
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4735–4744
November 7–11, 2021. c©2021 Association for Computational Linguistics

4735

LayoutReader: Pre-training of Text and Layout for
Reading Order Detection

Zilong Wang1⇤, Yiheng Xu2⇤, Lei Cui2, Jingbo Shang1, Furu Wei2
1University of California, San Diego

2Microsoft Research Asia
{zlwang,jshang}@ucsd.edu

{t-yihengxu,lecu,fuwei}@microsoft.com

Abstract
Reading order detection is the cornerstone to
understanding visually-rich documents (e.g.,
receipts and forms). Unfortunately, no existing
work took advantage of advanced deep learn-
ing models because it is too laborious to anno-
tate a large enough dataset. We observe that
the reading order of WORD documents is em-
bedded in their XML metadata; meanwhile, it
is easy to convert WORD documents to PDFs
or images. Therefore, in an automated man-
ner, we construct ReadingBank, a benchmark
dataset that contains reading order, text, and
layout information for 500,000 document im-
ages covering a wide spectrum of document
types. This first-ever large-scale dataset un-
leashes the power of deep neural networks for
reading order detection. Specifically, our pro-
posed LayoutReader captures the text and lay-
out information for reading order prediction
using the seq2seq model. It performs almost
perfectly in reading order detection and signif-
icantly improves both open-source and com-
mercial OCR engines in ordering text lines in
their results in our experiments. The dataset
and models are publicly available at https:
//aka.ms/layoutreader.

1 Introduction
Reading order detection, aiming to capture the
word sequence which can be naturally compre-
hended by human readers, is a fundamental task
for visually-rich document understanding. Cur-
rent off-the-shelf methods usually directly borrow
the results from the Optical Character Recognition
(OCR) engines (Xu et al., 2020) while most OCR
engines arrange the recognized tokens or text lines
in a top-to-bottom and left-to-right way (Clausner
et al., 2013). Apparently, as shown in Figure 1, this
heuristic method is not optimal for certain docu-
ment types, such as multi-column templates, forms,
invoices, and many others. An incorrect reading or-
der will lead to unacceptable results for document

⇤Contributions during internship at MSRA.

understanding tasks such as the information extrac-
tion from receipts/invoices. Therefore, an accurate
reading order detection model is indispensable to
the document understanding tasks.

In the past decades, some conventional machine
learning based or rule based methods (Aiello et al.,
2003; Ceci et al., 2007; Malerba and Ceci, 2007;
Malerba et al., 2008; Ferilli et al., 2014) have been
proposed. However, these approaches are usually
trained with only a small number of samples within
a restricted domain or resort to unsupervised meth-
ods with empirical rules, because it is too laborious
to annotate a large enough dataset. These mod-
els can barely show case studies of certain reading
order scenarios and cannot be easily adapted for
real-world reading order problems. Recently, deep
learning models (Li et al., 2020a) have been ap-
plied to address the reading order issues for images
from E-commerce platforms. Although good per-
formance has been achieved, it is time-consuming
and labor-intensive to produce an in-house dataset,
while they are still not publicly available to com-
pare with other deep learning approaches. There-
fore, to facilitate the long-term research of reading
order detection, it is inevitable to leverage auto-
mated approaches to create a real-world dataset in
general domains, not only with high quality but
also of larger magnitude than the existing datasets.

To this end, we propose ReadingBank, a bench-
mark dataset with 500,000 real-world document
images for reading order detection. Distinct from
the conventional human-labeled data, the proposed
method obtains high-quality reading order annota-
tions in a simple but effective way with automated
metadata extraction. Inspired by existing docu-
ment layout annotations (Siegel et al., 2018; Zhong
et al., 2019; Li et al., 2020b,c), there are a large
number of Microsoft WORD documents with a
wide variety of templates that are available on the
internet. Typically, the WORD documents have
two formats: the binary format (Doc files) and the



4736

(a) (b) (c) (d)

Figure 1: Document image examples in ReadingBank with the reading order information. The colored areas show
the paragraph-level reading order.

