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Abstract

Extracting relations across large text spans has
been relatively underexplored in NLP, but it is
particularly important for high-value domains
such as biomedicine, where obtaining high re-
call of the latest findings is crucial for practical
applications. Compared to conventional infor-
mation extraction confined to short text spans,
document-level relation extraction faces addi-
tional challenges in both inference and learn-
ing. Given longer text spans, state-of-the-art
neural architectures are less effective and task-
specific self-supervision such as distant super-
vision becomes very noisy. In this paper, we
propose decomposing document-level relation
extraction into relation detection and argument
resolution, taking inspiration from Davidso-
nian semantics. This enables us to incorporate
explicit discourse modeling and leverage mod-
ular self-supervision for each sub-problem,
which is less noise-prone and can be further
refined end-to-end via variational EM. We con-
duct a thorough evaluation in biomedical ma-
chine reading for precision oncology, where
cross-paragraph relation mentions are preva-
lent. Our method outperforms prior state of
the art, such as multi-scale learning and graph
neural networks, by over 20 absolute F1 points.
The gain is particularly pronounced among the
most challenging relation instances whose ar-
guments never co-occur in a paragraph.

1 Introduction

Prior work on information extraction tends to fo-
cus on binary relations within sentences. However,
practical applications often require extracting com-
plex relations across large text spans. This is es-
pecially important in high-value domains such as
biomedicine, where obtaining high recall of the
latest findings is crucial. For example, Figure 1
shows a ternary (drug, gene, mutation) relation
signifying that a tumor with MAP2K1 mutation

∗Work done as an intern at Microsoft Research.

"... The patient’s peripheral blood indices are shown
over time relative to the first dose of the MEK inhibitor
cobimetinib ..."

 
(... 17 sentences spanning 2 paragraphs ...)

 
"... MAP2K1 mutations appeared later with p.K57T
expanding to become the dominant clone ..."

 
(... 10 sentences spanning 3 paragraphs ...)

 
"... Expression of the MAP2K1 mutants in a lymphoid
cell line showed that while each mutation was able to
activate ERK in the presence of vemurafenib, all
mutations remained sensitive to MEK inhibitors ..."

Figure 1: An example document-level drug-gene-
mutation relation. cobimetinib never co-occurs with
MAP2K1 or K57T in any paragraph.

K57T is sensitive to cobimetinib, yet the entities
never co-occur in any single paragraph. Such pre-
cision oncology knowledge is key for determining
personalized treatment for cancer patients, but it
is scattered among a vast biomedical literature of
more than 30 million papers, with over 1 million
being added each year1.

Recently, there has been increasing interest in
cross-sentence relation extraction, but most exist-
ing work still focuses on short text spans. Quirk and
Poon (2017) and Peng et al. (2017) restrict extrac-
tion to three consecutive sentences and Verga et al.
(2018) to abstracts. DocRED (Yao et al., 2019), a
popular document-level relation extraction dataset,
consists of Wikipedia introduction sections, each
with only eight sentences on average. Further, half
of the relation instances reside in a single sentence,
all effectively in a single paragraph.

To the best of our knowledge, Jia et al. (2019) is
the first to consider relation extraction in full-text
articles, which is considerably more challenging.
They use the CKB dataset (Patterson et al., 2016)
for evaluation where each document contains, on

1http://www.ncbi.nlm.nih.gov/pubmed

http://www.ncbi.nlm.nih.gov/pubmed
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"... The patient’s peripheral blood indices
are shown over time relative to the first
dose of the MEK inhibitor cobimetinib ..."

 
(... 17 sentences spanning 2 paragraphs ...)

 
"... MAP2K1 mutations appeared later
with p.K57T expanding to become the
dominant clone ..."
 

(... 10 sentences spanning 3 paragraphs ...)
 
"... Expression of the MAP2K1 mutants in
a lymphoid cell line showed that while
each mutation was able to activate ERK in
the presence of vemurafenib, all mutations
remained sensitive to MEK inhibitors ..."

Document

"... Expression of the MAP2K1 mutants in
a lymphoid cell line showed that while
each mutation was able to activate ERK in
the presence of vemurafenib, all mutations
remained sensitive to MEK inhibitors ..."

Ternary Relation  

Drug:  MEK inhibitors 
Gene:  MAP2K1 
Mutation: MAP2K1 mutants 

MEK inhibitors
ISA

cobimetinib MEK inhibitor Coref

K57T MAP2K1 mutants

CorefISA

MAP2K1 mutations

cobimetinib

MEK inhibitors

Resolve

K57T

MAP2K1 mutants

Resolve

Argument Resolution

Relation Detection
(cobimetinib, MAP2K1, K57T)

Figure 2: Decomposing document-level n-ary relation extraction into relation detection and argument resolution.

average, 174 sentences, spanning 39 paragraphs.
Additionally, while prior work focuses mainly on
binary relations, Jia et al. (2019) follows Peng et al.
(2017) to extract ternary relations. However, while
Jia et al. (2019) admits relation instances for which
the three arguments never co-occur in a paragraph,
it still requires that the two arguments for each
binary subrelation co-occur at least once in a para-
graph, leaving one fifth of findings out of reach for
their method.

