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Abstract
With the early success of query-answer as-
sistants such as Alexa and Siri, research at-
tempts to expand system capabilities of han-
dling service automation are now abundant.
However, preliminary systems have quickly
found the inadequacy in relying on simple clas-
sification techniques to effectively accomplish
the automation task. The main challenge is
that the dialogue often involves complexity in
user’s intents (or purposes) which are multi-
proned, subject to spontaneous change, and
difficult to track. Furthermore, public datasets
have not considered these complications and
the general semantic annotations are lacking
which may result in zero-shot problem. Moti-
vated by the above, we propose a Label-Aware
BERT Attention Network (LABAN) for zero-
shot multi-intent detection. We first encode
input utterances with BERT and construct a
label embedded space by considering embed-
ded semantics in intent labels. An input utter-
ance is then classified based on its projection
weights on each intent embedding in this em-
bedded space. We show that it successfully ex-
tends to few/zero-shot setting where part of in-
tent labels are unseen in training data, by also
taking account of semantics in these unseen
intent labels. Experimental results show that
our approach is capable of detecting many un-
seen intent labels correctly. It also achieves
the state-of-the-art performance on five multi-
intent datasets in normal cases.

1 Introduction

In spoken language understanding (SLU) of task-
oriented dialog systems, each utterance is often
interpreted as a kind of action being performed
by the speaker, which we call speech or dialog
acts (Abbeduto, 1983). These acts may commit
speakers to some course of actions, like asking or
acknowledging, along with a series of distinctive
semantic notions involved in a task. Usually the
system forms the semantic frames by identifying in-
tents and slots to express dialog acts. For instance,

given a sample utterance, “Are there any accidents
on my route to work at 10 ?”, the intent detection
task will first identify intents, i.e., ‘Get Info Traffic’,

‘Get Location Work’ and then the slot-filling task
will predict a slot such as (time:10). In such case,
an ‘intent label’ for an utterance is defined as a
purpose or a goal that clearly states user’s act.

Dominant SLU systems have adopted several
techniques to predict single intents by treating it
as a multi-class classification problem (Gao et al.,
2018; Goo et al., 2018; Qin et al., 2019). How-
ever, in real world scenario, many utterances may
have multiple intents (Li et al., 2018b; Rastogi
et al., 2019) like the above example. Multi-intent
SLU often requires more sophisticated reasoning
on given utterances to disambiguate different in-
tent natures. Gangadharaiah and Narayanaswamy
(2019) first explored the joint multi-intent and slot-
filling task by treating multi-intents as a single con-
text vector, but not scalable to a large number of
intents. Qin et al. (2020) further proposed a state-
of-the-art model to consider each intent-slot inter-
action via adaptive graph attention. However, these
approaches cannot successfully tackle more com-
plex multi-intent scenarios when sentences may not
have explicit conjunctions.

The second challenge in SLU intent detection
is intent fluidity variation, which we refer to the
extent of naturalness when a dialogue progresses.
In less stylized conversations, they usually contain
a less bounded set of intents which may change
with dialog context/states. Thus, usually some ut-
terances’ intents may not be seen during training
and this problem deteriorates in the multi-intent
scenario (Xia et al., 2020). Second, there is no
rigorous definition of an intent annotation format
or how many intents should be defined. Therefore,
conventional models trained on one dataset with a
fixed set of intent labels may possibly fail to detect
a new in-domain intent. We refer it to the zero-shot
problem. Larson et al. (2019) suggests a two-stage
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process to first classify if a query is in-scope; then
to assign intents. However, it cannot scale easily to
unseen intents in multi-intent scenario.

To tackle the above two challenges, we found
that leveraging embedded semantics in intent labels
may be useful. In conventional intent classification,
these systems usually classify an utterance to a la-
bel which is represented by an indexed ID like 0
(i.e. one-hot encoding). However, representing in-
tents with indexed IDs fails to consider embedded
semantics in the labels too. For instance, we can
use words ‘get’ and ‘direction’ in an intent label
‘get direction’ to help with identifying semantically
equivalent words in an utterance, i.e., I ‘want direc-
tion’ to SF. For a given set of intent labels within
one domain, we can compare the semantic simi-
larity between words in an utterance and words
in these intents. Similarly in the zero-shot setting,
even if some intents may not be visible during train-
ing, we could still compare the word semantics in
these intents with a new utterance.