XML format (DocX files). In this work, we exclu-
sively use WORD documents with the XML format
as the reading order information is embedded in
the XML metadata. Furthermore, we convert the
WORD documents into the PDF format so that the
2D bounding box of each word can be easily ex-
tracted using any off-the-shelf PDF parser. Finally,
we apply a carefully designed coloring scheme to
align the text in the XML metadata with the bound-
ing boxes in PDFs.

With the large-scale dataset, it is possible to take
advantage of deep neural networks to solve read-
ing order detection task. We further propose Lay-
outReader, a novel reading order detection model
in which the seq2seq model is used by encoding
the text and layout information and generating the
index sequence in the reading order. Ablation stud-
ies on the input modalities show that both text and
layout information are essential to the final perfor-
mance. The LayoutReader with both modalities
surpasses other comparative methods and performs
almost perfectly in reading order detection. In ad-
dition, we also adapt the results of LayoutReader
to open-source and commercial OCR engines in
ordering text lines. Experiments show that the
line ordering of both open-source and commercial
OCR engines can be greatly improved. We believe
that ReadingBank and LayoutReader will empower
more deep learning models in the reading order
detection task and foster more customized neural
architectures to push the new SOTA on this task.

The contributions are summarized as follows:
• We present ReadingBank, a benchmark dataset

with 500,000 document images for reading order
detection. To the best of our knowledge, this is
the first large-scale benchmark for the research

of reading order detection.
• We propose LayoutReader for reading order de-

tection and conduct experiments with different
parameter settings. The results confirm the ef-
fectiveness of LayoutReader in detecting reading
order of documents and improving line ordering
of OCR engines.

• The ReadingBank dataset and LayoutReader
models will be publicly available to support more
deep learning models on reading order detection.

Reproducibility. The code and datasets
are publicly available at https://aka.ms/
layoutreader.

2 Problem Formulation

Reading order refers to a well-organized readable
word sequence. Although it seems a fundamental
requirement of NLP datasets, it is non-trivial to
obtain proper reading orders from document im-
ages due to various formats, e.g., tables, multiple
columns, and most OCR engines fail to provide the
proper reading order.

To solve this problem, we address the reading
order detection task, aiming to extract the natural
reading sequence from document images. Specif-
ically, given a visually-rich document image D,
we acquire discrete token set {t1, t2, t3, ...} where
each token ti consists of a word wi and the its
bounding box coordinates (xi0, yi0, xi1, yi1) (the left-
top corner and right-bottom corner). Equipped with
the textual and layout information of the tokens in
the document image, we intend to sort the tokens
into the reading order.



4737

(", $) ("!, &, '", (", '#, y#, ", ℎ)
match

DocX Colored PDF

.docx .pdf

Figure 2: Building pipeline of ReadingBank, where
(w, i) is the pair of word and its appearance index and
(w0

, c, x0, y0, x1, y1, w, h) is the word, word color and
layout information.

3 ReadingBank

ReadingBank includes two parts, the word se-
quence and its corresponding bounding box co-
ordinates. We denote the word sequence as Read-
ing Sequence that is extracted from DocX files.
The corresponding bounding boxes are extracted
from the PDF files which are generated from DocX
files. We propose a coloring scheme to solve the
word duplication when we match each word and
its bounding box.

In this section, we introduce the data pipeline
in detail, including document collection, reading
sequence extraction, and layout alignment with
the coloring scheme. The current ReadingBank
totally includes 500,000 document pages, where
the training set includes 400,000 document pages
and both the validation set and the test set include
50,000 document pages, respectively.

3.1 Document Collection
We crawl the WORD documents in DocX format
from the internet considering the robots exclusion
standard as well as the public domain license. 1

We further use the language detection API 2 with
a high confidence threshold to filter non-English
or bilingual documents because we focus on the
reading order detection for English documents in
this work. The reading order detection of other
languages will be our future work. We only keep
the pages with more than 50 words to guarantee
the enough information on each page. In this way,
we have totally collected 210,000 WORD docu-

1More ethical details are included in the Ethical Consider-
ation section.

