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Abstract

Contextualized representations based on neu-
ral language models have furthered the state
of the art in various NLP tasks. Despite
its great success, the nature of such repre-
sentations remains a mystery. In this pa-
per, we present an empirical property of these
representations—“average”≈ “first principal
component”. Specifically, experiments show
that the average of these representations shares
almost the same direction as the first princi-
pal component of the matrix whose columns
are these representations. We believe this ex-
plains why the average representation is al-
ways a simple yet strong baseline. Our fur-
ther examinations show that this property also
holds in more challenging scenarios, for exam-
ple, when the representations are from a model
right after its random initialization. Therefore,
we conjecture that this property is intrinsic to
the distribution of representations and not nec-
essarily related to the input structure. We re-
alize that these representations empirically fol-
low a normal distribution for each dimension,
and by assuming this is true, we demonstrate
that the empirical property can be in fact de-
rived mathematically.

1 Introduction

A large variety of state-of-the-art methods in NLP
tasks nowadays are built upon contextualized rep-
resentations from pre-trained neural language mod-
els, such as ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), and XLNet (Yang et al., 2019).
Despite the great success, we lack understandings
about the nature of such representations. For exam-
ple, Aharoni and Goldberg (2020) have shown that
averaging BERT representations in a sentence can
preserve its domain information. However, to our
best knowledge, there is no analysis on what leads
to the power of averaging representations.

∗∗Jingbo Shang is the corresponding author.

Input :

Average
'(!×#

First Principal Component )!×#

cos (, )
=0.999…

Pre-trained Neural 
Language Model

…
…

…
…

…

($
…

(% (& ('… …

Matrix
2(×)

) = 24#

=
"! 0
0 ""
0 0

2(×) 5(×( 6(×) 7)×)*

4#

=
"! 0
0 ""
0 0

!!×# "!×! #!×# $#×#$

%%

Figure 1: Visualization of our discovered empirical
property: “average” ≈ “first principal component”.

Table 1: Average and minimum absolute cosine similar-
ity of last layer representations between r and p from
4,000 tests. As a reference, ri drawn from a uniformly
random distribution would lead to Average of .0149.

Model AG’s news KP20k Dbpedia
Average Min Average Min Average Min

BERT .9994 .9908 .9995 .9958 .9988 .9845
RoBERTa .9989 .9984 .9990 .9982 .9987 .9980
XLNet .9990 .9874 .9991 .9932 .9994 .9856
ELMo .9957 .9681 .9985 .9666 .9949 .9355

Word2vec .9590 .8506 .9647 .8907 .9530 .8474
Glove .9639 .5014 .9839 .6369 .9697 .6088

In this work, we present an empirical property
of these representations, “average” ≈ “first prin-
cipal component”. As shown in Figure 1, given a
sequence of L tokens, one can construct a d × L
matrix R using each d-dimensional representation
ri of the i-th token as a column. There are two
popular ways to project this matrix into a single
d-dimensional vector: (1) average and (2) first prin-
cipal component. Formally, the average r is a d-
dimensional vector where r =

∑L
i=1 ri/L. The

first principal component p is a d-dimensional vec-
tor whose direction maximizes the variance of the
(mean-shifted) L representations. Then, the prop-
erty can be written as |cos(r,p)| ≈ 1. This abso-
lute value is more than 0.999 in our experiments.

We examine the generality of this property and
find it also holds in three more scenarios when
every ri is drawn from (1) a fixed layer (not nec-
essary the last layer) in a pre-trained neural lan-
guage model, (2) a fixed layer in a model right after
random initialization without any training, and (3)
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Table 2: Average and minimum absolute cosine similar-
ity between r and p from 4,000 tests from AG’s news.

Model
Same Sentence Random Sentence

Average Min Average Min

BERT .9994 .9908 .9992 .9930
RoBERTa .9989 .9984 .9989 .9985
XLNet .9990 .9874 .9994 .9960
ELMo .9957 .9681 .9860 .6836

Word2vec .9590 .8506 .9405 .8497
Glove .9639 .5014 .9546 .3102

random token representations from all sentences
encoded by a pre-trained model. Therefore, we
conjecture that this property is intrinsic to the rep-
resentations’ distribution, which is related to the
neural language model’s architecture and parame-
ters, and not necessarily related to the input struc-
ture. We realize that the empirical distribution of
these representations is similar to a normal distri-
bution on each dimension. Assuming this is true,
we show that the property can be in fact derived
mathematically.