In this paper, we propose our new framework:
Label-Aware BERT Attention Network (LABAN)
in Figure. 1. We first introduce BERT to cap-
ture the multi-intent natures when utterances do
not have explicit conjunctions. Then, instead of
treating intent labels only for indexed IDs, we use
words in each intent label in training data to con-
struct a label embedding space. After encoding
an utterance and all intents in a given training set
for embeddings separately, a label-aware layer will
generate scores of how likely this utterance be-
longs to each intent. To accommodate the zero-
shot case, we could additionally introduce unseen
intents’ embeddings too to jointly construct the
embedding space. In contrast with prior works’
limited predictability only on seen intents, our
model unfreezes the constraint by considering se-
mantics in intent labels to deal with new unseen
labels. The code and resources are released in
https://github.com/waynewu6250/LABAN. The pa-
per has the following contributions:

1. We extend the first use of BERT into multi-
intent SLU scenario with a simple but power-
ful label-aware approach.

2. We successfully demonstrate LABAN’s effec-
tiveness to deal with unseen multiple intents
and fast harness the intent detection task by
training with few data of unseen intents.

3. We compare the LABAN’s performance

on five extended and complex multi-intent
datasets that show significant improvement
over previous methods and baselines by con-
sidering the contextualized information from
BERT and label semantics.

2 Related Work

Multi-intent Detection Intent detection mainly
aims to classify a given utterance with its intents
from user inputs. Different approaches such as
convolutional-LSTM and capsule network have
been proposed to solve the problem (Qian, 2017;
Liu et al., 2017; Xia et al., 2018). Considering
intents highly associated with slot-filling, many
joint models (Goo et al., 2018; Li et al., 2018a;
Qin et al., 2019; E et al., 2019; Liu et al., 2019b)
utilize intent information like gradients or cross-
impact networks to further reinforce the slot-filling
prediction. However these methods do not con-
sider multiple intent cases. Therefore, Rychalska
et al. (2018) first adopted hierarchical structures to
identify multiple user intents. Gangadharaiah and
Narayanaswamy (2019) and Qin et al. (2020) fur-
ther exploited interactive relations between intents
and slots. Wu et al. (2021) leveraged the dialog
context to better harness the joint tasks. Our model
follows these models’ paradigm and focuses on
more complex cases: 1) Multi intents no longer
exist in separate parts of the sentence which our
BERT introduction can be beneficial and 2) Some
testing intents are not available during training.

Zero-shot Learning Zero-shot learning (ZSL)
aims to recognize objects whose instances may not
be seen during training (Lampert, 2014). Early
works usually focused in the fields of computer
vision (Lampert, 2014; Al-Halah et al., 2016;
Norouzi et al., 2014). They adopted a two-stage
approach to first identify object’s attributes and es-
timated class posteriors based on similarity, which
often suffered from domain shift between interme-
diate and target tasks. Recent advances in ZSL
directly learned a mapping between feature and se-
mantic spaces (Palatucci et al., 2009; Akata et al.,
2016; Frome et al., 2013) or built a common inter-
mediate space (Zhang and Saligrama, 2015; Xian
et al., 2017). Similar treatment could be applied
in natural language. Chen et al. (2016) proposed
CDSSM to consider cosine similarity of deep se-
mantics from utterances and intents. Xia et al.
(2018) and Liu et al. (2019a) extended ZSL in user
intent detection with capsule neural networks. Si

https://github.com/waynewu6250/LABAN
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Figure 1: This figure shows the overall LABAN framework. (a) During training phase, two BERT encoders
will encode both the utterance and all seen intent labels. Then the utterance embedding will be projected onto a
constructed semantic embedding space T with projected weights as scores. (b) During testing phase, new unseen
intents will also be encoded and participate in constructing T ′ to generate scores based on a new utterance.

et al. (2021) proposed disentangled intent repre-
sentations for multi-task training. We follow these
works and extend to multi-intent detection cases
with intent semantics and pretrained models.

3 Problem Formulation

In this section, we formally state the multi-intent
detection problem in the normal and zero-shot case.
Multi-Intent Detection. Given a labeled train-
ing dataset where each sample has the follow-
ing format: (x, y) where x is an utterance and
y = (y1, yi, ..., yK) ∈ {0, 1}K is a set of multi-
ple binary intent labels. Each yi will belong to a
set Y s of K seen intents. We aim to classify an
utterance xseen in the seen intent classes Y s.
Zero-shot Multi-Intent Detection. Given a la-
beled training dataset (x, y) where y ∈ Y s, in
testing we aim to classify an utterance xunseen
with its correct intent categories yunseen =
(y1, yi, ..., yK+L) ∈ {0, 1}K+L from the seen and
unseen intent classes Y = Y s ∪ Y u. Y u will be a
set of L unseen intents which is given along with
Y s as domain ontology during testing, but not visi-
ble in training.

