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Abstract

While pre-trained language models (PTLMs)
have achieved noticeable success on many
NLP tasks, they still struggle for tasks that re-
quire event temporal reasoning, which is essen-
tial for event-centric applications. We present
a continual pre-training approach that equips
PTLMs with targeted knowledge about event
temporal relations. We design self-supervised
learning objectives to recover masked-out
event and temporal indicators and to discrim-
inate sentences from their corrupted counter-
parts (where event or temporal indicators got
replaced). By further pre-training a PTLM
with these objectives jointly, we reinforce its
attention to event and temporal information,
yielding enhanced capability on event tem-
poral reasoning. This Effective CONtinual
pre-training framework for Event Temporal
reasoning (ECONET) improves the PTLMs’
fine-tuning performances across five relation
extraction and question answering tasks and
achieves new or on-par state-of-the-art perfor-
mances in most of our downstream tasks.1

1 Introduction
Reasoning event temporal relations is crucial for
natural language understanding, and facilitates
many real-world applications, such as tracking
biomedical histories (Sun et al., 2013; Bethard
et al., 2015, 2016, 2017), generating stories (Yao
et al., 2019; Goldfarb-Tarrant et al., 2020), and
forecasting social events (Li et al., 2020; Jin et al.,
2020). In this work, we study two prominent event
temporal reasoning tasks as shown in Figure 1:
event relation extraction (ERE) (Chambers et al.,
2014; Ning et al., 2018; O’Gorman et al., 2016;
Mostafazadeh et al., 2016) that predicts temporal
relations between a pair of events, and machine
reading comprehension (MRC) (Ning et al., 2020;
Zhou et al., 2019) where a passage and a question

1Reproduction code, training data and models are available
here: https://github.com/PlusLabNLP/ECONET.

Figure 1: Top: an example illustrating the difference
between ERE and QA / MRC samples of event tempo-
ral reasoning. Bottom: our targeted masking strategy
for ECONET v.s. random masking in PTLMs.
about event temporal relations is presented, and
models need to provide correct answers using the
information in a given passage.

Recent approaches leveraging large pre-trained
language models (PTLMs) achieved state-of-the-
art results on a range of event temporal reasoning
tasks (Ning et al., 2020; Pereira et al., 2020; Wang
et al., 2020; Zhou et al., 2020c; Han et al., 2019b).
Despite the progress, vanilla PTLMs do not focus
on capturing event temporal knowledge that can
be used to infer event relations. For example, in
Figure 1, an annotator of the QA sample can easily
infer from the temporal indicator “following” that
“transfer” happens BEFORE “preparing the paper-
work”, but a fine-tuned RoBERTa model predicts
that “transfer” has no such relation with the event
“preparing the paperwork.” Plenty of such cases ex-
ist in our error analysis on PTLMs for event tempo-
ral relation-related tasks. We hypothesize that such
deficiency is caused by original PTLMs’ random
masks in the pre-training where temporal indicators
and event triggers are under-weighted and hence
not attended well enough for our downstream tasks.
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Category Words

before, until, previous to, prior to,[before]
preceding, followed by

[after] after, following, since, now that
soon after, once∗∗

during, while, when, at the time,[during]
at the same time, meanwhile

[past] earlier, previously, formerly,
yesterday, in the past, last time
consequently, subsequently, in turn,[future]
henceforth, later, then

[beginning] initially, originally, at the beginning
to begin, starting with, to start with

[ending] finally, in the end, at last, lastly

Table 1: The full list of the temporal lexicon. Cat-
egories are created based on authors’ domain knowl-
edge and best judgment. ∗∗ ‘once’ can be also placed
into [past] category due to its second meaning of ‘pre-
viously’, which we exclude to keep words unique.

TacoLM (Zhou et al., 2020a) explored the idea of
targeted masking and predicting textual cues of
event frequency, duration and typical time, which
showed improvements over vanilla PTLMs on re-
lated tasks. However, event frequency, duration and
time do not directly help machines understand pair-
wise event temporal relations. Moreover, the mask
prediction loss of TacoLM leverages a soft cross-
entropy objective, which is manually calibrated
with external knowledge and could inadvertently
introduce noise in the continual pre-training.

We propose ECONET , a continual pre-training
framework combining mask prediction and con-
trastive loss using our masked samples. Our tar-
geted masking strategy focuses only on event trig-
gers and temporal indicators as shown in Figure 1.
This design assists models to concentrate on events
and temporal cues, and potentially strengthen mod-
els’ ability to understand event temporal relations
better in the downstream tasks. We further pre-train
PTLMs with the following objectives jointly: the
mask prediction objective trains a generator that
recovers the masked temporal indicators or events,
and the contrastive loss trains a discriminator that
shares the representations with the generator and
determines whether a predicted masked token is
corrupted or original (Clark et al., 2020). Our ex-
periments demonstrate that ECONET is effective
at improving the original PTLMs’ performances on
event temporal reasoning.

We briefly summarize our contributions. 1) We
propose ECONET , a novel continual pre-training
framework that integrates targeted masking and
contrastive loss for event temporal reasoning. 2)

Our training objectives effectively learn from the
targeted masked samples and inject richer event
temporal knowledge in PTLMs, which leads to
stronger fine-tuning performances over five widely
used event temporal commonsense tasks. In most
target tasks, ECONET achieves SOTA results in
comparison with existing methods. 3) Compared
with full-scale pre-training, ECONET requires a
much smaller amount of training data and can cope
with various PTLMs such as BERT and RoBERTa.
4) In-depth analysis shows that ECONET success-
fully transfers knowledge in terms of textual cues
of event triggers and relations into the target tasks,
particularly under low-resource settings.