2https://azure.microsoft.com/
en-us/services/cognitive-services/
text-analytics/

ments in English and each page in the documents
is informative enough. We further randomly select
500,000 pages to build our dataset.

3.2 Reading Sequence Extraction

The reading order in ReadingBank refers to the
order of words in the DocX files. Each DocX file
is a compressed archive where its word sequence
can be parsed from its internal Office XML code.
We adopt an open source tool python-docx3 to
parse the DocX file and extract the word sequence
from the XML metadata. The tool also enables us
to change the words’ color for the layout alignment
step.

We first extract the paragraphs and the tables
sequentially from the parsing result. Then we tra-
verse the paragraphs line by line and the tables cell
by cell and obtain the word sequence in the DocX
file. We denote the sequence as [w1, w2, ..., wn],
where n is the number of words in this document.
The obtained sequence is the reading order without
the layout information and is denoted as the Read-
ing Sequence. We would align the bounding box to
each word in this sequence in the following steps.

3.3 Layout Alignment with Coloring Scheme

In our extensive collection, the same word may
appear multiple times in the same document, and
we need to solve this duplication when we assign
the coordinates to each word. Therefore, we give
each word an extra label indicating its appearance
index. For example, given a sequence [the, car, hits,
the, bus], the extra labels should be [0, 0, 0, 1, 0]
since there are two “the”s in this example. In this
way, each pair of the word and its appearance index
is unique and can serve as the key when assigning
the location coordinates.

Meanwhile, we propose the coloring scheme to
show the keys in the DocX file without changing
the original layout pattern. We map the appearance
index to the RGB colors through C : N 7! RGB
and color the words accordingly. To eliminate the
interference from the original word color, we first
color all the words into black.

r = i&0x110000
g = i&0x001100
b = i&0x000011

C(i) = (R : r,G : g,B : b)

3https://pypi.org/project/python-docx/



4738

Split #Word Avg. Avg. BLEU ARD
BLEU Distribution

(0.00, 0.25] (0.25, 0.50] (0.50, 0.75] (0.75, 1.00]

Train 196.38 0.6974 8.4708
9,666 58,785 155,662 175,884
2.42% 14.70% 38.92% 43.97%

Validation 196.02 0.6974 8.5140
1,203 7,351 19,387 22,053
2.41% 14.70% 38.78% 44.11%

Test 196.55 0.6972 8.4569
1,232 7,329 19,555 21,893
2.46% 14.66% 39.10% 43.78%

All 196.36 0.6974 8.4737
12,101 73,465 194,604 219,830
2.42% 14.69% 38.92% 43.97%

Table 1: Dataset statistics of training, validation, and test sets in ReadingBank. The BLEU and ARD scores are
calculated for the left-to-right and top-to-bottom order to measure the difficulty of training samples

where i is the appearance index of the given word;
& is the bit-wise and operation; C is the mapping
function.

Although DocX files provide a reasonable read-
ing sequence but the location of each word in DocX
files is not fixed. Therefore, we use the PDF files
produced by the colored DocX files as an inter-
mediate to extract layout information. We adopt
PDF Metamorphosis .Net4 to convert the
DocX files to PDF and use an open source tool
MuPDF5 as the PDF parser. We extract the words,
bounding box coordinates, word color from the
PDF file. Since the mapping function C is a one-to-
one correspondence, we easily get the appearance
index by using the coloring scheme. For the con-
venience of future study, we also extract the height
and width of the page. In this way, we can build
a one-to-one matching between the Reading Se-
quence and the PDF layout information.

(w, i) $ (w0
, c, x0, y0, x1, y1,W,H)

subject to w = w
0; c = C(i)

where w and w
0 are the word in DocX and PDF,

respectively; i is the appearance index of w; c is
the word color recognized by PDF parser; x0, y0,
x1, y1 are the left-top and right-bottom coordinates;
W , H are the width and height of the page where
the word locates. In the post-processing stage, we
collect data for each page and build our dataset.