4 Approach

4.1 Utterance encoder
BERT is a multi-layer transformer-based encoder
containing multi-head self-attention layers (Devlin

et al., 2019). Models fine-tuned on BERT have
achieved several benchmark results in many natural
language tasks (Sun et al., 2020). Therefore, we
first adopt one BERT BERTu to encode an input
utterance x = (w1, ..., wTu). Here, we will pad it
up to a max sequence length Tu.

hu = BERTu(x) (1)

where hu ∈ RTu×H is the token-level representa-
tions of x and H is the hidden size of BERT. Then,
we adopt two methods to further encode them into
a sentence embedding ru ∈ RH . First, we could
take the hidden state hu1 from the first time step
of [CLS] as ru = hu1 (BERT-finetune). Or to bet-
ter consider the individual word importance to the
overall sentence embedding, we follow the work in
Lin et al. (2017) to use a self-attentive network.

h̄ut = Whut + bw (2)

αt =
eh̄

u
t
T
uw∑

t′ e
h̄u
t′

T
uw

(3)

ru =
∑
t

αth
u
t (4)

where each hut in hu are fed into an affine trans-
formation (W, bw) and output h̄ut . Then {αt} rep-
resents the similarity scores between each hut and
K heads of learnable context vectors uw as the
global sentence views; for each head, we can get
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a sentence representation ruh. Finally we will con-
catenate all heads for the final representation ru.

4.2 Adaptive label-aware attentive layer
Inspired by few-shot learning works (Snell et al.,
2017; Reimers and Gurevych, 2019), instead of
classifying utterance into a predefined set of intents,
we instead leverage the linear approximation idea
(del Pino and Galaz, 1995) to help us determine the
intents of an utterance. The linear approximation
problem states that let S be a Hilbert space and T
be a subspace of S , given a vector z ∈ S , we would
like to find the closest point ẑ ∈ T to z. It turns
out that the solution of ẑ =

∑N
k=1 βkvk will be a

linear combination of a basis v1, ..., vN for T of N
dimension. β = G−1b where an element in the
Gram matrix Gk,n = 〈vn, vk〉 and bn = 〈z, vn〉.

To transform the above idea into a multi-intent
detection setting, we first construct an intent em-
bedding subspace T with a basis {rl1, ..., rlK} given
a set of K intents Y s. To obtain {rl1, ..., rlK},
we adopt another BERT BERTl to encode K
intents. Namely, for every intent yi in a given
set Y s, which could be expressed as a word se-
quence (w1, ..., wTl

), we similarly use another
BERT BERTl with the self-attentive layer men-
tioned in section 4.1 to encode it into an intent
embedding rli. The reason to use a different BERT
from BERTu is that intents often have very differ-
ent syntactic structures (i.e. no subjects) compared
to the utterances.

By such intent encoding, we will obtain K in-
tent embeddings as our basis {rl1, ..., rlK} to con-
struct an intent embedding space T . Then shown
in Figure. 1, for an utterance ru, we can project
it onto T to obtain its linear approximation r̂u =∑K

i=1wir
l
i, where w ∈ RK could be computed as

w =
√
HG−1b. And the Gram matrix G and b

are the followings:

G =

 〈r
l
1, r

l
1〉 · · · 〈rlK , rl1〉

...
. . .

...
〈rl1, rlK〉 · · · 〈rlK , rlK〉

 (5)

b =

 〈r
u, rl1〉

...
〈ru, rlK〉

 (6)

To note, we assume {rl1, ..., rlK} are linearly inde-
pendent since each vector represents the concept of
an intent which should not be a linear combination
of other intent vectors. Hence, G is guaranteed

positive definite and will have an inverse. Here we
further time a scaling factor

√
H to compute w for

empirical consideration since G−1 tends to lead
overall product into small values.

After obtaining w, these projection weights can
be viewed as scores of how likely an utterance x
belong to each intent yi. We can follow Qin et al.
(2020) to treat it as a multi-label classification task
and generate the logits ŷ = σ(w) by sending w
into a sigmoid function σ. Finally we can have the
intent detection objective as a binary cross entropy
loss where N is number of samples:

L := −
N∑
i=1

K∑
j=1

(y
(i)
j log(ŷ

(i)
j )

+ (1− y(i)
j )log(1− (ŷ

(i)
j )) (7)

During testing, after obtaining ŷ ∈ RK as proba-
bilities of the utterance belong to each intent, we
can set a threshold t where 0 < t < 1.0 as a hyper-
parameter to select the final predicted intents. For
instance, if we have ŷ = {0.3, 0.6, 0.9, 0.1, 0.4}
and t = 0.5, the intents are predicted as {2, 3}.

4.3 Zero-shot setting
For normal multi-intent detection, after training,
for a given K seen intent set Y s, we could use
the method in section 4.2 to calculate the scores of
a new utterance xseen with respect to each intent.
Similarly, we could easily extend it into the zero-
shot setting. First we will train BERTu, BERTl
with the training data of a given K seen intent set
Y s. Then, during testing, given a new L unseen
intent set Y u, we could also encode these intents
into intent embeddings {rl1, ..., rlL}with the trained
BERTl too. Finally, plus the seen intent set Y s,
we could construct an extended intent subspace T ′
with a basis of {rl1, ..., rlK , rlK+1, ..., r

l
K+L} and

similarly generate scores for each seen and unseen
intents with a new utterance xunseen.

