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Abstract

Fine-grained classification involves dealing
with datasets with larger number of classes
with subtle differences between them. Guid-
ing the model to focus on differentiating di-
mensions between these commonly confus-
able classes is key to improving performance
on fine-grained tasks. In this work, we analyse
the contrastive fine-tuning of pre-trained lan-
guage models on two fine-grained text classi-
fication tasks, emotion classification and sen-
timent analysis. We adaptively embed class
relationships into a contrastive objective func-
tion to help differently weigh the positives and
negatives, and in particular, weighting closely
confusable negatives more than less similar
negative examples. We find that Label-aware
Contrastive Loss outperforms previous con-
trastive methods, in the presence of larger num-
ber and/or more confusable classes, and helps
models to produce output distributions that are
more differentiated.

1 Introduction

Fine-grained classification involves distinguishing
between classes that have subtle variations among
them. For example, in image classification, we
can classify birds from non-birds, or attempt a
more fine-grained classification of bird species
(Akata et al., 2015). In NLP, one example is senti-
ment analysis, where we could have a coarse pos-
itive/negative classification, or a fine-grained set
of categories that differentiate “positive” and “very
positive” (i.e., an ordinal scale), such as in Socher
et al. (2013). Similarly, for emotion classification,
we could try to classify a text into 4 to 6 emotions,
or into much finer classifications of 27 (Demszky
et al., 2020) or 32 (Rashkin et al., 2019) emotion
categories. This involves distinguishing between
some closely confusable pairs of emotions, such as
“sad” and “devastated”, or “furious” and “annoyed”.
Fine-grained classification tasks are challenging
precisely due to the presence of class interference

amongst closely confusable classes (Collins et al.,
2018; Zhao et al., 2017).

The standard approach today to task classifica-
tion involves using a pre-trained language model
(e.g., BERT) which is fine-tuned on downstream
tasks using a standard cross-entropy loss. However,
this standard loss may not be the optimal manner
in which to train fine-grained classification models.
A simple counterexample is that cross-entropy loss
treats misclassifications as nominal, not ordinal, so
misclassifying a “positive” as a “very positive” is
no worse (in terms of the loss) as “very negative”.
But even within nominal categories, misclassify-
ing “annoyed” as “furious” is quite different from
a misclassification of “joyful”, as there are vary-
ing degrees of semantic similarity between nomi-
nal categories. Intuitively, we can try to improve
model performance by modifying the loss to re-
flect the contrast between pairs of examples of
the same or different classes. Such contrastive ap-
proaches are widely used in computer vision tasks
for label-noise reduction, semi-supervised and self-
supervised learning tasks (Le-Khac et al., 2020).
More recently in NLP, Gunel et al. (2021) used a
supervised contrastive loss to improve fine-tuning
performance of pre-trained language models in sev-
eral few-shot learning scenarios.

In this work, we incorporate inter-class relation-
ships into a Label-aware Contrastive Loss (LCL),
which helps the model to differentiate the weights
between different negative samples. At a high level,
the model adaptively learns which pairs of classes
are more similar, and which are more different.
We use a dual-model approach where a weighting
model learns the inter-label relationships that are
used in the main embedding model’s contrastive
objective. We evaluate our approach on two popu-
lar tasks in NLP: emotion recognition (4 datasets
to span both coarse- and fine-grained classifica-
tion), and sentiment analysis (with a coarse and
fine-grained version of the same dataset). We find
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that LCL outperforms existing contrastive learning
losses, and performs comparably with the state-
of-the-art. We supplement our findings with tar-
geted experiments to provide evidence for bound-
ary conditions—situations in which LCL should
work best—and for how LCL affects model predic-
tion confidence.

2 Related Work

2.1 Fine-grained classification

Fine-grained classification is a popular problem
in image classification, including tasks like dis-
tinguishing between different animal species (Wei
et al., 2019; Zhao et al., 2017). We note that in NLP,
“fine-grained” is commonly used when analysing
different granularities of text, such as character-,
word- and span-level information (Zirn et al., 2011;
Da San Martino et al., 2019; Liu et al., 2020). In
this work, we use fine-grained classification to refer
to the nature of labels associated with the task.

Fine-grained classification tasks involve find-
ing subtle differences to distinguish between close
classes. For instance, “coarse" sentiment classifi-
cation involves distinguishing negative and posi-
tive sentiments in text, and fine-grained sentiment
classification involves further distinguishing the
positive class into very positive and positive. This
problem is challenging because the classes are se-
mantically similar, which makes it difficult for the
model to learn the labels (Collins et al., 2018).