3.4 Dataset Statistics
The ReadingBank consists of 500,000 document
pages including the image and the sequence of
words and coordinates in reading order. We divide

4https://sautinsoft.com/products/
pdf-metamorphosis/

5https://www.mupdf.com/

the whole dataset by ratio 8:1:1 for training, val-
idation, and testing. Table 1 shows the details of
the three subsets. The average word number, the
average sentence-level BLEU score, the average
relative distance score (ARD) and the sentence-
level BLEU score distribution are reported. The
average relative distance score (ARD) calculates
the relative distance between the common elements
between two sequences6. The BLEU and ARD
scores are calculated for the left-to-right and top-to-
bottom order using the groundtruth reading order
as the reference, so as to measure the difficulty of
training samples. To guarantee the data balance,
the distribution of word number and BLEU score
are consistent as we randomly gather pages into
each subset. We assume the ReadingBank will not
suffer from the data unbalance during pre-training
or fine-tuning.

Since the ReadingBank is generated in an auto-
mated manner, we further conduct human evalu-
ation to study the dataset quality. We sample 20
pages from the ReadingBank and compare them
with the human annotations. The average page-
level BLEU score is 0.9839 and the ARD score is
0.4473 6, which indicates that the ReadingBank is
highly consistent with the human annotations.

4 LayoutReader

With the ReadingBank, we further propose Lay-
outReader to solve the reading order detection task.
LayoutReader is a sequence-to-sequence model
using both textual and layout information, where
we leverage the layout-aware language model Lay-
outLM (Xu et al., 2020) as encoder and modify the
generation step in the encoder-decoder structure to

6For details about the BLEU and ARD scores, please refer
to Section 5.3



4739

h1

Token Embedding
Position Embedding
Segment Embedding
Layout Embedding

x1

Transformer Block 1

x2 x3 x4 x5

Transformer Block 2

…

Transformer Block L

h2 h3 h4 h5

𝑃 𝑥𝑘 = 𝑖 𝑥<𝑘

Transformer

Transformer

SOS S1 EOS S2 EOS

Segment 1 Segment 2

S2S1

S2

S1

S1: attend to S1 tokens
S2: attend to left context

Prevent from attending

Allow to attend

Self-attention Masks

Seq-to-Seq

Figure 3: LayoutReader architecture for the reading order detection. The self-attention is designed for sequence-
to-sequence modeling and the generation step is modified to predict the indices in the source segment.

generate the reading order sequence.
LayoutLM is a layout-aware pre-trained lan-

guage model for tasks in document pages with both
text and bounding boxes from OCR. It first nor-
malizes and rounds the bounding box coordinates
into integers from 0 to 1000. Then coordinates are
embedded as trainable vectors like word embed-
dings. This new embedding layer is then added
to BERT (Devlin et al., 2018). LayoutLM is first
initialized with BERT and then further pre-trained
with masked language model task and document
classification.

Encoder: In the encoding stage, LayoutReader
packs the pair of source and target segments into a
contiguous input sequence of LayoutLM and care-
fully designs the self-attention mask to control the
visibility between tokens. As shown in Figure 3,
LayoutReader allows the tokens in the source seg-
ment to attend to each other while preventing the
tokens in the target segment from attending to the
rightward context. If 1 means allowing and 0 means
preventing, the detail of the mask M is as follows:

Mi,j =

(
1, if i < j or i, j 2 src
0, otherwise

where i, j are the indices in the packed input se-
quence, so they may be from source or target seg-
ments; i, j 2 src means both tokens are from
source segment.

Decoder: In the decoding stage, since the source
and target are reordered sequences, the prediction
candidates can be constrained to the source seg-
ment. Therefore, we ask the model to predict the
indices in the source sequence. The probability is
calculated as follows:

P(xk = i|x<k) =
exp (eTi hk + bk)P
j exp (e

T
j hk + bk)

where i is an index in the source segment; ei and ej

are the i-th and j-th input embeddings of the source
segment; hk is the hidden states at the k-th time
step; bk is the bias at the k-th time step.