5 Experimental Setting

5.1 Datasets
We use three widely used public multi-intent single-
sentence datasets: MixATIS, MixSNIPS (Qin et al.,
2020; Hemphill et al., 1990; Coucke et al., 2018)
and Facebook Semantic Parsing System (FSPS)
dataset (Gupta et al., 2018) and two multi-intent
dialogue datasets: Microsoft dialogue challenge
dataset (MDC) (Li et al., 2018b) and Schema-
Guided Dialogue dataset (SGD) (Rastogi et al.,
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Dataset Data Type train/val/test Total Labels
MixATIS single 18k/1k/1k 17
MixSNIPS single 45k/2.5k/2.5k 7
FSPS single 31k/4.4k/9k 24
MDC dialogue 45k/15k/15k 11
SGD dialogue 198k/66k/66k 18

Table 1: Dataset statistics

2019) for our experiments. For FSPS, we focus
on predicting all intents regardless of their posi-
tions for each utterance. For MDC and SGD, we
treat each utterance as an individual sample with
multiple user and system acts as intents for experi-
ments. We use all datasets for normal and zero-shot
multi-intent detection and include single intent de-
tection results with ATIS (Hemphill et al., 1990)
and SNIPS datasets (Coucke et al., 2018). The
detailed data statistics is shown in Table. 1.

For zero-shot task, we use single sentence
datasets MixATIS, MixSNIPS and FSPS for ex-
periments. We subsample each dataset 5 times
with the same train/valid/test number and report
the average results of 5 random splits. In each split,
we simulate the situation where training data only
contain a part of intent labels and test will have all
intent labels. For instance, MixATIS has totally 17
labels, we maintain K < 17 possible intents seen in
training set and the testing set has all 17 intents. In
experiments, we set 4 possible values of K in each
three datasets. For few-shot task, we add 5% and
10% testing data into the training data and predict
the rest testing data performance. We also replace
BERT with two variations: ALBERT, TOD-BERT
as our utterance encoder for additional baselines.

5.2 Baselines

We compare the normal multi-intent detection re-
sults with three competitive baseline models:
1. Stack-Prop which uses two stacked encode-
decoder structures for joint intent and slot filling
tasks (Qin et al., 2019).
2. Joint MID-SF which first considers multi-intent
detection task in use of BiLSTMs (Gangadharaiah
and Narayanaswamy, 2019).
3. AGIF uses graph interactive framework to con-
sider fine-grained information (Qin et al., 2020).

We also compare zero-shot multi-intent detec-
tion results with seven competitive baselines:
1. BERT-finetune uses BERT as the encoder and
increases the total output size of the final fully-
connected layer on top of it (Devlin et al., 2019).
2. Zero-shot LSTM uses two LSTM encoders to

encode utterances and intents; then acquires scores
with dot product (Kumar et al., 2017).
3.CDSSM uses convolutional deep structured
model to calculate cosine similarities between em-
beddings (Chen et al., 2016).
4. Zero-shot BERT uses BERT as the encoder for
Zero-shot LSTM (Kumar et al., 2017) instead.
5. CDSSM BERT uses BERT as the encoder for
CDSSM (Chen et al., 2016) instead.
6. ALBERT-LA uses ALBERT as encoder along
with our label-aware layer (Lan et al., 2020).
7. TOD-BERT-LA uses TOD-BERT, a pretrained
encoder for task-oriented dialogs, along with our
label-aware attentive layer (Wu et al., 2020).

5.3 Experimental setting

We use the pretrained BERT with 12 hidden layers
of 768 units and 12 self-attention heads. The model
is trained for 50 epochs and saved with the best
performance on the validation set. For zero/few-
shot setting, we randomly pick a number of intents
to be unseen in the training set, run experiments
for 5 different splits and report the average. We set
the threshold t as 0.5 for multi-label classification.
We follow the metrics used in Qin et al. (2020) for
intent accuracy and F1 score.

6 Main Results

6.1 Multi-intent detection

Table. 2 shows the normal multi-intent detection
results on all five datasets. We can observe that LA-
BAN outperforms the baselines substantially in the
multi-intent detection especially in MixATIS and
FSPS. It proves the usefulness of our fine-tuning
BERT to capture more precise contextualized in-
formation for the downstream task. LABAN also
considers the semantics in intent labels where the
improvement enlarges when the number of intents
increases, i.e. larger increase in MixATIS with 17
intents compared to MixSNIPS with only 7 intents.
For datasets that do not have explicit conjunction
words between the sentence like FSPS, MDC, SGD,
we can observe a huge increase in accuracy in our
model. Second, not only in multi-intent detection,
in Table. 4, we can also see LABAN outperforms
other baselines dealing with just one intent.