2 Method
Our proposed method aims at addressing the issue
in vanilla PTLMs that event triggers and tempo-
ral indicators are not adequately attended for our
downstream event reasoning tasks. To achieve this
goal, we propose to replace the random masking in
PTLMs with a targeted masking strategy designed
specifically for event triggers and temporal indi-
cators. We also propose a continual pre-training
method with mask prediction and contrastive loss
that allows models to effectively learn from the
targeted masked samples. The benefits of our
method are manifested by stronger fine-tuning per-
formances over downstream ERE and MRC tasks.

Our overall approach ECONET consists of three
components. 1) Creating targeted self-supervised
training data by masking out temporal indicators
and event triggers in the input texts; 2) leveraging
mask prediction and contrastive loss to continually
train PTLMs, which produces an event temporal
knowledge aware language model; 3) fine-tuning
the enhanced language model on downstream ERE
and MRC datasets. We will discuss each of these
components in the following subsections.

2.1 Pre-trained Masked Language Models

The current PTLMs such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019) follow a
random masking strategy. Figure 1 shows such
an example where random tokens / words are
masked from the input sentences. More formally,
let x = [x1, ..., xn] be a sequence of input tokens
and xmt ∈ xm represents random masked tokens.
The per-sample pre-training objective is to predict
the identity (xt) of xmt with a cross-entropy loss,

LMLM = −
∑

xm
t ∈xm

I[xmt = xt] log(p(x
m
t |x)) (1)
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Figure 2: The proposed generator-discriminator (ECONET) architecture for event temporal reasoning. The upper
block is the mask prediction task for temporal indicators and the bottom block is the mask prediction task for
events. Both generators and the discriminator share the same representations.

Next, we will discuss the design and creation of
targeted masks, training objectives and fine-tuning
approaches for different tasks.

2.2 Targeted Masks Creation

Temporal Masks. We first compile a lexicon of
40 common temporal indicators listed in the Ta-
ble 1 based on previous error analysis and expert
knowledge in the target tasks. Those indicators in
the [before], [after] and [during] categories can
be used to represent the most common temporal
relations between events. The associated words
in each of these categories are synonyms of each
other. Temporal indicators in the [past], [future],
[beginning] and [ending] categories probably do
not represent pairwise event relations directly, but
predicting these masked tokens may still be helpful
for models to understand time anchors and hence
facilitates temporal reasoning.

With the temporal lexicon, we conduct string
matches over the 20-year’s New York Times news
articles 2 and obtain over 10 million 1-2 sentence
passages that contain at least 1 temporal indicators.
Finally, we replace each of the matched temporal
indicators with a 〈mask〉 token. The upper block
in Figure 2 shows two examples where “following”
and “after” are masked from the original texts.
Event Masks. We build highly accurate event
detection models (Han et al., 2019c; Zhang et al.,
2021) to automatically label event trigger words
in the 10 million passages mentioned above. Simi-
larly, we replace these events with 〈mask〉 tokens.
The bottom block in Figure 2 shows two examples
where events “transfer” and “resumed” are masked
from the original texts.

2NYT news articles are public from 1987-2007.

2.3 Generator for Mask Predictions
To learn effectively from the targeted samples, we
train two generators with shared representations to
recover temporal and event masks.
Temporal Generator. The per-sample temporal
mask prediction objective is computed using cross-
entropy loss,

LT = −
∑

xT
t ∈xT

I[xTt = xt] log(p(x
T
t |x)) (2)

where p(xTt |x) = Softmax (fT (hG(x)t)) and
xTt ∈ xT is a masked temporal indicator. hG(x) is
x’s encoded representation using a transformer and
fT is a linear layer module that maps the masked
token representation into label space T consisting
of the 40 temporal indicators.
Event Generator. The per-sample event mask
prediction objective is also computed using cross-
entropy loss,

LE = −
∑

xE
t ∈xE

I[xEt = xt] log(p(x
E
t |x)) (3)

where p(xEt |x) = Softmax (fE(hG(x)t)) and
xEt ∈ xE are masked events. hG(x) is the shared
transformer encoder as in the temporal generator
and fE is a linear layer module that maps the
masked token representation into label space E
which is a set of all event triggers in the data.

2.4 Discriminator for Contrastive Learning
We incorporate a discriminator that provides addi-
tional feedback on mask predictions, which helps
correct errors made by the generators.
Contrastive Loss. For a masked token xt, we
design a discriminator to predict whether the re-
covered token by the mask prediction is original
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or corrupted. As shown in Figure 2, “following”
and “resumed” are predicted correctly, so they are
labeled as original whereas “during” and “run” are
incorrectly predicted and labeled as corrupted. We
train the discriminator with a contrastive loss,
LD = −

∑
xt∈M

y log(D(xt|x)) + (1− y) log(1−D(xt|x))

where M = xE ∪ xT and D(xt|x) =
Sigmoid (fD(hD(x)t)) and y is a binary indicator
of whether a mask prediction is correct or not. hD
shares the same transformer encoder with hG.
Perturbed Samples. Our mask predictions fo-
cus on temporal and event tokens, which are easier
tasks than the original mask predictions in PTLMs.
This could make the contrastive loss not so pow-
erful as training a good discriminator requires rel-
atively balanced original and corrupted samples.
To deal with this issue, for r% of the generator’s
output, instead of using the recovered tokens, we
replace them with a token randomly sampled from
either the temporal lexicon or the event vocabu-
lary. We fix r = 50 to make original and corrupted
samples nearly balanced.

2.5 Joint Training
To optimize the combining impact of all compo-
nents in our model, the final training loss calcu-
lates the weighted sum of each individual loss,
L = LT + αLE + βLD, where α and β are hyper-
parameters that balance different training objec-
tives. The temporal and event masked samples are
assigned a unique identifier (1 for temporal, 0 for
event) so that the model knows which linear layers
to feed the output of transformer into. Our over-
all generator-discriminator architecture resembles
ELECTRA (Clark et al., 2020). However, our pro-
posed method differs from this work in 1) we use
targeted masking strategy as opposed to random
masks; 2) both temporal and event generators and
the discriminator, i.e. hG and hD share the hidden
representations, but we allow task-specific final lin-
ear layers fT , fE and fD; 3) we do not train from
scratch and instead continuing to train transformer
parameters provided by PTLMs.