All this prior work considers document-level re-
lation extraction as a single monolithic problem,
which presents major challenges in both inference
and learning. Despite recent progress, there are still
significant challenges in modeling long text spans
using state-of-the-art neural architectures, such as
LSTM and transformer. Moreover, direct super-
vision is scarce and task-specific self-supervision,
such as distance supervision, becomes extremely
noisy when applied beyond short text spans.

In this paper, we explore an alternative paradigm
by decomposing document-level relation extrac-
tion into local relation detection and global rea-
soning over argument resolution. Specifically, we
represent n-ary relation using Davidsonian seman-
tics and combine paragraph-level relation classi-
fication with discourse-level argument resolution
using global reasoning rules (e.g., transitivity over
argument resolution). Each component problem
resides in short text spans and their correspond-
ing self-supervision is much less error-prone. Our
approach takes inspiration from modular neural
networks (Andreas et al., 2016) and neural logic
programming (Rocktäschel and Riedel, 2017) in
decomposing a complex task into local neural learn-
ing and global structured integration. However,
instead of learning from end-to-end direct super-
vision, we admit modular self-supervision for the

component problems, which is more readily avail-
able. Our method can thus be viewed as applying
deep probabilistic logic (Wang and Poon, 2018) to
combine modular self-supervision and joint infer-
ence with global reasoning rules.

This modular approach enables us to not only
handle long text spans such as full-text articles like
Jia et al. (2019), but also expand extraction to the
significant portion of cross-paragraph relations that
are out of reach to all prior methods. We conduct a
thorough evaluation in biomedical machine reading
for precision oncology, where such cross-paragraph
relations are especially prevalent. Our method out-
performs prior state of the art such as multiscale
learning (Jia et al., 2019) and graph neural net-
works (Zeng et al., 2020) by over 20 absolute F1
points. The gain is particularly pronounced among
the most challenging relations whose arguments
never co-occur in a paragraph.

2 Document-Level Relation Extraction

Let E1, . . . , En be entities that co-occur in a doc-
ument D. Relation extraction amounts to classi-
fying whether a relation R holds for E1, . . . , En

in D. For example, in Figure 2, R is the relation
of precision cancer drug response, and E1, E2, E3

represent drug cobimetinib, gene MAP2K1, mu-
tation K57T, respectively. The relation mention
spans multiple paragraphs and dozens of sentences.
Direct extraction is challenging and ignores the
elaborate underlying linguistic phenomena. The
drug-response relation is explicitly mentioned in
the last paragraph, though it is between “MEK in-
hibitors” and “MAP2K1 mutations”. Meanwhile,
the top paragraph states the ISA relation between
“cobimetinib” and “MEK inhibitors”, as apparent
from the apposition. From the middle paragraph
one can infer the ISA relation between “K57T”
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and “MAP2K1 mutations”. Finally, “MAP2K1 mu-
tants” in the last paragraph can be resolved with
“MAP2K1 mutations” in the middle based on se-
mantic similarity. Combining these, we can con-
clude that the drug-response relation holds for (co-
bimetinib, MAP2K1, K57T) in this document (Fig-
ure 2), even though cobimetinib never co-occurs
with MAP2K1 or K57T in any paragraph.

Formally, we represent n-ary relation extraction
by neo-Davidsonian semantics (Parsons, 1990):

RD(E1, · · · , En)
.
= ∃T ∈ D ∃r.

[RT (r) ∧A1(r, E1) ∧ · · · ∧An(r, En)]

Here, T is a text span in D, r is a reified event
variable introduced to represent relation R, and the
arguments are represented by binary relations with
the event variable. The distributed nature of this
representation makes it suitable for arbitrary n-ary
relations and does not require drastic changes when
arguments are missing or when new arguments are
added. Given this representation, document-level
relation extraction is naturally decomposed into
local relation detection (e.g., classifying if RT (r)
holds for some paragraph T ) and global argument
resolution (e.g., classifying Ai(r, Ei)).