Recent models have applied state-of-the-art at-
tention mechanisms and multi-task learning to
solve fine-grained sentiment classification. Balikas
et al. (2017) performed fine-grained sentiment clas-
sification using a multi-task learning setup that per-
formed both binary and fine-grained sentiment clas-
sification simultaneously. Yin et al. (2020) com-
posed the sentiment semantics using an attention
network to enhance BERT’s pre-training objec-
tive, and showed improvement in a downstream
fine-grained sentiment analysis task. Tian et al.
(2020a) modified the pre-training objectives of lan-
guage models to include more sentiment-specific
tasks, such as sentiment word masking and senti-
ment word prediction, and showed improved per-
formance in fine-grained sentiment analysis. These
previous methods mostly focus on improving the
pre-training of language models, or incorporating
multiple task training; here, we focus on improving
contrastive fine-tuning to solve fine-grained text
classification.

Another important fine-grained classification
task is that of emotion recognition. Traditionally,
emotion recognition datasets have a small num-
ber of emotions (e.g., 4-7). Two recent datasets
were proposed to address this issue: Rashkin et al.
(2019) introduced Empathetic Dialogues, which
contains text conversations labelled with 32 emo-
tion labels, and Demszky et al. (2020) introduced
GoEmotions, which contains Reddit comments la-
belled with 27 emotion labels. Recently, Suresh
and Ong (2021) introduced a method to incorporate
knowledge from emotion lexicons into an attention
mechanism to improve fine-grained emotion clas-
sification on these two datasets. Khanpour and
Caragea (2018) similarly used lexicon-based fea-
tures to tackle fine-grained emotion recognition
from online health posts. However, there is still
much work to be done in fine-grained emotion clas-
sification, and it has important implications for
designing empathetic agents and chatbots (Roller
et al., 2021).

Finally, we note that fine-grained classification
has also been explored in the context of entity-
type classification (Ling and Weld, 2012; Jin et al.,
2019). However, this task is generally multi-label
in nature and is out of the scope of the current work.

2.2 Contrastive learning

Contrastive learning focuses on improving the abil-
ity of the model to differentiate a given data point
from “positive” examples (points sharing the same
label) and from “negative” examples (different la-
bels). Contrastive learning has been widely used
in computer vision, especially in self-supervised
settings (Le-Khac et al., 2020; Chen et al., 2020)
where such learning guides the model based on
similarities between the latent representation of the
samples. (Chen et al., 2020) introduced SimCLR, a
simplified version of contrastive loss that does not
use memory banks (Tian et al., 2020b; He et al.,
2020; Misra and Maaten, 2020) or designated archi-
tectures (Bachman et al., 2019), and which achieves
improved performance in both semi-supervised and
self-supervised settings. SimCLR uses data aug-
mentation to create “positive” examples that are
similar to a given input. Khosla et al. (2020) ex-
tended SimCLR to also leverage label information:
they include other training examples with the same
label in the set of “positive” examples.

Contrastive loss has also been recently incor-
porated in both the pre-training and fine-tuning
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objectives of pre-trained language models. Self-
supervised contrastive loss has been used for pre-
training language models such as BERT (Fang and
Xie, 2020; Meng et al., 2021). Gunel et al. (2021)
used a combination of cross entropy and super-
vised contrastive loss for fine-tuning pre-trained
language models to improve performance in few-
shot learning scenarios. Gao et al. (2021) used a
contrastive objective to fine-tune pre-trained lan-
guage models to obtain sentence embeddings, and
achieved state-of-the-art performance in sentence
similarity tasks. In our work, we aim to improve the
fine-tuning objective of pre-trained language mod-
els for downstream tasks involving fine-grained
classes.

2.3 Other related work

In addition to the above works, we mention other
related references which used similar techniques.
Dual-model approaches are used in tasks like
knowledge distillation, where the knowledge from
a larger teacher network is transferred to a lighter
student model (Hinton et al., 2015; Kim and Rush,
2016; Sun et al., 2020, 2019; Li et al., 2020; Aguilar
et al., 2020), however, these works are mainly fo-
cused on model compression. Dual-model strate-
gies have also been widely used in label-noise rep-
resentation learning in image classification tasks
(Han et al., 2018; Wei et al., 2020; Lu et al., 2021;
Feng et al., 2019) by updating each other with clean
samples (the samples which have the lowest loss
value in every iteration). However, the sample se-
lection performed by these works assume that the
noise rate in each dataset is known or needs to be
estimated, which is not always possible.