5 Experiments
We introduce the comparative methods, implemen-
tation details, and evaluation metrics for the ex-
periments. We design three experiments for Lay-
outReader on ReadingBank, including reading or-
der detection, input order study, and adaption on
OCR engines. In addition, we also show the real-
world examples in the case study.

5.1 Comparative Methods
LayoutReader considers both text and layout infor-
mation with the multi-modal encoder LayoutLM.
To further study the role of each modality, we
design two comparative models, including Lay-
outReader (layout only) and LayoutReader (text
only). We also report the results of the Heuristic
Method as our baseline.



4740

Method Encoder Avg. Page-level BLEU ↑ ARD ↓
Heuristic Method - 0.6972 8.46

LayoutReader (text only)
BERT 0.8510 12.08

UniLM 0.8765 10.65

LayoutReader (layout only) LayoutLM (layout only) 0.9732 2.31

LayoutReader LayoutLM 0.9819 1.75

Table 2: Evaluation results of the LayoutReader on the reading order detection task, where the source-side of
training/testing data is in the left-to-right and top-to-bottom order

Heuristic Method: This method refers to sorting
words from left to right and from top to bottom.

LayoutReader (text only): We replace Lay-
outLM with textual language models, e.g.
BERT (Devlin et al., 2018), UniLM (Dong et al.,
2019), which means LayoutReader (text only) pre-
dicts the reading order only through textual infor-
mation. Our experiments build two versions of Lay-
outReader (text only), which use BERT or UniLM
as a substitute of LayoutLM, respectively.

LayoutReader (layout only): We remove the to-
ken embeddings in LayoutLM. The token embed-
dings are vital for Transformer to extract textual
information. After removing these embeddings,
LayoutReader (layout only) only considers the 1D
and 2D positional layout information.

5.2 Implementation Details
Our implementation is built upon the Hugging-
Face Transformers (Wolf et al., 2019) and the Lay-
outReader is implemented with the s2s-ft toolkit
from the repository of Dong et al. (2019)7. The
pre-trained models used are in their base version.
We use 4 Tesla V100 GPUs with batch size of 4
per GPU during training. The number of training
epochs is 3 and the training process takes approx-
imately 6 hours. We optimize the models with
the AdamW optimizer. The initial learning rate is
7⇥ 10�5 and the number of warm-up steps is 500.

5.3 Evaluation Metrics
Average Page-level BLEU: The BLEU
score (Papineni et al., 2002) is widely used in
sequence generation. Since LayoutReader is built
on a sequence-to-sequence model, it is natural to
evaluate our models with BLEU scores. BLEU
scores measure the n-gram overlaps between the
hypothesis and reference. We report Average

7https://github.com/microsoft/unilm/
tree/master/s2s-ft

Page-level BLEU in our experiments. The
page-level BLEU refers to the micro-average
precision of n-gram overlaps within a page.

Average Relative Distance (ARD): The ARD
score is proposed to evaluate the difference be-
tween reordered sequences. It measures the rel-
ative distance between the common elements in
the different sequence. Since our reordered se-
quence is generated, the ARD allows the element
omission but adds a punishment for it. Given a
sequence A = [e1, e2, ..., en] and its generated re-
ordered sequence B = [ei1 , ei2 , ..., eim ], where
{i1, i2, ..., im} ✓ {1, 2, ..., n}, the ARD score is
calculated as follows:

s(ek, B) =

(
|k � I(ek, B)|, if ek 2 B

n, otherwise

ARD(A,B) =
1

n

X

ek2A
s(ek, B)

where ek is the k-th element in sequence A;
I(ek, B) is the index of ek in sequence B; n is
the length of sequence A.