2.6 Fine-tuning on Target Tasks
After training with ECONET , we fine-tune the up-
dated MLM on the downstream tasks. ERE sam-
ples can be denoted as [P, ei, ej , ri,j ], where P is
the passage and (ei, ej) is a pair of event trigger
tokens in P. As Figure 3a shows, we feed (P, ei, ej)

(a) ERE

(b) QA: TORQUE

(c) QA: MCTACO

Figure 3: Target ERE and QA task illustrations.
into an MLM (trained with ECONET). Following
the setup of Han et al. (2019a) and Zhang et al.
(2021), we concatenate the final event representa-
tions vi, vj associated with (ei, ej) to predict tem-
poral relation ri,j . The relation classifier is imple-
mented by a multi-layer perceptron (MLP).

MRC/QA samples can be denoted as [P,Q,A],
where Q represents a question and A denotes an-
swers. Figure 3b illustrates an extractive QA task
where we feed the concatenated [P,Q] into an
MLM. Each token xi ∈ P has a label with 1 in-
dicating xi ∈ A and 0 otherwise. The token clas-
sifier implemented by MLP predicts labels for all
xi. Figure 3c illustrates another QA task where A
is a candidate answer for the question. We feed
the concatenated [P,Q,A] into an MLM and the
binary classifier predicts a 0/1 label of whether A
is a true statement for a given question.

3 Experimental Setup

In this section, we describe details of implement-
ing ECONET , datasets and evaluation metrics, and
discuss compared methods reported in Section 4.

3.1 Implementation Details
Event Detection Model. As mentioned briefly
in Section 2, we train a highly accurate event pre-
diction model to mask event (triggers). We experi-
mented with two models using event annotations
in TORQUE (Ning et al., 2020) and TB-Dense
(Chambers et al., 2014). These two event annota-
tions both follow previous event-centric reasoning
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research by using a trigger word (often a verb or
an noun that most clearly describes the event’s oc-
currence) to represent an event (UzZaman et al.,
2013; Glavaš et al., 2014; O’Gorman et al., 2016).
In both cases, we fine-tune RoBERTaLARGE on
the train set and select models based on the perfor-
mance on the dev set. The primary results shown
in Table 2 uses TORQUE’s annotations, but we
conduct additional analysis in Section 4 to show
both models produce comparable results.

Continual Pretraining. We randomly selected
only 200K out of 10 million samples to speed up
our experiments and found the results can be as
good as using a lot more data. We used half of
these 200K samples for temporal masked samples
and the other half for the event masked samples.
We ensure none of these sample passages overlap
with the target test data. To keep the mask tokens
balanced in the two training samples, we masked
only 1 temporal indicator or 1 event (closest to the
temporal indicator). We continued to train BERT
and RoBERTa up to 250K steps with a batch size of
8. The training process takes 25 hours on a single
GeForce RTX 2080 GPU with 11G memory. Note
that our method requires much fewer samples and
is more computation efficient than the full-scale
pre-training of language models, which typically
requires multiple days of training on multiple large
GPUs / TPUs.

For the generator only models reported in Ta-
ble 2, we excluded the contrastive loss, trained
models with a batch size of 16 to fully utilize GPU
memories. We leveraged the dev set of TORQUE
to find the best hyper-parameters.
Fine-tuning. Dev set performances were used
for early-stop and average dev performances over
three randoms seeds were used to pick the best
hyper-parameters. Note that test set for the target
tasks were never observed in any of the training
process and their performances are reported in Ta-
ble 2. All hyper-parameter search ranges can be
found in Appendix C.

3.2 Datasets
We evaluate our approach on five datasets concern-
ing temporal ERE and MRC/QA. We briefly de-
scribe these data below and list detailed statistics
in Appendix A.

ERE Datasets. TB-Dense (Chambers et al.,
2014), MATRES (Ning et al., 2018) and RED
(O’Gorman et al., 2016) are all ERE datasets. Their

samples follow the input format described in Sec-
tion 2.6 where a pair of event (triggers) together
with their context are provided. The task is to
predict pairwise event temporal relations. The dif-
ferences are how temporal relation labels are de-
fined. Both TB-Dense and MATRES leverage a
VAGUE label to capture relations that are hard to
determine even by humans, which results in denser
annotations than RED. RED contains the most
fine-grained temporal relations and thus the lowest
sample/relation ratio. MATRES only considers start
time of events to determine their temporal order,
whereas TB-Dense and RED consider start and end
time, resulting in lower inter-annotator agreement.

TORQUE (Ning et al., 2020) is an MRC/QA
dataset where annotators first identify event trig-
gers in given passages and then ask questions re-
garding event temporal relations (ordering). Cor-
rect answers are event trigger words in passages.
TORQUE can be considered as reformulating tem-
poral ERE tasks as an MRC/QA task. Therefore,
both ERE datasets and TORQUE are highly cor-
related with our continual pre-training objectives
where targeted masks of both events and temporal
relation indicators are incorporated.

MCTACO (Zhou et al., 2019) is another MR-
C/QA dataset, but it differs from TORQUE in
1) events are not explicitly identified; 2) answers
are statements with true or false labels; 3) ques-
tions contain broader temporal commonsense re-
garding not only temporal ordering, but also event
frequency, during and typical time that may not be
directly helpful for reasoning temporal relations.
For example, knowing how often a pair of events
happen doesn’t help us figure out which event hap-
pens earlier. Since our continual pre-training fo-
cuses on temporal relations, MCTACO could the
least compatible dataset in our experiments.