Our contributions are summarized as follow.
• We discover a common, insightful property of

several pre-trained neural language models—
“average” ≈ “first principal component”. To
some extent, this explains why the average repre-
sentation is always a simple yet strong baseline.

• We verify the generality of this property by ob-
taining representations from a random mixture
of layers and sentences and also using randomly
initialized models instead of pre-trained ones.

• We show that representations from language
models empirically follow a per-dimension nor-
mal distribution that leads to the property.

Reproducibility. We will release code to repro-
duce experiments on Github1.

2 Experimental Settings

Dataset. We random sample 4,000 sentences each
from three different datasets on three different do-
mains: AG’s news corpus (Zhang et al., 2015),
KP20k Computer Science papers (Meng et al.,
2017), and DBpedia (Zhang et al., 2015).
Pre-trained Neural Language Models. We ex-
periment on four well-known language models: (1)
BERT (Devlin et al., 2019), (2) RoBERTa (Liu
et al., 2019), (3) XLNet (Yang et al., 2019), and
(4) ELMo (Peters et al., 2018). For the first four
transformer-based models, we use the base (and

1https://github.com/ZihanWangKi/
AverageApproxFirstPC
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Figure 2: Average cosine similarity for different layers.

cased, if available) version from the Hugging-
Face’s (Wolf et al., 2019) implementation. For
ELMo, we follow the AllenNLP toolbox (Gardner
et al., 2018).
Word Embedding Models. We include experi-
ments on word embeddings Word2vec (Mikolov
et al., 2013) and Glove (Pennington et al., 2014)
learned on Wikipedia (Fares et al., 2017).

3 The Property: “Average” ≈ “First
Principal Component”

In most applications, each representation ri in R
comes from the tokens within the Same Sentence
and the last layer of a pre-trained neural language
model. Following this setting, we conduct 4,000
tests each on three datasets and summarize the re-
sults in Table 1. One can easily see that the average
and min absolute cosine similarities are very close
to 1 for all pre-trained neural language models.
The word embeddings satisfy the property on av-
erage, but not for some outlier sentences 2. Given
that uniformly random representations have near-
zero average and min absolute cosine similarity
values, we conclude that this is a special property
for the language model generated representations.
To some extent, it explains the effectiveness of the
average last-layer representation based on a lan-
guage model, which has been widely adopted and
observed in the literature.

4 Generality Tests of the Property

Different Layers. To evaluate our discovered prop-
erty’s generality, we first investigate if this property
only holds for the last-layer representations. For
the four transformer-based language models, there
are 13 possible layers (i.e., one after lookup table
and 12 after encoder/decoder layers) to retrieve

2We do not find obvious patterns like length or repeated
words in the outlier sentences.

https://github.com/ZihanWangKi/AverageApproxFirstPC
https://github.com/ZihanWangKi/AverageApproxFirstPC
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representations for tokens. Therefore, we test the
property based on representations from each layer
and plot the average absolute cosine similarities in
Figure 2. One can see that the property holds for
the last few layers in all four models.
Random Initialized Models. We repeat the same
test for randomly initialized models, i.e., not (pre-
)trained at all. The results are in Figure 2. Again,
we can see that the property holds for the last few
layers in all four models.
Random Sentence. Finally, we explore the case
when the representations can even come from dif-
ferent sentences. Specifically, we shuffle all the
last-layer token representations of the 4,000 sen-
tences and re-group them into 4,000 random lists
of representations. With a high probability, each
token representation in a list is generated indepen-
dently of other tokens from the same list. We show
the results in Random Sentences section in Table 2.
Surprisingly, even with “unrelated” token represen-
tations, the property still holds well.

5 Analysis

In this section, we attempt to answer what could
be a reason that the language models show this
property. From Section 4, we know that the prop-
erty also holds for randomly initialized models.
Such models know nothing about natural languages.
Therefore, it is reasonable to believe that this prop-
erty is intrinsic to the models and related to the
distribution of these representations.