5.4 Reading Order Detection
We train the models with left-to-right and top-
to-bottom ordered inputs and report the evalua-
tion results on the test set of ReadingBank in Ta-
ble 2. We also report the results of the heuristic
method. The results show that LayoutReader is
superior and achieves the SOTA results compared
with other baselines. It improves the average page-
level BLEU by 0.2847 and decreases the ARD
by 6.71. Even if we remove some of the input
modalities, there is still 0.16 and 0.27 improve-
ments of BLEU in LayoutReader (text only) and
LayoutReader (layout only), and there is a steady
6.15 reduction of ARD in LayoutReader (layout
only). However, we also see a drop of ARD in Lay-
outReader (text only), mainly because of the severe
punishment in ARD for token omission (see ARD



4741

Method
Avg. Page-level BLEU ↑ ARD ↓

r=100% r=50% r=0% r=100% r=50% r=0%

LayoutReader (text only, BERT) 0.3355 0.8397 0.8510 77.97 15.62 12.08
LayoutReader (text only, UniLM) 0.3440 0.8588 0.8765 78.67 13.65 10.65

LayoutReader (layout only) 0.9701 0.9729 0.9732 2.85 2.61 2.31

LayoutReader 0.9765 0.9788 0.9819 2.50 2.24 1.75

Table 3: Input order study with left-to-right and top-to-bottom inputs in evaluation, where r is the proportion of
shuffled samples in training.

Method
Avg. Page-level BLEU ↑ ARD ↓

r=100% r=50% r=0% r=100% r=50% r=0%

LayoutReader (text only, BERT) 0.3085 0.2730 0.1711 78.69 85.44 67.96
LayoutReader (text only, UniLM) 0.3119 0.2855 0.1728 80.00 85.60 71.13

LayoutReader (layout only) 0.9718 0.9714 0.1331 2.72 2.82 105.40

LayoutReader 0.9772 0.9770 0.1783 2.48 2.46 72.94

Table 4: Input order study with token-shuffled inputs in evaluation, where r is the proportion of shuffled samples
in training.

definition). LayoutReader (text only) can guaran-
tee the right order of tokens but suffers from the
incompleteness of generation. We also conclude
that the layout information plays a more important
role than textual information in the reading order
detection. LayoutReader (layout only) surpasses
the LayoutReader (text only) greatly by about 0.1
in BLEU and about 9.0 in ARD.

5.5 Input Order for Training and Testing

We shuffle the input tokens of sequence-to-
sequence model in a certain proportion of training
samples to study the accuracy of LayoutReader for
different input orders. The proportion of token-
shuffled training samples is denoted as r. We
build three versions of comparative models with
r equaling 100%, 50% and 0%. The left-to-right
and top-to-bottom order provide remarkable hints
for reading order detection. However, in this in-
put order study, these hints are incomplete during
training. We design two evaluation methods. Table
3 shows the results when we evaluate the compar-
ative models with left-to-right and top-to-bottom
inputs. Table 4 shows the results when we evaluate
the comparative models with token-shuffled inputs.

From Table 3, we observe that LayoutReader
(layout only) and LayoutReader are more robust
to the shuffled tokens during training, and all three
comparative models perform well with the left-to-
right and top-to-bottom inputs in evaluation. We
attribute it to the consideration of layout informa-

tion, which is consistent under shuffling.
From Table 4, we see a drop when we train Lay-

outReader with r = 0% token-shuffled inputs and
evaluate it with all token-shuffled inputs. We ex-
plain that models trained on r = 0% token-shuffled
inputs tend to overfit the left-to-right and top-to-
bottom order due to overlaps between this order
and groundtruth, while the token-shuffled inputs in
evaluation are totally unseen to these models.

5.6 Adaption to OCR Engines

Most OCR engines provide reading order informa-
tion for the text lines, where some of them may be
problematic. To improve the text line ordering, we
extend the token-level reading order to text lines
and adapt it to OCR engines.

We first assign each token in our token-level
order to the text lines according to the percentage
of spatial overlapping. Given a token bounding
box b and a text line bounding box B, the token is
assigned to the text line which overlaps the most
with the token, i.e. B̂ = argmaxB(B \ b), where
\ means spacial overlapping. Then we calculate
the minimum of token indices in each text line as
its ranking value and produce an improved text line
order from the token-level order.