3.3 Evaluation Metrics

Three metrics are used to evaluate the fine-tuning
performances.

F1: for TORQUE and MCTACO, we follow
the data papers (Ning et al., 2020) and (Zhou et al.,
2019) to report macro average of each question’s
F1 score. For TB-Dense, MATRES and RED, we
report standard micro-average F1 scores to be con-
sistent with the baselines.
Exact-match (EM): for both MRC datasets, EM
= 1 if answer predictions match perfectly with gold
annotations; otherwise, EM = 0.
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TORQUE MCTACO TB-Dense MATRES RED

Methods F1 EM C F1 EM F1 F1 F1

TacoLM 65.4(±0.8) 37.1(±1.0) 21.0(±0.8) 69.3(±0.6) 40.5(±0.5) 64.8(±0.7) 70.9(±0.3) 40.3(±1.7)

BERTLARGE 70.6(±1.2) 43.7(±1.6) 27.5(±1.2) 70.3(±0.9) 43.2(±0.6) 62.8(±1.4) 70.5(±0.9) 39.4(±0.6)
+ ECONET 71.4(±0.7) 44.8(±0.4) 28.5(±0.5) 69.2(±0.9) 42.3(±0.5) 63.0(±0.6) 70.4(±0.9) 40.2(±0.8)

RoBERTaLARGE 75.1(±0.4) 49.6(±0.5) 35.3(±0.8) 75.5(±1.0) 50.4(±0.9) 62.8(±0.3) 78.3(±0.5) 39.4(±0.4)
+ Generator 75.8(±0.4) 51.2(±1.1) 35.8(±0.9) 75.1(±1.4) 50.2(±1.2) 65.2(±0.6) 77.0(±0.9) 41.0(±0.6)
+ ECONET 76.1(±0.2) 51.6(±0.4) 36.8(±0.2) 76.3(±0.3) 52.8(±1.9) 64.8(±1.4) 78.8(±0.6) 42.8(±0.7)

ECONET (best) 76.3 52.0 37.0 76.8 54.7 66.8 79.3 43.8
Current SOTA 75.2∗ 51.1 34.5 79.5† 56.5 66.7†† 80.3‡ 34.0‡‡

Table 2: Overall experimental results. Refer to Section 3.4 for naming conventions. The SOTA performances for
TORQUE∗ are provided by Ning et al. (2020) and the numbers are average over 3 random seeds. The SOTA
performances for MCTACO† are provided by Pereira et al. (2020); TB-Dense†† and MATRES‡ by Zhang et al.
(2021) and RED‡‡ by Han et al. (2019b). †, ††, ‡ and ‡‡ only report the best single model results, and to make fair
comparisons with these baselines, we report both average and best single model performances. TacoLM baseline
uses the provided and recommended checkpoint for extrinsic evaluations.

EM-consistency (C): in TORQUE, some ques-
tions can be clustered into the same group due to
the data collection process. This metric reports
the average EM score for a group as opposed to a
question in the original EM metrics.

3.4 Compared Methods

We compare several pre-training methods with
ECONET: 1) RoBERTaLARGE is the origi-
nal PTLM and we fine-tune it directly on tar-
get tasks; 2) RoBERTaLARGE + ECONET is
our proposed continual pre-training method; 3)
RoBERTaLARGE + Generator only uses the gen-
erator component in continual pre-training; 4)
RoBERTaLARGE + random mask keeps the orig-
inal PTLMs’ objectives and replaces the targeted
masks in ECONET with randomly masked to-
kens. The methods’ names for continual pre-
training BERTLARGE can be derived by replacing
RoBERTaLARGE with BERTLARGE .

We also fine-tune pre-trained TacoLM on target
datasets. The current SOTA systems we compare
with are provided by Ning et al. (2020), Pereira
et al. (2020), Zhang et al. (2021) and Han et al.
(2019b). More details are presented in Section 4.1.

4 Results and Analysis
As shown in Table 2, we report two baselines.
The first one, TacoLM is a related work that fo-
cuses on event duration, frequency and typical time.
The second one is the current SOTA results re-
ported to the best of the authors’ knowledge. We
also report our own implementations of fine-tuning
BERTLARGE and RoBERTaLARGE to compare
fairly with ECONET. Unless pointing out specifi-
cally, all gains mentioned in the following sections
are in the unit of absolute percentage.

4.1 Comparisons with Existing Systems

TORQUE. The current SOTA system reported
in Ning et al. (2020) fine-tunes RoBERTaLARGE

and our own fine-tuned RoBERTaLARGE achieves
on-par F1, EM and C scores. The gains of
RoBERTaLARGE + ECONET against the current
SOTA performances are 0.9%, 0.5% and 2.3% per
F1, EM and C metrics.
MCTACO. The current SOTA system ALICE
(Pereira et al., 2020) also uses RoBERTaLARGE

as the text encoder, but leverages adversarial at-
tacks on input samples. ALICE achieves 79.5%
and 56.5% per F1 and EM metrics on the test set for
the best single model, and the best performances
for RoBERTaLARGE + ECONET are 76.8% and
54.7% per F1 and EM scores, which do not outper-
form ALICE. This gap can be caused by the fact
that the majority of samples in MCTACO reason
about event frequency, duration and time, which
are not directly related to event temporal relations.
TB-Dense + MATRES. The most recent SOTA
system reported in Zhang et al. (2021) uses both
BERTLARGE and RoBERTaLARGE as text en-
coders, but leverages syntactic parsers to build large
graphical attention networks on top of PTLMs.
RoBERTaLARGE + ECONET’s fine-tuning perfor-
mances are essentially on-par with this work with-
out additional parameters. For TB-Dense, our best
model outperforms Zhang et al. (2021) by 0.1%
while for MATRES, our best model underperforms
by 1.0% per F1 scores.
RED. The current SOTA system reported in Han
et al. (2019b) uses BERTBASE as word represen-
tations (no finetuning) and BiLSTM as feature ex-
tractor. The single best model achieves 34.0% F1