5.1 Representation Distribution Analysis:
BERT as a Case Study

We show that each dimension of BERT representa-
tions likely follows a normal distribution.

From Figure 3, we can see that the quantiles
match with a normal distribution almost perfectly
through a Q-Q plot (Wilk and Gnanadesikan, 1968)
on the first dimension. We have checked an-
other ten random dimensions and their quantiles all
match well (see Appendix).

We also compare the skewness and kurtosis
of a standard normal distribution and the empir-
ical distribution of standardized representation val-
ues in each dimension. Let sj be the vector that
contains values of dimension j in the represen-
tations. Specifically, consider the representation
matrix R′ for all D = 224, 970 representations
over the 4,000 sentences. The rows of R′ corre-
spond to sj. The standardized vector s̃j of sj is

Figure 3: Q-Q plot of the 1st dimension of BERT rep-
resentations against a normal distribution. We sampled
10% of representations to reduce the figure size.

Table 3: N(0, 1) vs. the Distribution of Normalized
BERT Representations. For empirical values, we show
Avg(±Std) over 768 dimensions.

∼ N(0, 1) ∼ Distribution(s̃j)

Skewness (E[z3]) 0 0.0062(±0.5884)
Kurtosis (E[z4]) 3 3.9629(±3.3821)

defined as s̃ji =
sji−µ̂j
σ̂j

, where µ̂j =
∑D

i=1 sji
D

and σ̂j =

√∑D
i=1(sji−µ̂j)2

D . For each dimension
j, 1 ≤ j ≤ d, one can obtain an empirical distri-
bution from s̃j. From Table 3, the third moment
matches with a standard normal distribution well,
while the fourth moment is a bit off. Further, we
examine the the off diagonal terms in the d× d co-
variance matrix of the representations, which has a
mean of 0.0101 and a standard deviation of 0.0116.
When compared with a mean of 0.1747 of the diag-
onal terms, this is very small. Therefore, we conjec-
ture that each dimension of BERT’s representation
can be treated approximately like an independent
normal distribution. We note that we do not per-
form normality tests due to the large dataset size
(i.e., over 200,000 representations), since even a
minor shift away from the normal distribution can
make statistical tests reject the null hypothesis.

In the rest of this section, we assume representa-
tions are sampled from d normal distributions, i.e.,
each dimension follows a distribution N(µj , σ

2
j ).

5.2 Fitted distributions satisfy the property

We verify the property on generated representations
following the distribution. When the parameters
µj , σj are estimated from representations from lan-
guage models, the property holds (see Appendix).
We can also randomly sample the parameters from
pre-defined distributions, as shown in Table 4. The
results on pre-defined distributions tell us: (1) the
average of all µj should be 0, (2) not all of µj
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Table 4: Property testing results of representations fol-
lowing d normal distributions with µj and σj sampled
from certain uniform distributions. 4000 tests are done.

rij ∼ N(µj , σ
2
j ) Average Min

µj ∼ U [−1, 1], σj ∼ U [0, 1] .9986 .9939
µj ∼ U [−1, 1], σj ∼ U [0, 10] .1475 .0000
µj ∼ U [3, 5], σj ∼ U [0, 1] .1490 .1463
µj = 0, σj ∼ U [0, 1] .1587 .0000

should be exactly 0, and (3) the variance should not
be too large in magnitude compared to the mean.

In the following analysis, we additionally restrict
that all representations have a sum of value to 0, i.e.∑d

j=1 rij = 0, for all representations ri. This is
mainly for the simplicity of the covariance matrix
computation, as the PCA algorithm will first mean-
shift the R matrix.

5.3 Covariance Matrix C of Normally
Distributed Representations

We define the L-by-L covariance matrix C = RᵀR.
Its L-by-1 eigenvector w corresponding to the
largest eigenvalue can be used to get the first prin-
cipal component, i.e., p = Rw.

