a task
set containing the 8 GLUE classification tasks and
two MELD tasks. The MELD and Dyadic-MELD
tasks are difficult for the bert-base-cased model as
the single-task performance on these tasks are both
below 50 in F-1 scores.

We note that the largest tasks in size, i.e. MNLI
and QQP, are not chosen as auxiliary tasks for
either MELD or Dyadic-MELD, suggesting that
training data amount is not a decisive factor for aux-
iliary task selection. As auxiliary tasks, MELD is
selected for SST-2 and CoLA, and Dyadic-MELD
for SST-2 and RTE. The connection between SST-2
and the two MELD tasks is intuitive since emo-
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MethodsPrimary
Tasks AUTOSEM-p1 AUTOSEM GradTS-trial GradTS-fg Single-Task NO-SEL

CoLA 57.04 56.50 60.08 60.14 51.00 47.52
MRPC 79.66/85.21 83.09/87.79 83.58/88.35 84.56/88.89 78.19/84.58 80.88/86.22
MNLI 84.01/83.38 83.80/83.65 83.79/83.96 84.05/83.67 83.52/83.88 83.10/82.95
QNLI 90.88 90.61 90.50 91.01 90.26 89.73
QQP 90.94/87.77 90.61/87.54 90.65/87.39 90.96/87.81 90.34/87.15 90.30/86.82
RTE 69.68 70.04 77.62 79.42 63.18 74.73
SST-2 90.94 91.17 92.32 92.81 91.63 92.20
WNLI 54.93 52.11 69.01 71.97 53.52 61.97
STSB 87.90/87.67 89.12/88.79 89.07/88.78 89.26/88.90 86.35/86.30 86.63/86.80
POS 91.43 91.53 91.60 91.86 91.60 90.42
NER 91.23 91.70 92.55 92.69 90.96 88.80
SC 90.22 89.26 93.39 93.76 87.67 87.99

Table 5: MTL evaluation results with AUTOSEM and GradTS methods on 12 tasks with mixed training objectives.
NO-SEL indicates performance of the MTL model trained on all 12 tasks.

tional and sentiment features are interconnected,
while the other selections are not as intuitive.

We show the evaluation scores in Table 4. Com-
pared to Table 2, we note that the performance
of AUTOSEM-p1 is largely harmed when MRPC,
MNLI, and WNLI are set up as primary tasks,
while AUTOSEM performance also suffers on
QQP. On the contrary, GradTS-trial performs rel-
atively stably and GradTS-fg frequently produces
auxiliary task sets higher in quality on the enlarged
candidate task sets than on the 8 GLUE classifica-
tion tasks only. We attribute the strength of GradTS-
fg to its ability to discard noisy training instances
and mainly select datapoints contributing to the pri-
mary tasks. When MELD and Dyadic-MELD are
primary tasks, MTL performance, either with or
without auxiliary task selection, is generally higher
than the single-task baseline. These results indicate
the importance of MTL research and highlight the
study of good auxiliary task selection methods, es-
pecially on tasks that are difficult under the single-
task setting. We also note that while AUTOSEM-p1
is not able to generate high-quality auxiliary task
sets for MELD, the successive data subsampling
mechanism in AUTOSEM polishes the data selec-
tion and improves the MTL performance by 2.63
in F-1 score. Similarly, GradTS-fg generates better
auxiliary task sets than GradTS-trial in all the evalu-
ations, revealing the necessity of filtering out noisy
auxiliary training instances. To conclude, while
both GradTS-trial and GradTS-fg are robust to dif-
ficult tasks in the candidate task sets, GradTS-fg is,
in general, more optimal in these scenes.

5.2 Task Selection with Mixed Objectives

Including AUTOSEM, most prior publications on
MTL consider only auxiliary tasks with the same
training objective as the primary task. This overly
simplifies the auxiliary task selection problem and
limits the scope of research on the topic. In this
section, we examine the applicability of GradTS
to candidate task sets with mixed objectives. As
candidate tasks, we use the 8 GLUE classification
tasks, a regression task (STSB), and three sequence
labeling tasks (POS, NER, and SC). The auxiliary
task selection results by GradTS are shown in Fig-
ure 2, which make intuitive sense in some cases,
e.g. POS and SC are closely bond to CoLA and
STSB is selected as an auxiliary task for MRPC.