Entity-level argument resolution can be re-
duced to mention-level argument resolution
A(r, E)

.
= ∃e. [Mention(e, E) ∧ A(r, e)], where

Mention(e, E) signifies that e is an entity mention
of E. Additionally, the transitivity rule applies:

A(r, e) ∧ Resolve(r, e, e′) =⇒ A(r, e′)

Here, Resolve(r, e, e′) signifies that the men-
tions e, e′ are interchangeable in the context of
relation mention r. For brevity, in this paper
we drop the relation context r and simply con-
sider Resolve(e, e′). If e, e′ are coreferent or se-
mantically equivalent, as in (MAP2K1 mutations,
MAP2K1 mutants), Resolve obviously holds.
More generally, ISA (e.g., K57T and MAP2K1
mutations) and PartOf (e.g., a mutation and a cell
line containing it) may also signify resolution:

Coref(e, e′) =⇒ Resolve(e, e′)

ISA(e, e′) =⇒ Resolve(e, e′)

PartOf(e, e′) =⇒ Resolve(e, e′)

Also, transitivity generally holds for Resolve:

Resolve(e, e′) ∧ Resolve(e′, e′′)

=⇒ Resolve(e, e′′)

Modular Self-Supervision

Relation
Detection Distant Supervision CIVC, GDKD,

OncoKB

Argument
Resolution

Data Programming Identical mentions,
apposition

Joint Inference Transitivity

Table 1: Modular self-supervision for relation detection
and argument resolution.

3 Modular Self-Supervision

Our problem formulation makes it natural to intro-
duce modular self-supervision for relation detec-
tion and argument resolution (Table 1).

Relation Detection The goal is to train a clas-
sifier for RT (r). In this paper, we consider para-
graphs as candidates for T and use distant super-
vision (Mintz et al., 2009) for self-supervision.
Specifically, knowledge bases (KBs) with known
relation instances for R are used to annotate exam-
ples from unlabeled text. Co-occurring mention
tuples of known relations are annotated as positive
examples and those not known to have relations are
sampled as negative examples. These examples are
then used to train a paragraph-level relation classi-
fier. Here, we leverage the fact that paragraph-level
distant supervision is much less noise-prone, but
document-level relation mentions still observe sim-
ilar textual patterns as paragraph-level ones, as can
be seen in Figure 2.

Argument Resolution The goal is to train a clas-
sifier for Resolve(e, e′) based on local context for
entity mentions e, e′. As stated in the prior section,
Resolve is strictly more general than coreference
and may involve ISA and PartOf relations. For
self-supervision, we introduce data programming
rules that capture identical mentions and apposi-
tives. These are used as seed self-supervision to an-
notate high-precision resolution instances. In turn,
additional instances in the same document can be
generated by applying the transitivity rule. E.g., in
Figure 2, by deriving Resolve(cobimetinib, MEK
inhibitor) in the top paragraph based on the ap-
position, we may annotate additional Resolve

instances between “cobimetinib” and “MEK in-
hibitors” in the bottom paragraph. As in distant
supervision, there will be noise, but on balance,
such joint inference helps learn more general reso-
lution patterns.
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Probabilistic Logic

Relation Detection

Knowledge Base

Data Programming

Argument Resolution

Reasoning Rules
...

...

Self-Supervision

...

Deep Learning

Figure 3: Our approach for document-level relation ex-
traction applies deep probabilistic logic to incorporate
modular self-supervision and joint inference for rela-
tion detection and argument resolution.

4 Our Model

Figure 3 shows our document-level relation extrac-
tion system, which uses deep probabilistic logic
(Wang and Poon, 2018) to incorporate modular
self-supervision and joint inference.

Prediction Module The prediction module com-
prises transformer-based neural models (Vaswani
et al., 2017) for local relation detection and global
argument resolution. For relation detection, let
(m1, · · · ,mn) be a candidate co-occurring men-
tion tuple in a paragraph T . We input T to a
transformer-based relation classifier, with men-
tions mi dummified.2 For argument resolution, let
(m,m′) be a candidate mention pair. We compute
the contextual representation using a transformer
model for both mentions and classify the pair us-
ing a comparison network. The input concatenates
contextual representations of the entities as well as
their element-wise multiplication. For the detailed
neural architectures, see Appendix A.

Supervision Module As described in the previ-
ous section, the supervision module incorporates
the relation KBs and resolution data programming
rules as seed self-supervision, as well as reasoning
rules such as resolution transitivity for joint infer-
ence. Note that these self-supervision rules can be
noisy, but for simplicity we still treat them as hard
constraints. Deep probabilistic logic offers a princi-
pled way to soften them and model their noisiness,
which can be investigated in future work.

Learning The prediction and supervision mod-
ules define a joint probabilistic distribution

P (K,Y |X) ∝
∏
v∈K

Φv(X,Y ) ·
∏
i

Ψ(Xi, Yi)

2Alternatively, we can add entity markers for each mention.