6.2 Zero-shot Multi-intent detection

To further justify our model’s main contribution
in zero-shot cases, we compare LABAN with sev-
eral competitive baselines. As shown in Table. 3,



4889

Dataset MixATIS MixSNIPS FSPS MDC SGD
Model F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
Stack-Prop 0.790 0.719 0.976 0.946 0.911 0.723 0.877 0.780 0.919 0.891
Joint MID-SF 0.806 0.731 0.980 0.951 0.877 0.780 0.855 0.754 0.907 0.850
AGIF 0.812 0.758 0.985 0.961 0.914 0.749 0.907 0.741 0.924 0.761
LABAN 0.958† 0.889† 0.985 0.963 0.948† 0.913† 0.898 0.814† 0.950† 0.928†

Table 2: Normal multi-intent detection results on five datasets. We report accuracy (Acc) for all intents exact match
and F1 scores based on individual intent calculation. † indicates the significant improvement of p-value < 0.05
compared to the previous state-of-the-art model AGIF.

Dataset FSPS MixATIS MixSNIPS
Model F1-a F1-s F1-u F1-a F1-s F1-u F1-a F1-s F1-u
BERT-finetune 0.365 0.479 0.000 0.592 0.836 0.000 0.490 0.653 0.000
Zero-shot LSTM 0.341 0.494 0.029 0.533 0.728 0.055 0.475 0.546 0.264
CDSSM 0.496 0.440 0.394 0.592 0.827 0.060 0.591 0.659 0.432
Zero-shot BERT 0.517 0.461 0.373 0.463 0.576 0.162 0.472 0.464 0.370
CDSSM BERT 0.494 0.486 0.348 0.491 0.614 0.041 0.481 0.481 0.402
ALBERT-LA 0.391 0.425 0.228 0.595 0.739 0.362 0.567 0.574 0.466
TOD-BERT-LA 0.419 0.369 0.405 0.702 0.782 0.459 0.642 0.641 0.559†

BERT-LA (LABAN) 0.544 0.471 0.451† 0.696 0.808 0.518† 0.640 0.622 0.526

Table 3: Performance of the zero-shot multi-intent detection compared with several competitive baselines. Here
we choose the train/test label ratio to be FSPS 17/24, MixATIS 14/17, MixSNIPS 5/7. F1-a, F1-s, F1-u are F1
scores evaluated on data with all/seen/unseen intent labels. † indicates the significant improvement of p-value <
0.05 on F1-u results compared with CDSSM.

Model ATIS SNIPS
Stack-Propagation 0.969 0.980
Joint Mul ID-SF 0.954 0.972
AGIF 0.971 0.981
LABAN 0.978 0.982

Table 4: Single intent detection accuracy results on two
single-intent datasets compared with baseline models.

BERT-finetune by simply enlarging the neurons
for unseen intents is not capable of predicting any
unseen intent utterances, causing 0.00 F1-u scores.
Non-BERT approaches like Zero-shot LSTM and
CDSSM using dot product or cosine similarity
can show improved but limited unseen intent pre-
dictability. By leveraging pretraining power, zero-
shot BERT can better associate unseen and seen
intents with higher F1 score; while the performance
of CDSSM BERT with more complex structures de-
grades with model overfitting. Finally, we discover
that in all datasets (FSPS, MixATIS, MixSNIPS),
with our label-aware attentive layer, three models
(ALBERT-LA, TOD-BERT-LA, LABAN) with a
strong pretrained power successfully outperform
baselines in predicting unseen labels by associating
their relations with input sequences, even if these
intents are never seen in training phase.

We also observe that ALBERT has relatively
inferior performance among BERT-based mod-
els, which possibly results from a light version
of BERT and a different pretraining objective from

the conversation-oriented version: TOD-BERT. To
note, the original BERT model has slightly better
F1 score for seen intents. It is reasonable since
it avoids the error to predict utterances with un-
seen labels by searching over only the seen intents.
However, without sacrificing much, models with
the label-aware attentive layer could significantly
boost the overall F1 scores in all three datasets.