Another set of works focus on sample re-
weighting to focus on select samples more. Plank
et al. (2014) use inter-annotator agreement to guide
the model’s focus on samples that are harder to
distinguish. Sample re-weighting is also widely
used to reduce label noise. Although the majority
of works in this area depend on a pre-determined
weighting function, there are a few notable papers
which automate this process by adaptively calculat-
ing weights: Chang et al. (2017) uses active learn-
ing to re-weight samples, while Ren et al. (2018)
uses gradients to learn weights, however their per-
formance drops with large number of classes (Song
et al., 2020). Meta-Weight-Net uses a single-layer
neural network to obtain the weights (Shu et al.,
2019). These methods all require clean validation

data to optimize their learning objective.

3 Approach

3.1 Contrastive Loss

A Contrastive Loss (CL) brings the latent repre-
sentations of samples belonging to the same class
closer together, by defining a set of positives (that
should be closer) and negatives (that should be
further apart). The type of positives and nega-
tives vary and is dependent on the contrastive loss
used. Throughout this section we denote the set
of positives as P and set of negatives as N . Let
us also denote a batch of sample and label pairs as
{xi, yi}i∈I , where I = {1, · · · ,K} is the indices
of the samples and K is the batch-size.

In the self-supervised version of contrastive loss
(Chen et al., 2020), one applies augmentation to
all K samples to produce K augmented data-
points. Therefore, the batch size becomes 2K and
I = {1, · · · , 2K}. The positive set for a given xi
contains only one sample, the augmented version
of xi, and we denote its index as g(i). The negative
set would be the rest of the samples in the batch.
The loss is defined as:

Lself =
2K∑
i=1

− log
exp(hi · hg(i)/τ)∑
k∈I/i exp(hi · hk/τ)

(1)

where τ is the temperature hyper-parameter. Larger
values of τ scale down the dot-products, creating
more difficult comparisons. hi is the normalised
representation vector of xi obtained from an en-
coder Φ.

Khosla et al. (2020) extended the above loss to
a Supervised Contrastive Loss (SCL) by including
the samples belonging to the same class as xi in
its positive set. The positive set is given by P =
{p : p ∈ I, yp = yi ∧ p 6= i}, with size |P|. The
supervised contrastive loss is given by:

LSCL =
2K∑
i=1

−1

|P|
∑
p∈P

log
exp(hi · hp/τ)∑

k∈I/i exp(hi · hk/τ)

(2)

3.2 Label-aware Contrastive Loss

In our work, we introduce relationships between
class labels to adaptively distinguish between the
negative examples. From Eqn. 2 we can see that
Supervised Contrastive Loss weights all positive



4384

Figure 1: Illustration of training strategy used in our Label-aware Contrastive Loss approach. The encoder network
is in orange and the the weighting network is indicated in blue. In the encoder network, every sample from the
training batch is compared against every other sample in the Label-aware Contrastive Loss function. Note that at
testing time, only the contextual encoder is used.

and negative samples equally to the current sam-
ple xi. But not all negatives are equal. In cer-
tain fine-grained text classification tasks, we have
semantically-similar labels with more subtle dif-
ferences, and are thus more confusable. For exam-
ple, “sad” and “devastated” are semantically closer
emotion categories than “sad” and “happy”. Thus,
our goal was to introduce a method for adaptively
weighting a given input’s positive/negative sam-
ples based on the label-relationships between them,
thereby helping the model differentiate the more
difficult negatives.

We propose Label-aware Contrastive Loss (LCL)
which adapts Contrastive Loss for fine-grained
classification tasks by incorporating inter label-
relationships. For the positive set, we follow
(Khosla et al., 2020; Gunel et al., 2021) where P of
a given sample contains the augmented sample and
samples within the same class. We utilise a weight-
ing vector wi ∈ RC where C is total number of
classes to weight the pair-wise similarity values of
the supervised contrastive loss defined in Eq. 2.
Our adapted loss function for each entry i and total
across the batch is:

Li =
∑
p∈P

log
wi,yi · exp(hi · hp/τ)∑

k∈I\iwi,yk · exp(hi · hk/τ)
(3)

LLCL =

2K∑
i=1

−1

|P|
Li (4)

Here, wi,yk indicates the relationship between
an input xi and a label yk. Just as in the previous
losses, hi ∈ Rd is the output representation of the
encoder for xi. We normalise hi for the similarity
comparison, similar to Chen et al. (2020).