It should be noted that the token-level order can
be the order given by ReadingBank or the result
generated by LayoutReader. Therefore, we build a
text line ordering groundtruth by adapting the Read-
ingBank to text lines and evaluate the performance



4742

(a) Original image (b) Groundtruth (c) The commercial OCR (d) LayoutReader

Figure 4: Case Study: (a) is the original image (some fields are masked because of privacy); (b) is the text line
reading order groundtruth from ReadingBank Adaption; (c) and (d) are the results of a commercial OCR engine
and LayoutReader Adaption where green and red denote the correct and incorrect predicted indices.

Method Avg. Page-level BLEU ↑ ARD ↓

Heuristic Method 0.3391 13.61

Tesseract OCR 0.7532 1.42

LayoutReader 0.9360 0.27

Table 5: Adaption to text lines of Tesseract OCR

Method Avg. Page-level BLEU ↑ ARD ↓

Heuristic Method 0.3752 10.17

The commercial OCR 0.8530 2.40

LayoutReader 0.9430 0.59

Table 6: Adaption to text lines of the commercial OCR

of LayoutReader in text line ordering accordingly.
We also report the performance of the Heuristic
Method and OCR engines. We conduct experi-
ments with two OCR engines, including an open
source OCR engine Tesseract, and a cloud-based
commercial OCR API. The results are shown in Ta-
ble 5 and Table 6. We can see a great improvement
with LayoutReader Adaption. This experiment fur-
ther demonstrates the effectiveness and extends the
application of LayoutReader.

5.7 Case Study
We select a representative example from our test
set and show the text line orders in Figure 4. We
compare the text line order of the commercial
OCR engine and LayoutReader Adaption with the
groundtruth from ReadingBank Adaption. We vi-
sualize the results with colors where green and red
denotes correct and incorrect results. We see Lay-
outReader Adaption improves the text line ordering
of the OCR engine, which is consistent with our

results in Section 5.6.

6 Related Work

Reading order detection was first proposed
in (Aiello et al., 2003), where they used a proposi-
tional language of qualitative rectangle relations to
detect reading order from document images. This
is also considered as the first rule-based reading
order detection system. With the development of
machine learning methods, (Ceci et al., 2007) pro-
posed a probabilistic classifier using the Bayesian
framework and reconstructing either single or mul-
tiple chains of layout components. Meanwhile,
(Malerba and Ceci, 2007) applied an ILP learning
algorithm to introduce the definitions of the two
predicates and establish an ordering relationship.
After that, (Malerba et al., 2008) investigated the
problem of detecting the reading order relationship
between components of a logical structure with do-
main specific knowledge. (Ferilli et al., 2014) pre-
sented an unsupervised strategy for identifying the
correct reading order of a document page’s compo-
nents based on abstract argumentation. The method
is based on an empirical assumption about how
humans behave when reading documents. More
recently, deep learning models have become the
mainstream solution for many machine learning
problems. (Li et al., 2020a) proposed an end-to-
end OCR text reorganizing model, where they use
a Graph Neural Network with an attention map
to encode the text blocks with visual layout fea-
tures, with an attention-based sequence decoder to
reorder the OCR text into a proper sequence.



4743

7 Conclusion

In this paper, we present ReadingBank, a bench-
mark dataset for reading order detection that con-
tains 500,000 document images. In addition, we
also propose LayoutReader, a novel reading or-
der detection approach built upon the pre-trained
LayoutLM model. Experiments show that the Lay-
outReader has significantly outperformed the left-
to-right and top-to-bottom heuristics as well as
several strong baselines. Furthermore, the Lay-
outReader can be easily adapted to any OCR en-
gines so that the reading order can be improved for
downstream tasks. The ReadingBank dataset and
LayoutReader model will be publicly available to
support more research on reading order detection.

For future research, we will investigate how to
generate a larger synthesized dataset from the Read-
ingBank, where noisy information and rotation
can be applied to the clean images to make the
model more robust. Moreover, we will label the
reading order information on a real-world dataset
from scanned documents. Considering the Lay-
outReader model as a pre-trained reading order
detection model, we will also explore whether a
few human labeled samples would be sufficient for
the reading order detection in a specific domain.