CKB CKBHARD DocRED

Documents 430 391 1000
Relations 1904 332 12323
Candidates 17744 12122 198395
Document-level statistics (mean)

Words 5480.1 5576.2 200.7
Sentences 170.6 173.6 8.1
Paragraphs 38.9 39.3 1.0

Minimal span for relations (mean)
Words 161.8 717.7 30.9
Sentences 5.7 22.6 2.2
Paragraphs 1.7 4.8 1.0

Table 2: Comparison of statistics among CKB,
CKBHARD, and DocRED (validation; test annotations
are not publicly available). DocRED comprises short
Wikipedia introduction sections, whereas CKB features
full-text articles. CKB also features relations spanning
much longer text, especially in the CKBHARD subset.

Here, K represents the self-supervision and
(Xi, Yi) the input-output pairs of relation detection
and argument resolution. Φ,Ψ are the supervision
and prediction modules, respectively. Learning is
done via variational EM. In the E-step, we compute
a variational approximation q(Y ) ∝ P (Y |K,X)
using loopy belief propagation, based on current
Φ,Ψ. In the M-step, we treat q(Y ) as the proba-
bilistic labels and refine parameters of Φ,Ψ. As
aforementioned, we treat the self-supervision in Φ
as hard constraints, so the M-step simplifies to fine-
tuning the transformer-based models for relation
detection and argument resolution, treating q(Y )
as probabilistic labels.

Inference After learning, given a test document
and candidate entities and mentions, it is straight-
forward to run the neural modules for relation de-
tection and argument resolution. Additionally, we
would incorporate joint inference for argument res-
olution as in self-supervision (e.g., transitivity) us-
ing loopy belief propagation.

5 Experiments

In this section, we study how our modular self-
supervision approach performs in document-level
relation extraction. A popular dataset is Do-
cRED (Yao et al., 2019), which features Wikipedia
introduction sections and general-domain relations.
However, upon close inspection, DocRED does not
have many truly long-range relation instances. As
Table 2 shows, each DocRED document contains
only eight sentences in average, most within a sin-
gle paragraph. About half of relations (49%) can
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Documents Positive ex. Negative ex.

Train 5563 5019 12367
Dev 2400 5539 6582

Table 3: Distant supervision for relation detection.

be extracted from a single sentence, per evidence
annotation. Consequently, there is very little room
to explore the more challenging scenario where re-
lations span multiple paragraphs in large text spans.
In fact, Huang et al. (2021) finds that over 95%
instances in DocRED require no more than three
sentences as supporting evidence, and 87% requires
no more than two sentences. Ye et al. (2020) shows
that a simple BERT-based system (a special case
of our approach with just local relation detection)
yields 60.06% F1 on DocRED test (Table 3 in their
paper), very close to the state-of-the-art results of
62.76% by GAIN (Zeng et al., 2020).

We thus focus on biomedical machine reading,
where there is a pressing need for comprehensive
extraction of the latest findings from full-text ar-
ticles, and cross-paragraph relation mentions are
prevalent. Following Peng et al. (2017); Jia et al.
(2019), we consider the problem of extracting pre-
cision oncology knowledge from PubMed Central
full-text articles, which is critical for molecular
tumor boards and other precision health applica-
tions. Concretely, the goal is to extract drug-gene-
mutation relations as shown in Figure 1: given a
drug, gene, mutation, and document in which they
are mentioned, determine whether the document as-
serts that the mutation in the gene affects response
to the drug.

5.1 Datasets

Self-Supervision For training and development,
we use unlabeled documents from the PubMed Cen-
tral Open Access Subset (PMC-OA)3. For relation
detection, we derive distant supervision from three
knowledge bases (KBs) with manually-curated
drug-gene-mutation relations: CIVIC4, GDKD (Di-
enstmann et al., 2015), OncoKB (Chakravarty et al.,
2017). We randomly split the generated examples
into training and development sets and ensure no
overlap of documents. Table 3 summarizes their
statistics. For argument resolution, we use the
global reasoning rules such as transitivity, as well
as data programming rules capturing two anaphoric

3www.ncbi.nlm.nih.gov/pmc/
4civicdb.org/home

phenomena: identical mentions, apposition.

Evaluation Following Jia et al. (2019), we use
CKB CORE™ from the Clinical Knowledgebase
(CKB; Patterson et al. 2016)5 as our gold-standard
test set. CKB contains high-quality document-
level annotations of drug-gene-mutation interac-
tions, which are manually curated from PubMed
articles by The Jackson Laboratory (JAX), an NCI-
designated cancer center. CKB has minimal over-
lap with the three KBs used in training and de-
velopment. To avoid contamination, we remove
CKB entries whose documents are used in our train-
ing and development. See Table 2 for statistics.
Note that compared to the version used in Jia et al.
(2019), the latest dataset (accessed in Oct. 2020)
contains substantially more relations from recent
findings. For about one fifth of annotated relations
(17.4%), the key entities such as drug and muta-
tion never co-occur in the same paragraph. These
relations are out of scope in Jia et al. (2019). We
denote this subset as CKBHARD, which comprises
particularly challenging instances requiring cross-
paragraph discourse modeling.