score and RoBERTaLARGE + ECONET is 9.8%
higher than the baseline.
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4.2 The Impact of ECONET
Overall Impact. ECONET in general works bet-
ter than the original RoBERTaLARGE across 5 dif-
ferent datasets, and the improvements are more
salient in TORQUE with 1.0%, 2.0% and 1.5%
gains per F1, EM and C scores, in MCTACO with
2.4% lift over the EM score, and in TB-Dense and
RED with 2.0% and 3.4% improvements respec-
tively over F1 scores. We observe that the improve-
ments of ECONET over BERTLARGE is smaller
and sometimes hurts the fine-tuning performances.
We speculate this could be related to the property
that BERT is less capable of handling temporal
reasoning tasks, but we leave more rigorous inves-
tigations to future research.
Impact of Contrastive Loss. Comparing the av-
erage performances of continual pre-training with
generator only and with ECONET (generator + dis-
criminator), we observe that generator alone can
improve performances of RoBERTaLARGE in 3
out of 5 datasets. However, except for TB-Dense,
ECONET is able to improve fine-tuning perfor-
mances further, which shows the effectiveness of
using the contrastive loss.
Significance Tests. As current SOTA models
are either not publicly available or under-perform
RoBERTaLARGE , we resort to testing the statisti-
cal significance of the best single model between
ECONET and RoBERTaLARGE . Table 8 in the
appendix lists all improvements’ p-values per Mc-
Nemar’s test (McNemar, 1947). MATRES appears
to be the only one that is not statistically significant.

4.3 Impact of Event Models
Event trigger definitions have been consistent in
previous event temporal datasets (O’Gorman et al.,
2016; Chambers et al., 2014; Ning et al., 2020).
Trigger detection models built on TORQUE and
TB-Dense both achieve > 92% F1 scores and >
95% precision scores. For the 100K pre-training
data selected for event masks, we found an 84.5%
overlap of triggers identified by both models. We
further apply ECONET trained on both event mask
data to the target tasks and achieve comparable
performances shown in Table 10 of the appendix.
These results suggest that the impact of different
event annotations is minimal and triggers detected
in either model can generalize to different tasks.

4.4 Additional Ablation Studies
To better understand our proposed model, we exper-
iment with additional continual training methods
and compare their fine-tuning performances.

TORQUE TB-D RED

Methods F1 EM C F1 F1

RoBERTaLARGE 75.1 49.6 35.3 62.8 39.4
+ random mask 74.9 49.5 35.1 58.7 38.3
+ ECONET 76.1 51.6 36.8 64.8 42.8

Table 3: Fine-tuning performances with different pre-
training methods. All numbers are average over 3 ran-
dom seeds. Std. Dev. ≥ 1% is underlined.

Random Masks. As most target datasets we use
are in the news domain, to study the impact of
potential domain-adaption, we continue to train
PTLMs with the original objective on the same
data using random masks. To compare fairly with
the generator and ECONET , we only mask 1 token
per training sample. The search range of hyper-
parameters is the same as in Section 3. As Table 3
and 11 (appendix) show, continual pre-training
with random masks, in general, does not improve
and sometimes hurt fine-tuning performances com-
pared with fine-tuning with original PTLMs. We
hypothesize that this is caused by masking a smaller
fraction (1 out of≈50 average) tokens than the orig-
inal 15%. RoBERTaLARGE + ECONET achieves
the best fine-tuning results across the board.

Full Train Data 10% Train Data

RoBERTa ∆ ∆% RoBERTa ∆ ∆%

TORQUE 75.1 +1.0 +1.3% 59.7 +7.2 +12.1%
MCTACO 75.5 +0.8 +1.1% 44.0 +5.6 +12.7%
TB-Dense 62.8 +2.0 +3.2% 48.8 +2.8 +5.7%
MATRES 78.3 +0.5 +1.3% 71.0 +2.4 +3.4%
RED 39.4 +2.4 +6.0% 27.2 +1.8 +6.6%

Table 4: RoBERTaLARGE + ECONET’s improvements
over RoBERTaLARGE using full train data v.s. 10% of
train data. ∆ indicates absolute points improvements
while ∆% indicates relative gains per F1 scores.

4.5 Fine-tuning under Low-resource Settings
In Table 4, we compare the improvements of
fine-tuning RoBERTaLARGE + ECONET over
RoBERTaLARGE using full and 10% of the training
data. Measured by both absolute and relative per-
centage gains, the majority of the improvements are
much more significant under low-resource settings.
This suggests that the transfer of event temporal
knowledge is more salient when data is scarce. We
further show fine-tuning performance comparisons
using different ratios of the training data in Fig-
ure 6a-6b in the appendix. The results demonstrate
that ECONET can outperform RoBERTaLARGE

consistently when fine-tuning TORQUE and RED.

4.6 Attention Scores on Temporal Indicators
In this section, we attempt to show explicitly how
ECONET enhances MLMs’ attentions on temporal
indicators for downstream tasks. As mentioned in
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Figure 4: Cumulative attention score comparisons be-
tween RoBERTaLARGE and ECONET on TB-Dense
test data. All numbers are multiplied by 100 and aver-
aged over 3 random seeds for illustration clarity.