A Ethical Consideration

The ethical impact of our research has always been
an important consideration. While pursuing bet-
ter performance and high quality datasets, we re-
spect the intellectual property of the data resources.
We sincerely hope our research will benefit the
academia and foster more related study and, mean-
while, all ethical standards are strictly followed.

When building the new dataset, ReadingBank,
we carefully crawl the public available data from
the internet. We strictly follow the robots exclu-
sion standard of each website to make sure we
are permitted to collect the data. We also exclude
the web pages with privacy issues and only keep
those pages we have the permission to edit and
redistribute according to the license rules. To guar-
antee there is no potential ethical violation, we will
publicize a proportion of our dataset (about 100
pages) and this subset will be manually checked
and redacted while the access of the whole version
requires our further permission. All the data in our
dataset will be protected by Apache 2.0 license.

We design the reading order detection as a funda-
mental task for the document image understanding.

Numerous following tasks can be built on the basis
of it. We do not set preference or limitation about
the areas when we crawl the data so we believe
the result of LayoutReader can be well generalized
to other visually-rich document images due to the
vast scope our dataset covers.

References
Marco Aiello, A Smeulders, et al. 2003. Bidimensional

relations for reading order detection. University of
Groningen, Johann Bernoulli Institute for Mathemat-
ics and Computer Science.

M. Ceci, M. Berardi, G. Porcelli, and D. Malerba.
2007. A data mining approach to reading order de-
tection. In Ninth International Conference on Doc-
ument Analysis and Recognition (ICDAR 2007), vol-
ume 2, pages 924–928.

C. Clausner, S. Pletschacher, and A. Antonacopoulos.
2013. The significance of reading order in document
recognition and its evaluation. In 2013 12th Interna-
tional Conference on Document Analysis and Recog-
nition, pages 688–692.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 13042–13054.

Stefano Ferilli, Domenico Grieco, Domenico Redavid,
and Floriana Esposito. 2014. Abstract argumenta-
tion for reading order detection. In Proceedings of
the 2014 ACM Symposium on Document Engineer-
ing, DocEng ’14, page 45–48, New York, NY, USA.
Association for Computing Machinery.

Liangcheng Li, Feiyu Gao, Jiajun Bu, Yongpan Wang,
Zhi Yu, and Qi Zheng. 2020a. An end-to-end ocr
text re-organization sequence learning for rich-text
detail image comprehension. In Computer Vision –
ECCV 2020, pages 85–100, Cham. Springer Interna-
tional Publishing.

Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming
Zhou, and Zhoujun Li. 2020b. Tablebank: Ta-
ble benchmark for image-based table detection and
recognition. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 1918–
1925.



4744

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang,
Furu Wei, Zhoujun Li, and Ming Zhou. 2020c.
Docbank: A benchmark dataset for document layout
analysis. arXiv preprint arXiv:2006.01038.

Donato Malerba and Michelangelo Ceci. 2007. Learn-
ing to order: A relational approach. In International
Workshop on Mining Complex Data, pages 209–223.
Springer.

Donato Malerba, Michelangelo Ceci, and Margherita
Berardi. 2008. Machine learning for reading order
detection in document image understanding. In Ma-
chine Learning in Document Analysis and Recogni-
tion, pages 45–69. Springer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Noah Siegel, Nicholas Lourie, Russell Power, and
Waleed Ammar. 2018. Extracting scientific figures
with distantly supervised neural networks. Proceed-
ings of the 18th ACM/IEEE on Joint Conference on
Digital Libraries.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,
Furu Wei, and Ming Zhou. 2020. Layoutlm:
Pre-training of text and layout for document im-
age understanding. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’20, page
1192–1200, New York, NY, USA. Association for
Computing Machinery.

Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes.
2019. Publaynet: Largest dataset ever for docu-
ment layout analysis. 2019 International Confer-
ence on Document Analysis and Recognition (IC-
DAR), pages 1015–1022.