5.2 Systems
We implemented our modular self-supervision
method (Modular) using PyTorch (Paszke et al.,
2019). We conducted variational EM for eight it-
erations, which appear to work well in preliminary
experiments. In the M-step, we incorporate early
stopping to identify the best checkpoint based on
the development performance for fine-tuning the
relation detection and argument resolution neural
modules. We initialized the encoding layers in
both modules with PubMedBERT (Gu et al., 2021),
which has been pretrained from scratch on PubMed
articles and demonstrated superior performance in
a wide range of biomedical NLP applications.

We follow Wang and Poon (2018); Jia et al.
(2019) to conduct standard data preprocessing
and entity linking. We used the AdamW opti-
mizer (Loshchilov and Hutter, 2019). For training,
we set the mini-batch size to 32 and the learning
rate 5e-5 with 100 warm-up steps and 0.01 weight
decay. The drop-out rate is 0.1 for transformer-
based encoders, and 0.5 for other layers. The hid-
den size is 765 for transformer-based encoders, and
128 for all other feed-forward networks. We gener-
ate checkpoints at every 4096 steps. Three random
seeds are tried in our experiments: [7, 12, 17].

5ckbhome.jax.org

www.ncbi.nlm.nih.gov/pmc/
civicdb.org/home
ckbhome.jax.org
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Test Set System Precision (%) Recall (%) F1 (%)

CKB

AllPositive 10.7 ±0.0 100.0 ±0.0 19.4 ±0.0
Multiscale (Jia et al., 2019) 21.2 ±0.5 59.3 ±0.2 31.2 ±0.5
GAIN (Zeng et al., 2020) 42.3 ±2.0 33.5 ±1.5 37.3 ±0.2
Modular (Ours) 49.9 ±0.3 71.5 ±0.3 58.8 ±0.1

CKBHARD

AllPositive 2.7 ±0.0 100.0 ±0.0 5.3 ±0.0
Multiscale (Jia et al., 2019) 4.7 ±0.2 42.8 ±0.9 8.5 ±0.3
GAIN (Zeng et al., 2020) 7.9 ±0.4 13.7 ±1.4 10.0 ±0.4
Modular (Ours) 22.6 ±0.1 46.1 ±0.4 30.3 ±0.1

Table 4: Comparison of test results on CKB and CKBHARD. Relations in CKBHARD are particularly challenging as
key entity pairs such as drug and mutation never co-occur in a paragraph. All systems were trained using the same
three KBs for distant supervision, with no overlap with CKB. We report results from three random runs.

For self-supervised relation detection, following
Jia et al. (2019), we further decompose it into classi-
fying drug-mutation relations and then augmenting
them with high-precision gene-mutation associa-
tions. As stated in Section 3, at training time, only
named entities such as drug, gene, mutation are
considered, whereas at inference time, in principle
any co-occurring noun phrases within a paragraph
would be considered (see Figure 2, bottom para-
graph). In practice, however, this would incur too
much computation, most of which wasted on irrel-
evant candidates. Therefore, we employ the fol-
lowing heuristics to leverage argument resolution
results for filtering candidates: In argument reso-
lution, we focus on resolving candidate mentions
with drugs, genes, mutations. We also stipulate that
a candidate mention must contain within it some
relevant biomedical entity mentions (e.g., cell lines,
genes, etc., as in “MEK inhibitors” that contains
gene reference “MEK”). In relation detection, we
only consider candidate mentions that are classi-
fied as resolving with entities among drugs, genes,
mutations, based on current prediction module.

We compare Modular with the following base-
lines: AllPositive is a recall-friendly baseline
that always predicts positive; Multiscale (Jia
et al., 2019) is a state-of-the-art approach that
combines local mention-level representations into
an entity-level representation over the entire doc-
ument; GAIN (Zeng et al., 2020) is another
state-of-the-art approach that constructs mention-
level graphs and applies graph convolutional net-
work (Kipf and Welling, 2017) to model interdepen-
dencies among intra- and inter-sentence mentions,
attaining top performance on DocRED.

For fair comparison, we replaced the encoders
in Multiscale and GAIN with the state-of-the-art
PubMedBERT as in our approach, which helped
improve the performance (Appendix B). The orig-

inal Multiscale encodes each paragraph sepa-
rately using LSTM, so it’s straightforward to re-
place that with PubMedBERT. GAIN, on the other
hand, encodes the entire input text all at once. This
is feasible in DocRED, where each “document”
is actually a Wikipedia introduction section, thus
more like a paragraph (average only eight sentences
long). But it doesn’t work in CKB, where each doc-
ument is a full-text article. Even the minimal text
span covering given entities is often too long to
encode using a transformer. Therefore, we ran the
encoder on individual paragraphs. Note that the
original version of Multiscale can’t make pre-
diction for any instances where key entity pairs
such as drug and mutation never co-occur in a para-
graph. We implemented a natural extension that
would generate local mention-level representations
even for singleton mentions (i.e., only one relevant
entity shows up in a paragraph).