We assess the quality of auxiliary task sets pro-
duced by GradTS via evaluations with MT-DNN
and display the results in Table 5. Results show
that the performance of GradTS does not suffer
from introducing the four non-classification tasks,
as the auxiliary task sets selected by GradTS in
most cases lead to higher MTL performance than
in Table 2. In comparison, the auxiliary task
sets produced by AUTOSEM-p1 and AUTOSEM
are noisier with the four newly-introduced tasks,
causing noticeable performance drops to 3 and
2 GLUE classification tasks, respectively. Fur-
thermore, while both GradTS-trial and GradTS-
fg lead to higher MTL performance than not ap-
plying any auxiliary task selection method, apply-
ing AUTOSEM-p1 and AUTOSEM causes per-
formance drops in 4 and 3 tasks, respectively.
AUTOSEM-p1 and AUTOSEM even cause the



5628

Methods
Primary Tasks

CoLA MRPC MNLI QNLI QQP RTE SST-2 WNLI
Single-Task 51.00 78.19/84.58 83.52/83.88 90.26 90.34/87.15 63.18 91.63 53.52
HEU-Size 53.15 80.39/86.30 83.47/83.39 90.50 90.82/87.61 66.43 91.40 49.30
HEU-Type 54.44 80.15/86.66 83.52/83.32 90.61 90.71/87.50 73.65 91.86 54.92
HEU-Len 54.17 80.64/85.82 83.36/83.34 90.39 90.57/87.24 67.50 91.63 52.11

GradTS-trial 55.24 83.58/88.35 83.95/83.55 90.62 90.87/87.72 76.53 92.31 54.93
GradTS-fg 58.38 84.07/88.74 83.79/83.96 90.87 90.89/87.73 76.90 92.63 57.75

Table 6: MTL evaluation results on 8 GLUE classification tasks. HEU-Size, HEU-Type, and HEU-Len refer
to MTL performance with intuitive auxiliary task selections based on training data size, task type, and average
sentence length, respectively.

Datasets SIZE LEN TYPE
CoLA 8,550 7.70 Single-Sentence
MRPC 3,667 21.77 Paraphrase
MNLI 392,701 15.34 Inference
QNLI 104,742 18.22 Inference
QQP 363,845 11.06 Paraphrase
RTE 2,489 26.18 Inference

SST-2 67,348 9.41 Single-Sentence
WNLI 634 13.90 Inference

Table 7: Specifics of 8 GLUE classification tasks.
SIZE, LEN, and TYPE indicate the number of training
instances, average sentence length in terms of words,
and task type, respectively. The task types are as de-
fined in Wang et al. (2019).

MTL performance to drop below the single-task
evaluation scores in 3 and 4 experiments, respec-
tively. The results indicate that, despite the po-
tentially increased discrepancies among tasks with
various objectives, GradTS is an effective and ro-
bust auxiliary task selection method. We also note
that since GradTS reuses the head ranking matrices
produced in the main experiments, its additional
time cost on the enlarged task set is negligible, com-
pared to AUTOSEM which has to be fully re-run.
This further demonstrates the efficiency of GradTS,
especially when the candidate task set grows larger.

5.3 Comparison to Intuitive Task Selections

We further validate the strength of GradTS by com-
paring the MTL performance with GradTS to that
with three intuitive task selection methods based
on simple dataset analysis. The three heuristics
we set up for comparison choose auxiliary tasks
based on (1) training data size; similarity between
the primary and auxiliary tasks with respect to (2)
task type and (3) average sentence length. Table 7

displays the training data amount, task type, and av-
erage sentence length of the 8 tasks. For HEU-Size
and HEU-Len, starting from the most appropriate
auxiliary task, we keep adding tasks into the auxil-
iary task set greedily and report the best score.