Sec. 2.6, for a particular ERE task (e.g. TB-Dense),
we need to predict the temporal relations between
a pair of event triggers ei, ej ∈ Pi,j with associ-
ated vector representations vl,hi , vl,hj , l ∈ L, h ∈ H
in an MLM. L and H are the number of layers
and attention heads respectively. We further use
Tm ∈ T to denote a temporal indicator category
listed in Table 1, and tm,n ∈ Tm denote a particular
temporal indicator. If we let attn(vl,hi , vl,hx ) repre-
sents the attention score between an event vector
and any other hidden vectors, we can aggregate the
per-layer attention score between ei and tm,n as,
ali,tm,n

= 1
H

∑H
h attn(vl,hi , vl,htm,n

). Similarly, we
can compute alj,tm,n

. The final per-layer attention

score for (ei, ej) is altm,n
= 1

2

(
ali,tm,n

+ alj,tm,n

)
.

To compute the attention score for the Tm cate-
gory, we take the average of {altm,n

| ∀tm,n ∈
Tm and ∀tm,n ∈ Pi,j}. Note we assume a tempo-
ral indicator is a single token to simplify notations
above; for multiple-token indicators, we take the
average of attn(vl,hi , vl,hx∈tm,n

).
Figure 4 shows the cumulative attention scores

for temporal indicator categories, [before], [af-
ter] and [during] in ascending order of model
layers. We observe that the attention scores
for RoBERTaLARGE and ECONET align well
on the bottom layers, but ECONET outweighs
RoBERTaLARGE in middle to top layers. Previ-
ous research report that upper layers of pre-trained
language models focus more on complex semantics
as opposed to shallow surface forms or syntax on
the lower layers (Tenney et al., 2019; Jawahar et al.,
2019). Thus, our findings here show another piece
of evidence that targeted masking is effective at
capturing temporal indicators, which could facili-
tate semantics tasks including temporal reasoning.

4.7 Temporal Knowledge Injection
We hypothesize in the introduction that vanilla
PTLMs lack special attention to temporal indica-

BEFORE AFTER INCLUDES IS_INCLUDED VAGUE

[before]

[after]

[during]

[future]

-23.09 -27.11 -2.36 -6.06 1.99

-22.37 -27.11 -2.90 -4.76 2.26

-21.67 -25.27 -2.67 -3.81 1.36

-23.25 -21.02 -2.65 -6.35 2.15

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

(a) Random Mask - RoBERTaLARGE

BEFORE AFTER INCLUDES IS_INCLUDED VAGUE

[before]

[after]

[during]

[future]

10.53 3.90 -3.03 2.27 2.06

8.47 8.54 -2.90 -3.10 1.92

8.51 6.44 -2.81 1.65 0.70

10.44 2.99 -3.18 2.66 1.27

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

(b) ECONET - RoBERTaLARGE

Figure 5: Performance (F1 score) differences by tempo-
ral indicator categories and label classes in TB-Dense.
Fine-tuning on 10% TB-Dense training data.

tors and events, and our proposed method addresses
this issue by a particular design of mask prediction
strategy and a discriminator that is able to distin-
guish reasonable events and temporal indicators
from noises. In this section, we show more details
of how such a mechanism works.

The heat maps in Figure 5 calculate the
fine-tuning performance differences between 1)
RoBERTaLARGE and continual pre-training with
random masks (Figure 5a); and 2) between
RoBERTaLARGE and ECONET (Figure 5b). Each
cell shows the difference for each label class in
TB-Dense conditional on samples’ input passage
containing a temporal indicator in the categories
specified in Table 1. Categories with less than 50
sample matches are excluded from the analysis.

In Figure 5a, the only gains come from VAGUE,
which is an undetermined class in TB-Dense to han-
dle unclear pairwise event relations. This shows
that continual pre-training with random masks
works no better than original PTLMs to leverage
existing temporal indicators in the input passage
to distinguish positive temporal relations from un-
clear ones. On the other hand, in Figure 5b, having
temporal indicators in general benefits much more
for BEFORE, AFTER, IS_INCLUDED labels. The
only exception is INCLUDES, but it is a small class
with only 4% of the data.

More interestingly, notice the diagonal cells, i.e.
([before], BEFORE), ([after], AFTER) and ([dur-
ing], INCLUDES) have the largest values in the
respective columns. These results are intuitive as
temporal indicators should be most beneficial for
temporal relations associated with their categories.
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Combining these two sets of results, we provide
additional evidence that ECONET helps PTLMs
better capture temporal indicators and thus results
in stronger fine-tuning performances.

Our final analysis attempts to show why discrim-
inator helps. We feed 1K unused masked samples
into the generator of the best ECONET in Table 2
to predict either the masked temporal indicators
or masked events. We then examine the accuracy
of the discriminator for correctly and incorrectly
predicted masked tokens. As shown in Table 12
of the appendix, the discriminator aligns well with
the event generator’s predictions. For the temporal
generator, the discriminator disagrees substantially
(82.2%) with the “incorrect” predictions, i.e. the
generator predicts a supposedly wrong indicator,
but the discriminator thinks it looks original.

To understand why, we randomly selected 50 dis-
agreed samples and found that 12 of these “incor-
rect” predictions fall into the same temporal indica-
tor group of the original ones and 8 of them belong
to the related groups in Table 1. More details and
examples can be found in Table 13 in the appendix.
This suggests that despite being nearly perfect re-
placements of the original masked indicators, these
40% samples are penalized as wrong predictions
when training the generator. The discriminator, by
disagreeing with the generator, provides opposing
feedback that trains the overall model to better cap-
ture indicators with similar temporal signals.

5 Related Work
Language Model Pretraining. Since the break-
through of BERT (Devlin et al., 2018), PTLMs
have become SOTA models for a variety of
NLP applications. There have also been sev-
eral modifications/improvements built on the orig-
inal BERT model. RoBERTa (Liu et al., 2019)
removes the next sentence prediction in BERT
and trains with longer text inputs and more
steps. ELECTRA (Clark et al., 2020) proposes a
generator-discriminator architecture, and addresses
the sample-inefficiency issue in previous PTLMs.