We show that if the representations follow a per-
dimension normal distribution, C will follow a
special shape—by expectation, its diagonals and
off-diagonals will be the same positive value, re-
spectively. We theoretically derive the mean and
standard deviation of the entries based on µj and σj
(derivations are available in Appendix), empirically
estimate their values, and put them in Table 5. It is
clear that the standard deviation is smaller than the
mean in magnitudes, confirming the special shape
of C. Also, the theoretical and estimated values
mostly match. The only significant difference is
the standard deviation for diagonal entries, which
is due to the difference on the fourth power statis-
tics between the representations and the standard
normal distribution as shown in Table 3.

5.4 This Special C→ the Property

If the diagonal entries of the covariance matrix
C are a > 0, and all off-diagonal entries are
b > 0, the eigenvector w corresponding to the
largest eigenvalue will be a uniform vector. The
Perron–Frobenius theorem (Samelson, 1957) states
that the (unique) largest eigenvalue λ is bounded:

min
i

L∑
j=1

Cij ≤ λ ≤ max
i

L∑
j=1

Cij , (1)

which refer to the min and max row-sums in C.
Due to its special shape, all row-sums in C are

Table 5: Theoretical and Estimated Mean and Standard
Deviation of the Values in the Covariance Matrix C.

Theoretical Estimated
Mean Std Mean Std

diagonal 0.2857 0.0350 0.2857 0.0710
off-diagonal 0.1100 0.0248 0.1100 0.0248

around a + b ∗ (L − 1). Therefore, the largest
eigenvalue λ1 ≈ a + b ∗ (L − 1). To obtain w,
one can solve Cw = λ1w. Obviously, w = 1 is
a solution, where 1 is a vector of 1’s of length L.
As a result, the first principal component p = Rw
follows the same direction as the average.

6 Related Work

Simply averaging is a widely used, strong base-
line to aggregate (contextualized) token represen-
tations (Ethayarajh, 2019; Aharoni and Goldberg,
2020; Reimers and Gurevych, 2019; Zhang et al.,
2015; Taddy, 2015; Yu et al., 2018). In this paper,
we discover an empirical property of these represen-
tations (“average” ≈ “first principal component”),
which can justify its effectiveness.

There are other attempts to analyze properties
of language models. Clark et al. (2019) analyze
syntactic information that BERT’s attention maps
capture. K et al. (2020) prune the causes for multi-
linguality of multilingual BERT. Wang and Chen
(2020) show that position information are learned
differently in different language models. Different
from these language-specific properties, we believe
our newly discovered property relates more to the
internal structure of neural language models.

7 Conclusion and Future Work

This paper shows a common, insightful property
of representations from neural language models—
“average”≈ “first principal component”. This prop-
erty is general and holds in many challenging sce-
narios. After analyzing the BERT representations
as a case study, we conjecture that these representa-
tions follow a normal distribution for each dimen-
sion, and this distribution leads to our discovered
property. We believe that this work can shed light
on future directions: (1) identifying the distribu-
tions that representations from language models
follow, and (2) further implications or properties
that representations have.
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A Q-Q Plot of Ten Random Dimensions

We randomly sample another 10 dimensions from
the 768 dimensions of BERT and plot the quantiles
against a normal distribution in Figure 4. All the 10
dimensions match with a normal distribution pretty
well.

Table 6: Representations following d normal distribu-
tions with parameters estimated from neural language
models.

Model Average Min

BERT .9995 .9978
RoBERTa .9989 .9982
GPT-2 .9988 .9982
XLNet .9994 .9977
ELMo .9987 .9947

B Normal Distribution Estimated from
Models

In additional to randomly sampled µj and σj , we
can also use the empirical mean and standard devi-
ation of (dimensions of) representations from pre-
trained language models. Table 6 shows that the
property is well satisfied on these representations.
This further advocates that representations from
these models have properties similar to normal dis-
tributions.