According to Table 6, while the intuitive task se-
lections usually result in higher performance than
the single-task evaluation scores (and compara-
ble to AUTOSEM results shown in Table 2), the
GradTS methods outperform the intuitive methods
on all the 8 tasks. Among the three intuitive task
selection methods, HEU-Type in most cases pro-
duces the auxiliary task sets highest in quality. This
demonstrates the high priority of auxiliary tasks
with similar goals as the primary task at the task
selection phase. While the importance of task types
is reflected in the task selection results of GradTS
(Figure 1) as well, GradTS is able to take other
empirical clues into consideration and construct
more effective auxiliary task sets. These additional
clues, however, are expensive to design and can-
not be directly transferred to other candidate task
sets without costly adaptations if manual auxiliary
task selection methods are applied. Moreover, the
three simple heuristics are not always applicable
when the candidate task set becomes complex, e.g.
containing tasks with varying label sets or with
multiple objectives. GradTS, on the contrary, has
shown great capability and robustness in these com-
plex cases with moderate time and resource cost. It
is a promising method in place of expensive manual
auxiliary task set design in MTL research.

6 Base Model Selection for GradTS

Since GradTS is built on Transformer-based
models, we select its backend model from 6
common pre-trained Transformer-based models,
namely bert-base-uncased, bert-base-cased, bert-



5629

Methods
Primary Tasks

CoLA MRPC QNLI RTE SST-2 WNLI
bert-base-uncased 51.15 87.00/81.61 90.97 68.95 91.85 50.70
+GradTS-trial 55.99 87.49/82.84 90.86 69.31 91.97 60.57
+GradTS-fg 56.16 88.38/83.82 91.25 71.11 92.08 69.01
bert-base-cased 52.59 87.87/83.08 90.02 67.14 91.28 53.52
+GradTS-trial 56.49 88.14/83.57 90.31 68.95 91.97 64.79
+GradTS-fg 59.55 88.65/84.06 90.60 71.48 92.20 74.65
bert-large-uncased 57.52 81.62/86.58 91.10 67.87 92.55 42.25
+GradTS-trial 56.06 82.11/87.89 91.67 68.95 92.20 66.19
+GradTS-fg 58.04 82.60/87.95 91.74 71.84 93.35 76.06
bert-large-cased 57.60 82.84/87.72 91.91 66.79 92.67 63.38
+GradTS-trial 59.35 83.82/88.30 91.98 71.12 93.12 73.24
+GradTS-fg 60.33 85.53/89.56 92.37 74.37 93.92 78.87
roberta-base 51.26 87.01/91.39 92.11 68.59 93.46 50.71
+GradTS-trial 55.99 87.26/90.91 92.57 70.40 93.81 64.78
+GradTS-fg 56.00 87.99/91.39 92.73 71.12 94.15 66.19
roberta-large 59.57 79.90/86.82 92.17 74.73 95.41 52.11
+GradTS-trial 63.68 85.54/89.70 93.80 79.42 95.64 56.34
+GradTS-fg 64.56 86.77/90.79 94.14 80.51 96.22 60.56

Table 8: MTL evaluation results with and without task selection methods on 6 GLUE tasks. Rows with the model
names indicate the multi-task evaluation results of each model on the entire candidate task set.

large-uncased, bert-large-cased, roberta-base, and
roberta-large. We set up MTL evaluations with
MT-DNN on CoLA, MRPC, SST-2, WNLI, QNLI,
and RTE to examine the appropriateness of these
backend models in GradTS. Specifically, we assess
the strength and robustness of these models by com-
paring the MT-DNN performance with auxiliary
task sets selected by GradTS against that without
auxiliary task filtering. The same backend model is
used for GradTS and MT-DNN in each experiment
to eliminate possible discrepancies across models.

From Table 8, we notice clear performance gaps
between the cased and uncased models as the back-
end of GradTS. For example, on CoLA and SST-2,
GradTS-trial produces worse auxiliary task sets
than using all candidate tasks with a bert-base-
uncased backend, while GradTS with a bert-base-
cased backend improves model performance for
both GradTS-trial and GradTS-fg. This is intuitive
since case information is crucial for grammaticality
and sentiment tasks. Among the four cased back-
end models, RoBERTa (Liu et al., 2019b) does not
trigger larger MT-DNN performance improvements
than BERT of the same size, implying that larger
pre-training corpora do not greatly affect the effi-
cacy of GradTS. While the performance improve-
ment brought by GradTS with the bert-large-cased

backend is comparable to that with the bert-base-
cased backend, its running time and GPU cost are
over 100% higher. We thus choose bert-base-cased
as the backend of GradTS to balance performance
with resource cost, though potentially any cased
Transformer-based model is a valid choice.