5.3 Main Results

Table 4 compares various approaches for document-
level relation extraction on CKB. Our modular
self-supervision approach (Modular) substantially
outperforms all other methods, gaining more than
20 absolute F1 points compared to prior state
of the art such as multiscale learning and graph
neural networks. This demonstrates the superi-
ority in leveraging less noise-prone modular self-
supervision as well as fine-grained discourse mod-
eling in argument resolution. Note that the results
for Multiscale are different than that in Jia et al.
(2019) as we used the latest CKB which contains
considerably more cross-paragraph relations.

Compared to multiscale learning (Multiscale),
the graph-neural-network approach (GAIN) attains
significantly better precision, as it incorporates
more elaborate graph-based reasoning among en-
tities across sentences. However, this comes with



5297

Prec. Recall F1

Modular (Ours) 22.6 46.1 30.3
. Replace relation detection

with AllPositive 13.7 66.1 22.7
. Replace argument resolution

with Multi-Sieve Pass 11.0 42.8 17.5
. Replace argument resolution

with SpanBERT Coref 60.2 1.5 2.9

Table 5: Ablation study on CKBHARD.

substantial expense at recall. Our approach outper-
forms both substantially in precision and recall.

On the most challenging subset CKBHARD, the
contrast is particularly pronounced, as all other
systems could only attain single-digit precision.
The graph-neural-network approach also suffers
heavily in recall. Our approach attains much better
precision and recall, and more than triples the F1.

5.4 Ablation Study
To understand the impact of our modular self-
supervision, we conducted an additional ablation
study on CKBHARD. See Table 5 for results.

To assess the limitation of our current argument
resolution module, we replace self-supervised rela-
tion detection with a baseline that always predicts
positive for candidate tuples whose components
have been resolved with some drug, gene, mutation
entities. This yields a maximum recall of 66.1%,
which means that about a third of the especially
hard cases of cross-paragraph relations are still out
of reach for our method. In some cases, this is be-
cause the only hint at the relation resides in figures
or appendix, which are currently not in scope for
extraction. In other cases, the argument resolution
fails to make correct resolution with the correspond-
ing entities. We leave further investigation and im-
provement to future work. With self-supervised
relation detection, our full model improves both F1
and precision for the end extraction on CKBHARD.

Next, we investigate the impact of our self-
supervision for argument resolution by replacing
it with state-of-the-art coreference systems: Multi-
Sieve Pass (Raghunathan et al., 2010; Lee et al.,
2011), and SpanBERT Coreference (Joshi et al.,
2020). Multi-Sieve Pass is a rule-based system
that incorporates a series of resolution rules with
increasing recall but lower precision. SpanBERT
Coreference is a state-of-the-art transformer-based
system fine-tuned on OntoNotes (Pradhan et al.,
2012), an annotated corpus with diverse text. Both
result in significant performance drop. Using Multi-

Sieve results in substantial drop in precision, in-
dicating that coreference heuristics suitable for
general domains are less effective in biomedicine.
SpanBERT, on the other hand, suffers catastrophic
drop in recall. This suggests that argument reso-
lution for document-level relation extraction may
involve more general anaphoric phenomena such
as ISA and PartOf, which are out of scope in
standard coreference annotations. Remarkably,
bootstrapping from the simple data programming
rules of identical mentions and apposition, our self-
supervised module is able to perform much better
argument resolution than these state-of-the-art sys-
tems for document-level relation extraction.

Test Data Pre-trained Encoder Prec. Recall F1

CKB PubMedBERT 49.9 71.5 58.8
BERT 49.5 68.6 57.5

CKBHARD PubMedBERT 22.6 46.1 30.3
BERT 21.8 39.2 28.1

Table 6: Domain-specific pretraining improves test per-
formance over general-domain pretraining.

Given that our evaluation is in the biomedical
domain, it is natural to initialize our self-supervised
neural modules with PubMedBERT (Gu et al.,
2021). Table 6 shows that this is indeed advan-
tageous, with domain-specific pretraining attains
significant gain over general-domain pretraining.