C Diagonal & Off-diagonal Values

Here we show the calculations for values in the
covariance matrix C. Note that

Cij =
1

d− 1

d∑
k=1

rkirkj ,

so for diagonal entries Cii is a sum of d products
of normally distributed random variables with it-
self, and all Cii follow the same distribution; for
off diagonal entries Cij is a sum of d products of
pairs of normally distributed random variables, and
similarly, all off diagonal entries also follow the
same distribution. Therefore, on expectation, the
covariance matrix have the same diagonal entries,
and the same off-diagonal entries. The average and
variance can be mathematically derived:

E[Cii] =
1

d− 1

d∑
k=1

(σ
2
k + µ

2
k)

V ar[Cii] =
1

(d− 1)2

(
d∑

k=1

2σ
4
k + 4µ

2
kσ

2
k

)

E[Cij ] =
1

d− 1

d∑
k=1

µ
2
k

V ar[Cij ] =
1

(d− 1)2

(
d∑

k=1

σ
4
k + 2µ

2
kσ

2
k

)

We also outline steps for the derivation. Follow-
ing our notations, rij ∼ N(µj , σ

2
j ) =⇒ rij =

σj∗zij+µj where zij is a standard normal variable,
i.e. zij ∼ N(0, 1).
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(b) d = 94
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(c) d = 287
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(d) d = 342
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(e) d = 390
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(f) d = 495
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(g) d = 507
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(h) d = 527
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(i) d = 655
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(j) d = 670

Figure 4: Q-Q plots on ten random dimensions.

E[Cii] = E[
1

d− 1
∗

d∑
k=1

rikrik]

=
1

d− 1

d∑
k=1

E[(σk ∗ zik + µk)
2]

=
1

d− 1

d∑
k=1

(σ2k + µ2k)

(2)

E[Cij ] = E[
1

d− 1
∗

d∑
k=1

rikrjk]

=
1

d− 1

d∑
k=1

E[(σk ∗ zik + µk)(σk ∗ zjk + µk)]

=
1

d− 1

d∑
k=1

(µ2k)

(3)
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V ar[Cii] = E[

(
1

d− 1
∗

d∑
k=1

rkirki

)2

]− E[Cii]
2

=
1

(d− 1)2
E[(

d∑
k=1

rki ∗ rki)2]− E[Cii]
2

(4)

E[(
d∑

k=1

rki ∗ rki)2] = E[(
d∑

k=1

(σkzik + µk)
2)2]

=
d∑

k=1

E[(σ2kz
2
ik + 2µkσkzik + µ2k)

2]

+
∑
k1!=k2

E[(σ2k1z
2
ik1 + 2µk1σk1zik1 + µ2k1) ∗ (σ

2
k2z

2
ik2 + 2µk2σk2zik2 + µ2k2)]

=
d∑

k=1

E[(σ2kz
2
ik + µ2k)

2 + 4µ2kσ
2
kz

2
ik] +

∑
k1!=k2

(σ2k1 + µ2k1) ∗ (σ
2
k2 + µ2k2)

=
d∑

k=1

σ4k ∗ 3 + µ4k + 2 ∗ σ2kµ2k + 4µ2kσ
2
k +

∑
k1!=k2

(σ2k1 + µ2k1) ∗ (σ
2
k2 + µ2k2)

=

(
d∑

k=1

σ2k + µ2k

)2

+

d∑
k=1

2σ4k + 4µ2kσ
2
k

(5)

V ar[Cij ] = E[

(
1

d− 1
∗

d∑
k=1

rkirkj

)2

]− E[Cij ]
2

=
1

(d− 1)2
E[(

d∑
k=1

rki ∗ rkj)2]− E[Cij ]
2

(6)
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E[(

d∑
k=1

rki ∗ rkj)2] = E[

(
d∑

k=1

(σkzik + µk) ∗ (σkzjk + µk)

)2

]

=

d∑
k=1

E[(σ2kzikzjk + µkσk(zik + zjk) + µ2k)
2]

+
∑
k1!=k2

E[(σ2k1zik1zjk1 + µk1σk1(zik1 + zjk1) + µ2k1)

∗ (σ2k2zik2zjk2 + µk2σk2(zik2 + zjk2) + µ2k2)]

=
d∑

k=1

E[(σ2kzikzjk + µ2k)
2 + µ2kσ

2
k(zik + zjk)

2] +
∑
k1!=k2

µ2k1 ∗ µ
2
k2

=
d∑

k=1

σ4k + µ4k + µ2kσ
2
k ∗ 2 +

∑
k1!=k2

µ2k1 ∗ µ
2
k2

=

(
d∑

k=1

µ2k

)2

+

d∑
k=1

σ4k + 2µ2kσ
2
k

(7)