Then we comprehensively evaluate LABAN’s
performance in zero/few-shot setting with differ-
ent seen/unseen intent ratios in Figure. 2. We
mainly have four discoveries. (1) LABAN can pre-
dict unseen intents around average half correctly.
(2) When the number of seen intents decreases, F1
score reduces both for seen and unseen intent labels
with model’s poorer knowledge of seen intents. (3)
In utterances with both seen and unseen intents,
F1 score for seen intents is lower than utterances
with only seen intents. The fewer seen intents are
trained, the more inclined the model will predict
the utterance as unseen intents frequently. (4) In
the few-shot setting, with little data of unseen in-
tents trained, both seen and unseen intent accuracy
boost by a large margin especially in MixSNIPS.
It indicates the fact that regardless of scarce train-
ing data with some unseen labels, LABAN could
fully exploit the use of pretrained linguistic knowl-
edge on label semantics to match the most relevant
intents in current criteria.
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Figure 2: Zero-shot/Few-shot results of LABAN for FSPS, MixATIS, MixSNIPS datasets with varying Seen La-
bels, the number of seen labels during training. FSPS, MixATIS, MixSNIPS have total 24, 17, 7 intents. F1-a,
F1-s, F1-u are F1 scores evaluated on data with all/seen/unseen intent labels.

Dataset MixATIS MixSNIPS FSPS MDC SGD
Model F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
BERT-finetune 0.952 0.879 0.982 0.954 0.938 0.901 0.897 0.814 0.949 0.926
BERT-attn 0.963 0.893 0.984 0.961 0.942 0.903 0.897 0.816 0.950 0.927
LABAN 0.958 0.889 0.985 0.963 0.948 0.913 0.898 0.814 0.950 0.928

Table 5: Ablation analysis of different components in LABAN for normal multi-intent detection results on five
datasets. We report accuracy (Acc) for all intents exact match and F1 scores based on individual intent calculation.

6.3 Ablation Analysis

To better understand the effectiveness of LABAN’s
components on multi-intent detection, we conduct
the ablation analysis by reporting two different
baseline variations of our model: BERT-finetune
and BERT-attn. BERT-finetune refers to using the
hidden state of [CLS] head from BERT without the
extra label-aware layer; BERT-attn refers to adding
a self-attentive layer to encode the sentence em-
beddings without the label-aware layer too. And
finally, LABAN refers to our final model as the
BERT with the self-attentive layer and adaptive
label-aware attentive layer.

In experimental results shown in Table. 5, we
can first observe that BERT with the additional
self-attentive layer has increased performances on
all five datasets, especially in MixATIS and FSPS.

When the number of total intents increases, the self-
attentive layer is beneficial in understanding each
word importance to the overall intent prediction.
After introducing the label-aware layer, we could
see a further increase, especially in FSPS which
contains the maximum number of intents (24). It
does help LABAN to better match the utterance
and different intent semantics, particularly in the
case when intent options are more complicated.
Although the increase seems subtle when the label
sources are abundant, it can cause huge assistance
of tackling unseen labels, without sacrificing much
performance in normal cases.

6.4 Error Analysis

We demonstrate a few cases in Table. 6 to analyze
some error cases of LABAN. For simplicity, we ab-
breviate each dataset as MixATIS: MA, MixSNIPS:
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MI ID Sentence Predict labels Real labels

MA1 At the charlotte airport, how many different types of aircraft
are there for US air and St. Paul to Kansas city friday night. atis_quantity (7) atis_aircraft (4),

atis_flight (12)
MS1 Play the album Journeyman. play_music (0) search_creative_work (2)
FS1 Is traffic always heavy at this stretch of highway? get_location (3), get_info_traffic (6) unsupported_navigation (2)

FS2 How’s the traffic ahead? get_info_traffic (6) get_info_traffic (6),
get_location (3)

ZS ID Sentence Predict labels Real labels

MA2 Show me the lowest priced fare from Dallas to Baltimore. atis_airfare (16), atis_flight (9),
atis_cheapest (14) atis_airfare (16)

MS2 Play music from 2015 and
then I am giving this current novel 1 out of 6 stars.

rate_book (4),
search_screening_event (5),
book_restaurant (6)

rate_book (4), play_music (3)

FS3 I want to be at my daughters by 8am what time should I leave?

get_location_home (4),
get_estimated_arrival (2),
get_directions (16),
update_directions (19)

get_location_home (4),
get_estimated_departure (15)

Table 6: Example of multi-intent (MI) and zero-shot (ZS) prediction errors. Each example will have an id referring
its dataset (MixATIS: MA, MixSNIPS: MS, FSPS: FS). intent indicates that it is the same both in prediction and
real. And the number behind intents are the corresponding label id.

MS, and FSPS: FS in the table.
First, we found that some words in the utterances

may obfuscate LABAN’s prediction. For instance,
in case MA1, LABAN may predict ‘atis quantity’
based on the keyword ‘how many’ by comparing
the sentence and label semantics. In case MS1, the
‘play’ keyword also induces the model to predict
the intent ‘play music’, where it actually means
to search and play an album list. In such sense,
‘creative work’ may be less relevant to ‘album’ for
our model’s sentence-label pairing.