5.5 Discussion

Interpretability We envision that machine read-
ing is used not as standalone automation, but as
assisted curation to help expert curators attain sig-
nificant speed-up (Peng et al., 2017). For extraction
within short text spans, human experts can validate
the results by simply reading through the prove-
nance text. For document-level relation extraction,
as in Jia et al. (2019), this can be challenging, as
the intervening text span is long and validation may
require a significant amount of reading that is not
much faster than curation from scratch. Our modu-
lar approach not only enables us to tackle the harder
cases of cross-paragraph relations, but also yields a
natural explanation for an extraction result with the
local relation and chains of argument resolution,
all of which can be quickly validated by curators.
We leave studying the impact on assisted curation
to future work.
Error Analysis We focus our error analysis on
CKBHARD, which is particularly challenging. An im-
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mediate opportunity lies in significant recall miss
by argument resolution. As shown in the prior
subsection, the maximum recall for our current
argument resolution module is 66%. From prelim-
inary sample analysis, there are three main types
of errors. Some relation instances are hinted in
figures, tables, or supplements, which are beyond
the current scope of extraction. In other cases, the
relation statement is vague and scattered, and rela-
tion detection requires inference piecing together
multiple evidences. However, the bulk of recall
errors simply stem from argument resolution fail-
ures. Likewise, we found that in the majority of
precision errors, relation detection appears to make
the right call, but argument resolution is mistaken.

1 2 3 4 5 6 7 8

86.0

88.0

90.0

CK
B

Max Recall (%)

1 2 3 4 5 6 7 8
60.0

62.5

65.0

CK
B 

(H
ar

d)

Figure 4: Argument resolution improves during learn-
ing as global reasoning rules augment seed self-
supervision to raise maximum recall.

Variational EM One direction to improve argu-
ment resolution is to augment the self-supervision
used in the resolution module. Figure 4 shows that
argument resolution did improve during learning,
thanks to the global reasoning rules, at least in
terms of expanding maximum recall. However, we
notice that our current mention filtering rules may
be overly strict, which limit the room for growth
in recall. Additionally, we treat the reasoning rules
such as transitivity as hard constraints, whereas in
practice they can be noisy. (E.g., qualifiers like
“some MAP2K1 mutations” or negation are cur-
rently not considered in resolution.)

6 Related Work

Document-Level Relation Extraction Due to
the significant challenges in modeling long text
spans and obtaining high-quality supervision sig-
nals, document-level relation extraction has been
relatively underexplored (Surdeanu and Ji, 2014).
Prior work often focuses on simple extensions
of sentence-level extraction (e.g., by incorporat-

ing coreference annotations or considering special
cases when document-level relations reduces to
sentence-level attribute classification) (Wick et al.,
2006; Gerber and Chai, 2010; Swampillai and
Stevenson, 2011; Yoshikawa et al., 2011; Koch
et al., 2014; Yang and Mitchell, 2016). Recently,
cross-sentence relation extraction has seen increas-
ing interest (Li et al., 2016; Quirk and Poon, 2017;
Peng et al., 2017; Verga et al., 2018; Christopoulou
et al., 2019; Wu et al., 2019; Yao et al., 2019), but
most efforts are still limited to short text spans, such
as consecutive sentences or abstracts. A notable
exception is Jia et al. (2019), which considers full-
text articles that comprise hundreds of sentences.
However, they still model local text units in isola-
tion and can’t effectively handle relations whose
arguments never co-occur in a paragraph. In con-
trast, we provide the first attempt to systematically
explore cross-paragraph relation extraction. Most
prior work focuses on binary relations. We instead
follow Peng et al. (2017); Jia et al. (2019) to study
general n-ary relation extraction, using precision
oncology treatment as a case study.

Discourse Modeling Given the focus of standard
information extraction on short text spans, dis-
course modeling has not featured prominently in
prior work. An exception is coreference resolution,
though the focus tends to be improving sentence-
level extraction, as in Koch et al. (2014). Here, we
show that document-level relation extraction often
requires modeling more general anaphoric phenom-
ena. As discussed in the experiment section, many
remaining errors lie in argument resolution, which
offers an exciting opportunity to study discourse
modeling for an important end application.

Self-Supervision Task-specific self-supervision
alleviates the annotation bottleneck by leveraging
freely available domain knowledge (as in distant
supervision (Craven and Kumlien, 1999; Mintz
et al., 2009)) and expert-derived labeling rules
(as in data programming (Ratner et al., 2017)).
Unfortunately, such self-supervision becomes ex-
tremely noisy when applied to full-text documents,
prompting many prior efforts to focus on short text
spans (Quirk and Poon, 2017; Peng et al., 2017;
Verga et al., 2018; Yao et al., 2019). We instead de-
compose end-to-end document-level extraction into
relation detection and argument resolution mod-
ules, for each of which we leverage modular self-
supervision that is much less error-prone.
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Neural-Symbolic NLP In the past few decades,
the dominant paradigm in NLP has swung from
logical approaches (rule-based or relational sys-
tems) to statistical and neural approaches. How-
ever, given the prevalence of linguistic structures
and domain knowledge, there has been increasing
interest for synergizing the contrasting paradigms
to improve inference and learning. Neural logic
programming replaces logical operators with neu-
ral representations to leverage domain-specific
constraints with end-to-end differentiable learn-
ing (Rocktäschel and Riedel, 2017). Similarly,
modular neural networks integrate component neu-
ral learning along a structured scaffold (e.g., syn-
tactic parse of a sentence for visual question-
answering) (Andreas et al., 2016). On the other
hand, deep probabilistic logic (Wang and Poon,
2018) combines probabilistic logic with neural net-
works to incorporate diverse self-supervision for
deep learning. We take inspiration from modu-
lar neural networks and neural logic programming,
and use deep probabilistic logic to combine relation
detection and argument resolution using global rea-
soning rules for document-level relation extraction.