7 Conclusion and Future Work

This paper presented GradTS, an automatic auxil-
iary task selection method for MTL based on pre-
trained Transformer-based models. On 8 GLUE
classification tasks, GradTS produced auxiliary
task sets higher in quality than AUTOSEM, a
strong baseline method, with less time and re-
source consumption. In our case studies comparing
GradTS to intuitive task selections, GradTS showed
greater capability of finding more optimal auxiliary
task sets than using trivial heuristics based on statis-
tics of datasets. We additionally demonstrated that
GradTS was both more effective and more efficient
than our baseline on task sets with mixed objec-
tives. GradTS was also shown to be robust in task
sets containing difficult tasks for its backend model.
These findings support the applicability of GradTS
to a wide range of task and model settings. Future
work may extend the use of GradTS to determine
high-quality auxliary datasets for the same task.
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A Head and Task Ranking Examples
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Figure 3: Example head importance matrix of bert-
base-cased on MRPC. Darker color indicate higher im-
portance.
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Figure 4: Kendall’s rank correlations among 8 GLUE
classification tasks generated by the auxiliary task rank-
ing module of GradTS.

We show the head importance matrix of the bert-
base-cased model on MRPC in Figure 3. The task
correlation matrix generated by bert-base-cased on
the 8 GLUE classification tasks is shown in Figure
4.

B Threshold-based Task Selection

Dataset GradTS-thres GradTS-trial GradTS-fg
CoLA 54.69 55.24 58.38
MRPC 83.20/83.59 83.58/88.35 84.07/88.74
MNLI 83.81/83.79 83.95/83.55 83.79/83.96
QNLI 90.61 90.62 90.87
QQP 90.47/87.28 90.87/87.72 90.89/87.73
RTE 66.98 76.53 76.90

SST-2 91.63 92.31 92.63
WNLI 56.34 54.93 57.75

Table 9: MTL evaluation results of the three settings of
GradTS on 8 GLUE classification tasks. The highest
score for each task is in bold.

Besides the two settings of GradTS (GradTS-
trial and GradTS-fg) for the auxiliary task selec-
tion module, we additionally introduce a task-level

Methods Time Cost GPU Usage
AUTOSEM-p1 114 37,003
AUTOSEM 194 46,361
GradTS-thres 87 27,481
GradTS-trial 107 39,551
GradTS-fg 1547 35,610

Table 10: Average time and GPU consumption for 5
auxiliary task selection methods on each of the 8 GLUE
classification tasks. The units are minutes for time cost
and megabytes for GPU usage.

threshold-based setting. Under this setting, we em-
pirically choose a threshold with which GradTS
produces the best auxiliary task sets in a small
collection of tasks. Then for each primary task,
GradTS selects all the tasks having correlation
scores above the threshold into the auxiliary task
set. We use Kendall’s τ of 0.47 as the threshold
in the evaluations, which is tuned via experiments
on RTE, MRPC, and CoLA tasks. We refer to
GradTS with the task-level threshold-based setting
as GradTS-thres.

It is worth noting that though GradTS-thres is
more time- and resource-economic than GradTS-
trial and GradTS-fg, its performance is the lowest
in most cases. We display the evaluation results
of GradTS-thres, GradTS-trial, and GradTS-fg on
the 8 GLUE classification tasks in Table 9 and the
average time and memory cost in Table 10. Since
GradTS-thres is not optimal compared to GradTS-
trial and GradTS-fg, and sometimes outperformed
by AUTOSEM, we do not introduce this setting in
the main body of our paper. However, it is still an
interesting method to study regarding its time- and
resource-efficiency and stronger capability than not
applying any auxiliary task selection method.