Recent research explored methods to continue
to train PTLMs so that they can adapt better to
downstream tasks. For example, TANDA (Garg
et al., 2019) adopts an intermediate training on
modified Natural Questions dataset (Kwiatkowski
et al., 2019) so that it performs better for the An-
swer Sentence Selection task. Zhou et al. (2020b)
proposed continual training objectives that require
a model to distinguish natural sentences from those

with concepts randomly shuffled or generated by
models, which enables language models to capture
large-scale commonsense knowledge.
Event Temporal Reasoning. There has been a
surge of attention to event temporal reasoning re-
search recently. Some noticeable datasets include
ERE samples: TB-Dense (Chambers et al., 2014),
MATRES (Ning et al., 2018) and RED (O’Gorman
et al., 2016). Previous SOTA systems on these data
leveraged PTLMs and structured learning (Han
et al., 2019c; Wang et al., 2020; Zhou et al., 2020c;
Han et al., 2020) and have substantially improved
model performances, though none of them tack-
led the issue of lacking event temporal knowledge
in PTLMs. TORQUE (Ning et al., 2020) and
MCTACO (Zhou et al., 2019) are recent MRC
datasets that attempt to reason about event tem-
poral relations using natural language rather than
ERE formalism.

Zhou et al. (2020a) and Zhao et al. (2020) are
two recent works that attempt to incorporate event
temporal knowledge in PTLMs. The formal one
focuses on injecting temporal commonsense with
targeted event time, frequency and duration masks
while the latter one leverages distantly labeled pair-
wise event temporal relations, masks before/after
indicators, and focuses on ERE application only.
Our work differs from them by designing a tar-
geted masking strategy for event triggers and com-
prehensive temporal indicators, proposing a con-
tinual training method with mask prediction and
contrastive loss, and applying our framework on a
broader range of event temporal reasoning tasks.

6 Conclusion and Future Work
In summary, we propose a continual training frame-
work with targeted mask prediction and contrastive
loss to enable PTLMs to capture event temporal
knowledge. Extensive experimental results show
that both the generator and discriminator compo-
nents can be helpful to improve fine-tuning perfor-
mances over 5 commonly used data in event tempo-
ral reasoning. The improvements of our methods
are much more pronounced in low-resource set-
tings, which points out a promising direction for
few-shot learning in this research area.
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A Data Summary

Table 5 describes basic statistics for target datasets
used in this work. The numbers of train/dev/test
samples for TORQUE and MCTACO are ques-
tion based. There is no training set provided in
MCTACO. So we train on the dev set and re-
port the evaluation results on the test set following
Pereira et al. (2020). The numbers of train/dev/test
samples for TB-Dense, MATRES and RED refer to
(event, event, relation) triplets. The standard dev
set is not provide by MATRES and RED, so we
follow the split used in Zhang et al. (2021) and Han
et al. (2019b).

Data #Train #Dev #Test #Label

TORQUE 24,523 1,483 4,668 2
MCTACO - 3,783 9,442 2
TB-Dense 4,032 629 1,427 6
MATRES 5,412 920 827 4
RED 3,336 400 473 11

Table 5: The numbers of samples for TORQUE refers
to number of questions; the numbers for MCTACO
are valid question and answer pairs; and the numbers
of samples for TB-Dense, MATRES and RED are all
(event, event, relation) triplets.

Downloading link for the (processed) continual
pretraining data is provided in the README file
of the code package.

B Event Detection Model

As mentioned briefly in Secion 2, we train an
event prediction model using event annotations in
TORQUE. We finetune RoBERTaLARGE on the
training set and select models based on the perfor-
mance on the dev set. The best model achieves
> 92% event prediction F1 score with > 95% pre-
cision score after just 1 epoch of training, which
indicates that this is a highly accurate model.

C Reproduction Checklist

Number of parameters. We continue to train
BERTLARGE and RoBERTaLARGE and so the
number of parameters are the same as the origi-
nal PTLMs, which is 336M.

Hyper-parameter Search Due to computation
constraints, we had to limit the search range of
hyper-parameters for ECONET . For learning rates,
we tried (1e−6, 2e−6); for weights on the con-
trastive loss (β), we tried (1.0, 2.0).

Best Hyper-parameters. In Table 6 and Table 7,
we provide hyper-parameters for our best per-
forming language model using RoBERTaLARGE +
ECONET and BERTLARGE + ECONET and best
hyper-parameters for fine-tuning them on down-
stream tasks. For fine-tuning on the target datasets.
We conducted grid search for learning rates in the
range of (5e−6, 1e−5) and for batch size in the
range of (2, 4, 6, 12). We fine-tuned all models for
10 epochs with three random seeds (5, 7, 23).

Method learning rate batch size β

ECONET 1e−6 8 1.0
TORQUE 1e−5 12 -
MCTACO 5e−6 4 -
TB-Dense 5e−6 4 -
MATRES 5e−6 2 -
RED 5e−6 2 -

Table 6: Hyper-parameters of our best performing LM
with RoBERTaLARGE + ECONET as well as best
hyper-parameters for fine-tuning on downstream tasks.

Method learning rate batch size β

ECONET 2e−6 8 1.0
TORQUE 1e−5 12 -
MCTACO 1e−5 2 -
TB-Dense 1e−5 2 -
MATRES 5e−6 4 -
RED 1e−5 6 -

Table 7: Hyper-parameters of our best performing LM
with BERTLARGE + ECONET as well as best hyper-
parameters for fine-tuning on downstream tasks.

Dev Set Performances We show average dev set
performances in Table 9 corresponding to our main
results in Table 2.

D Significance Tests.

We leverage McNemar’s tests (McNemar, 1947)
to show ECONET’s improvements against
RoBERTaLARGE . McNemar’s tests compute
statistics by aggregating all samples’ prediction
correctness. For ERE tasks, this value is simply
classification correctness; for QA tasks (TORQUE
and MCTACO), we use EM per question-answer
pairs.