7 Conclusion

We propose to decompose document-level rela-
tion extraction into local relation detection and
global argument resolution, and apply modular
self-supervision and discourse modeling using
deep probabilistic logic. On the challenging prob-
lem of biomedical machine reading, where cross-
paragraph relations are prevalent, our approach sub-
stantially outperforms prior state of the art such
as multiscale learning and graph neural networks,
gaining over 20 absolute F1 points. Future direc-
tions include: improving discourse modeling for
argument resolution; studying the impact on as-
sisted curation; applications to other domains.
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Figure 5: Neural architectures for relation detection
and argument resolution.

Figure 5 shows the neural architectures for rela-
tion detection and argument resolution. For relation
detection, we input a paragraph to a transformer-
based encoder, with mentions dummified. The hid-
den state h[CLS] in the last layer is then passed to
a simple feed-forward classifier defined as below:

classifier(h) = sigmoid(FFNN1(h))

where FFNN1 is a two-layer feed-forward network
using ReLU as activation functions.

For argument resolution, given a candidate men-
tion pair (mi,mj) and their context, we first
compute their contextual representations using a
transformer-based encoder. If a mention span con-
tains multiple tokens, we use average pooling to
combine their contextual representations (hidden
states in the last layer). The pair of mention repre-
sentations (hmi ,hmj ) are then passed to a classifier
defined as below:

classifier(hmi ,hmj ) = sigmoid(s(hmi ,hmj ))

where s(x,y) is a scoring function similar to those

System AUC Prec. Recall F1
Base versions
SENTLEVEL

Jia et al. (2019) 22.4 39.3 34.7 36.9
Our reproduction 22.4 38.9 35.5 37.1

w. PubMedBERT 24.4 43.6 35.1 38.9
PARALEVEL

Jia et al. (2019) 33.1 36.5 44.6 40.1
Our reproduction 32.8 35.6 44.3 39.5

w. PubMedBERT 33.2 49.4 39.5 43.9
DOCLEVEL

Jia et al. (2019) 36.7 45.4 38.5 41.7
Our reproduction 37.0 43.3 41.9 42.6

w. PubMedBERT 34.9 47.7 41.6 44.5
MULTISCALE

Jia et al. (2019) 37.3 41.8 43.4 42.5
Our reproduction 36.9 38.5 46.2 42.0

w. PubMedBERT 35.9 43.4 46.3 44.8
+ Noisy-Or
SENTLEVEL

Jia et al. (2019) 25.3 39.3 35.3 37.2
Our reproduction 25.3 38.4 35.9 37.1

w. PubMedBERT 26.0 43.6 35.2 39.0
PARALEVEL

Jia et al. (2019) 35.6 44.3 40.6 42.4
Our reproduction 35.5 45.5 39.2 42.1

w. PubMedBERT 37.3 51.6 38.8 44.2
DOCLEVEL

Jia et al. (2019) 36.7 45.4 38.5 41.7
Our reproduction 37.0 43.3 42.0 42.6

w. PubMedBERT 34.9 47.7 41.6 44.5
MULTISCALE

Jia et al. (2019) 39.7 48.1 38.9 43.0
Our reproduction 39.6 48.7 37.8 42.6

w. PubMedBERT 39.5 46.8 43.1 44.9

Table 7: Comparison on the original CKB test set: re-
ported results in Jia et al. (2019), results from our re-
production, and results after replacing LSTM with Pub-
MedBERT as the encoder.

used in Lee et al. (2018); Joshi et al. (2020):

s(x,y) = sm(x) + sm(y) + sc(x,y)

sm(x) = FFNN2(x)

sc(x,y) = FFNN3([x,y,x ◦ y])

where ◦ denotes element-wise multiplication.
FFNN2 and FFNN3 are two-layer feed-forward
networks using ReLU as activation functions.

B Multiscale with PubMedBERT

Replacing LSTM with PubMedBERT (Gu et al.,
2021) as the encoder generally leads to comparable
or better performance by the Multiscale system
(Jia et al., 2019). Table 7 shows the results on the
original CKB test set as used in Jia et al. (2019).
Note that these results shouldn’t be compared with
the main results in Table 4, as the latter are obtained
on the latest CKB with considerably more cross-
paragraph relations.