For FSPS, we found that most errors occur when
real labels are ‘unsupported navigation’, ‘unsup-
ported event’ or ‘unsupported’ such as case FS1.
This may be hard for the model without an external
ontology to identify unsupported events (out-of-
scope). Therefore, in most cases, the model will
just identify ‘get info traffic’ and ‘get location’ as
the closest intents. In FS2 case, the model fails to
predict ‘get location’ correctly. Without including
contexts, it may be hard for the model to associate
‘ahead’ with ‘get location’.

Then, we show the errors in zero-shot setting.
Here, the model only sees 12/17 intents in Mix-
ATIS, 3/7 intents in MixSNIPS and 14/24 intents
in FSPS during training. We found two distinctive
phenomena: (1) The model tends to predict more la-
bels like in case MA2 if it is uncertain with unseen
intents, resulting in lower precision. (2) We found
that the model can predict seen intents well regard-
less of other existence of unseen intents in the same
sentence. For unseen intent errors, the model tends
to categorize them more into other unseen classes
than seen classes, which indicates that the model
has a basic knowledge of what seen intents should
be. Mechanisms for explicit semantic pairing may

be one of reasons and show ability of separating
known and unknown classes confidently.

In case MA2, ‘atis cheapest’ and ‘atis airfare’
are not seen in training phase. However, the model
is still capable of predicting ‘atis airfare’ accu-
rately. Moreover, ‘lowest’ keyword is matched
with the predicted label ‘atis cheapest’, benefiting
from our label-aware attentive layer. For case MS2,
all of predicted and real labels are unseen during
training. We found the model still accurately pre-
dicts ‘rate book’ correctly based on keyword ‘stars’.
And the model predicts ‘search screening event’ or
‘search creative work’ instead ‘play music’, which
actually happen frequently in other predictions. In
FSPS like FS3 case, the model tends to predict lots
of unseen intents without matching any of true in-
tents. In FS3 case, it has only seen the intent ‘get
estimated arrival’ during training which makes it
erroneously predicts the sentence to ‘arrival’ rather
than ‘departure’. The effect could be possibly alle-
viated by introducing external knowledge embed-
dings for keyword ‘leave’ related to ‘departure’,
which human usually associates with.

6.5 Visualization

To better understand the classification results of
LABAN, shown in Figure. 3, we perform TSNE
visualization (van der Maaten and Hinton, 2008) on
the projected embeddings r̂u =

∑K
i=1wir

l
i of each

utterance onto the intent subspace T . Here we also
plot each intent embedding rli with their intent num-
bers. We can observe that numerous clusters are
formed with close semantic distances. And most
of intent embeddings like id 0, 6, 9, 12 are close to
their respective clusters. It indicates that LABAN
successfully constructs an intent embedding space
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Figure 3: This figure shows the visualization of ut-
terance embeddings with their intent labels (color) in
FSPS test set. Each number i indicates an intent em-
bedding rli’s location and its intent class.

that illustrates the semantic relation between each
of intents and helps with classification of a pro-
jected utterance embedding. To note, since some
of utterances have more than one intent, to simply
the graph, we randomly pick one of intents in these
utterances for visualization. Therefore, we can see
some of clusters like id 8 actually have two domi-
nant sub clusters. And some of utterances on the
right sub cluster have other intents like id 3, 4, 12,
17. Hence, they may be semantically close to these
intent embeddings (3, 4, 12, 17) on the graph.

7 Conclusion

In this paper, we propose the extension of fine-
tuning BERT and label-aware semantic interactions
into the multi-intent detection task in SLU. It suc-
cessfully provides the solution to zero/few-shot
setting where there are unseen labels in new ut-
terances. By considering the label semantics, we
can generate scores of how likely new utterances
belong to these unseen intents. We compare the per-
formance of our approach with previous methods
and obtain significant improvements over baselines.
It sheds the light that constructing a label semantic
space could help the model to distinguish seen and

unseen intents in utterances better. It provides the
guidance in the work of improving SLU zero-shot
multi-intent detection by considering dialogue con-
texts and external knowledge learning, or a more
challenging task of detecting out-of-domain (OOD)
detection where unseen intents are not available.
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Ethical Consideration and Impact

The work aims to unfreeze the limitation of intent
granularity defined in task-oriented dialogue train-
ing datasets, which is often ill-posed in the context
of modeling precise and multiple intents in many
previous works (Qin et al., 2019; Goo et al., 2018).
Multi-intent detection could be applied to a wide
range of applications in many industries where the
scenario requires a broader understanding of user
requests. For example, customer service automa-
tion often solicits clear intent identification at each
utterance for flexible answer policy, where iden-
tifying single intents may increase redundant and
ambiguous dialogue turns. Second, zero-shot work
has long been studied to unfreeze the limitation
of deep learning models requesting large amount
of data. It could be applied to multiple domains
where intent labels are significantly lacking and
may cause time-consuming labeling. By transfer-
ring the knowledge from existing labels, the model
shall be more robust in dealing with unseen labels
as humans have approached new things, which will
be very beneficial in dialogue system design where
many of data are unlabeled.