E Fine-tuning under Low-resource
Settings

Table 4 shows improvements of ECONET over
RoBERTaLARGE are much more salient under low-
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Datasets p-values

TORQUE 0.002∗∗

MCTACO 0.007∗∗

TB-Dense 0.004∗∗

MATRES 0.292
RED 0.059∗

Table 8: McNemar’s tests for improvement signifi-
cance between best single models of RoBERTaLARGE

and ECONET on the test data. Tests with p-values <
0.05 (∗∗) indicate strong statistical significance; tests
with p-values < 0.1 (∗) indicate weak statistical signifi-
cance.

resource setting.
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Figure 6: Performances (F1 scores) compari-
son between fine-tuning RoBERTaLARGE vs.
RoBERTaLARGE + ECONET over different ratios of
the training data.

F Variants of ECONET

We also experimented with a variant of ECONET
by first pretraining RoBERTaLARGE + Generator
for a few thousands steps and then continue to pre-
train with ECONET . However, this method leads
worse finetuning results, which seems to contradict
the suggestions in Zhou et al. (2020b) and Clark
et al. (2020) that the generator needs to be first
trained to obtain a good prediction distribution for
the discriminator. We speculate that this is due
to our temporal and event mask predictions being
easier tasks than those in the previous work, which
makes the “warm-up steps” for the generator not
necessary.

G Impact of Event Models

Table 10 compares results based on two event an-
notations.

H Ablation Studies for BERT

I Attention Scores
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(a) Attentions scores for [before] indicators.
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(b) Attentions scores for [after] indicators.
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(c) Attentions scores for [during] indicators.

Figure 7: Attentions score comparisons between
RoBERTaLARGE and ECONET for all model layers.
All numbers are multiplied by 100 and average over 3
random seeds for illustration purpose

J Analysis of the Discriminator

Table 12 shows the alignment of between the gen-
erator and the discriminator, and Table 13 shows
the examples of “disagreed” samples between the



5380

TORQUE TB-Dense MATRES RED

Methods F1 EM C F1 F1 F1

TacoLM 65.5(±0.8) 36.2(±1.6) 22.7(±1.4) 56.9(±0.7) 75.1(±0.8) 40.7(±0.3)

BERTLARGE 70.9(±1.0) 42.8(±1.7) 29.0(±0.9) 56.7(±0.2) 73.9(±1.0) 40.6(±0.0)
+ ECONET 71.8(±0.3) 44.8(±0.4) 31.1(±1.6) 56.1(±0.8) 74.4(±0.4) 41.7(±1.5)

RoBERTaLARGE 76.7(±0.2) 50.5(±0.5) 36.2(±1.1) 59.8(±0.3) 79.9(±1.0) 43.7(±1.0)
+ Generator 76.6(±0.1) 51.0(±1.0) 36.3(±0.8) 61.5(±0.9) 79.8(±0.9) 43.2(±1.2)
+ ECONET 76.9(±0.4) 52.2(±0.9) 37.7(±0.4) 60.8(±0.6) 79.5(±0.1) 44.1(±1.7)

Table 9: Average Dev Performances Corresponding to Table 2. Note that for MCTACO, we train on dev set and
evaluate on the test set as mentioned in Section 3, so we do not report test performance again here.

TORQUE TB-D RED

Event Annotations F1 EM C F1 F1

TORQUE 76.1 51.6 36.8 64.8 42.8
TB-Dense 76.1 51.3 36.4 65.1 42.6

Table 10: Fine-tuning performance comparisons using
event detection models trained on TORQUE v.s. TB-
Dense event annotations. All numbers are average over
3 random seeds. Std. Dev. ≥ 1% is underlined.

TORQUE TB-D RED

Methods F1 EM C F1 F1

BERTLARGE 70.6 43.7 27.5 62.8 39.4
+ random mask 70.6 44.1 27.2 63.4 35.3
+ ECONET 71.4 44.8 28.5 63.0 40.2

Table 11: Fine-tuning performances. All numbers are
average over 3 random seeds. Std. Dev. ≥ 1% is un-
derlined.

generator and the discriminator. Detailed analysis
can be found in Section 4 in the main text.

Temporal Generator Event Generator

Corr. Incorr. Corr. Incorr.

Total # 837 163 26 974

Discr. Corr. # 816 29 25 964

Accuracy 97.5% 17.8% 96.2% 99.0%

Table 12: Discriminator’s alignment with generator’s
mask predictions in ECONET . Second column shows
that discriminator strongly disagree with the “errors”
made by the temporal generator.

Type I. Same Group: 12/50 (24%)

〉 〉Ex 1. original: when; predicted: while

Text: A letter also went home a week ago in Pelham, in
Westchester County, New York, 〈mask〉 a threat made
by a student in a neighboring town circulated in
several communities within hours...

〉 〉Ex 2. original: prior to; predicted: before

Text: ... An investigation revealed that rock gauges were
picking up swifter rates of salt movement in the ceiling
of the room, but at Wipp no one had read the computer
printouts for at least one month 〈mask〉 the collapse.

Type II. Related Group: 8/50 (16%)

〉 〉Ex 3. original: in the past; predicted: before

text: Mr. Douglen confessed that Lautenberg, which
had won 〈mask〉, was “a seasoned roach and was
ready for this race...

〉 〉Ex 4. original: previously; predicted: once

text: Under the new legislation enacted by Parliament,
divers who 〈mask〉 had access to only 620 miles of the
10,000 miles of Greek coast line will be able to explore
ships and “archaeological parks” freely...

Table 13: Categories and examples of highly related
“incorrect” temporal indicator predictions by the gener-
ator, but labeled as “correct” by the discriminator.