In ethical aspect, naturalness of dialog structure
heavily defines the scope of intent detection and
usually changes during the dialog state transition.
How to capture adequate intents from user is some-
how critical in SLU and the following tasks like
dialog state tracking. Wrong interpretation of in-
tents may offend users and cause unsatisfactory
answers. And we should also avoid predicting sen-
sitive labels regarding user privacy. In such sense,
we mainly test our model in all public released
datasets which have been widely justified as unbi-
ased in multiple domains and are not sensitive in
revealing specific user information.
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Overall, we see great opportunities for research
applying LABAN to investigate interactions be-
tween utterance and their latent intents. It gives
good intuition how the model understands the
underlying human acts and improves the trans-
parency in decision-critical applications. To mit-
igate the risks associated with our model, we
aim to anonymize user sensitive information in
training data and focus on extracting domain-
agnostic knowledge for better generalization and
interpretability.
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A Appendix

A.1 Linear Approximation in a Hilbert Space
Let S be a Hilbert space with inner product 〈·, ·〉
and induced norm || · ||, and let T be a subspace of
S . Given a vector z ∈ S , we would like to find the
closest point ẑ ∈ T to z. Namely, we would like
to solve the following optimization program:

min
x∈T
||z − x|| (8)

Given an arbitrary z ∈ S, we know there exists
exactly one point ẑ ∈ T that obeys

z − ẑ ⊥ T (9)

meaning 〈z− ẑ, y〉 = 0 for all y ∈ T and this point
ẑ is the unique minimizer of Equation 8. We can
further construct ẑ as the following:

ẑ =
N∑
k=1

βkvk (10)

where N is the dimension of T and v1, ..., vN is a
basis for T . Then we can transform our problem
as finding coefficients β1, ..., βN ∈ C.

From Equation 9, we know 〈z − ẑ, vn〉 = 0 for
n = 1, ..., N . This means by plugging Equation
10, βn must obey 〈z −

∑N
k=1 βkvk, vn〉 = 0 for

n = 1, ..., N . We can then obtain the following
equation:

〈z, vn〉 =

N∑
k=1

βk〈vk, vn〉 (11)

Since z and the {vn} are given, we know both
the 〈z, vn〉 and 〈vk, vn〉. We can write down the
matrix form:

Gβ = b (12)

where β ∈ CN , bn = 〈z, vn〉 and Gk,n = 〈vn, vk〉.
Or in the complete form:

G =

 〈v1, v1〉 · · · 〈vN , v1〉
...

. . .
...

〈v1, vN 〉 · · · 〈vN , vN 〉

 (13)

b =

 〈z, v1〉
...

〈z, vN 〉

 (14)

We can then solve the problem by finding β =
G−1b where G is guaranteed invertible since {vn}
is linear independent.

A.2 Dataset
Here are some more detailed descriptions about
datasets we used:
MixATIS (Qin et al., 2020; Hemphill et al., 1990)
ATIS (Airline Travel Information System) dataset
is a standard benchmark dataset in the airline do-
main widely used as an intent classification. Mix-
ATIS is further synthesized based on ATIS by con-
catenating single utterances only with the conjunc-
tion word ‘and’.
MixSNIPS (Qin et al., 2020; Coucke et al., 2018)
MixSNIPS dataset is collected from the SNIPS per-
sonal voice assistant and has the ratio of sentences
with 1-3 intents at [0.3, 0.5, 0.2]. It also concate-
nates SNIPS utterances with the conjunction word
‘and’.
FSPS (Gupta et al., 2018) Facebook Semantic Pars-
ing System (FSPS) dataset is a large dataset of 44k
requests annotated with a hierarchical semantic rep-
resentation for task oriented dialog systems. Intents
are prefixed with ‘IN:‘ an slots with ‘SL:‘. Each ut-
terance may contain one or more embedded intents
and slots.
MDC (Li et al., 2018b) Microsoft dialogue chal-
lenge dataset (MDC) is a well-annotated dataset
for three task-completion domains: movie-ticket
booking, restaurant reservation and taxi ordering.
It was first released for SLT 2018 special session
and contains information of dialogue acts and slots
for each utterance.
SGD (Rastogi et al., 2019) Schema-Guided Dia-
logue dataset (SGD) is a large dialogue dataset with
over 20k annotated multi-domain, task-oriented
conversations between a human and a virtual as-
sistant. These conversations involve interactions
with services and APIs spanning 20 domains. It
could be used for intent prediction, slot filling, di-
alogue state tracking, policy imitation learning or
language generation.