In contrastive loss we want the weights of the
positives to be higher and that of the negatives to
be lower. However, we want to increase the weight
of confusable negative labels relative to other neg-
ative labels. In our work, we aim to incorporate
these inter-label relationships into the contrastive
objective. To weigh each comparison sample dif-
ferently, in addition to a primary encoder Φ, we use
a weighting network Ψ. We follow a dual-model
strategy similar to co-teaching approaches (Han
et al., 2018; Wei et al., 2020) where the weighting
network is a second network that coordinates with
the primary encoder. The input batch is fed into Ψ
and output is optimised using Cross-entropy loss
Lw. The prediction probabilities obtained from the
softmax layer, i.e. soft labels, is used to obtain
confidence of the current sample, is given by:

wi =
exp(hi)∑C
c=1 exp(hi)

(5)
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Here, wi = {wi,c}Cc=1 where C is the total number
of classes. Each wi,c denotes the confidence of the
weighting network that sample xi belongs to class
c. When Ψ is given a confusable sample, it will
have higher scores for the classes that are more
closely associated with the current sample. We
hypothesize that incorporating these high values
back into the negative comparison in the supervised
contrastive loss of the primary encoder would steer
the encoder toward finding more distinguishing pat-
terns to differentiate between confusable samples.

Training setup: The output vector of the
weighting network is optimized using a Cross En-
tropy Loss Lw, while the output of the encoder
network is optimized by using a linear combination
of LLCL and Cross Entropy Loss Le. The encoder
and weighting networks are jointly optimised using
objective function Lf :

Lf = α(Lw + Le) + (1− α)LLCL (6)

Here, α is a tunable loss scaling factor similar to
Gunel et al. (2021). We note that both the encoder
and the weighting network are utilised during train-
ing, but in the testing phase, we use only the pri-
mary encoder network.

The overall training process is shown in Fig. 1.
Each input training batch I is passed to the encoder
network Φ and the weighting network Ψ simulta-
neously. Here, both these networks are initialised
by a pre-trained language model and the [CLS]
token of the last layer of Φ is the final represen-
tation hi which is used for computing LLCL. For
performing the classification, hi is projected down
using the classifier and the output is optimised us-
ing cross-entropy loss Le. The architecture of the
weighting network was designed in the same way
as the fine-tuning setup of the pre-trained language
model of choice, and the weight vector wi is the
output probability vector obtained after the softmax
projection.

4 Experiments

4.1 Datasets

We evaluate our approach using two tasks, Emotion
Recognition and Sentiment Analysis. We choose
these tasks as it helps demonstrate our model’s
performance in different types of inter-class rela-
tionships that exist in text classification. Specif-
ically, in sentiment classification the classes are
ordinal, whereas in emotion recognition the classes

are nominal1.
For emotion recognition, we use the following 4

datasets, ordered in decreasing number of classes:

• Empathetic Dialogues (Rashkin et al., 2019)2:
a dataset of two-way conversations between
a speaker and listener, and labelled with 32
emotions. In this work, we only use the first
turn of the conversation, which consists of
the speaker describing an emotional incident.
The train/validation/test split for the dataset is
19,533 / 2,770 / 2,547 samples respectively.

• GoEmotions (Demszky et al., 2020)3, a
dataset of Reddit comments labelled with 27
emotions (we did not include samples with
neutral label). The original dataset is multi-
labelled, i.e, some samples have more than
one label. In this work, we use only the single-
labelled samples, which is ∼80% of the to-
tal data. The train/validation/test split of this
dataset is 23,485 / 2,956 / 2,984.

• ISEAR (International Survey on Emotion An-
tecedents and Reactions) (Scherer and Wall-
bott, 1994)4 contains sentences of emotion
experiences labelled with one of 7 emotion
categories. The train/validation/test split of
the dataset is 4,599 / 1,533 / 1,534.

• EmoInt (Mohammad and Bravo-Marquez,
2017)5 consists of tweets labelled with one of
4 emotion categories. The train/validation/test
split of this dataset is 3,612 / 346 / 3,141.

For Sentiment Analysis, we use the 5-class and
2-class classification versions of the Standford Sen-
timent Treebank (Socher et al., 2013), which con-
sists of movie reviews annotated for sentiment. The
SST-5 has 5 classes (very negative, negative, neu-
tral, positive, and very positive), while the SST-2 is
only a binary (negative/positive) classification. The
train/validation/test split for the SST-5 is 8,544/
1,101 / 2,210, and for SST-2 is 6,920 / 872 / 1,821.

1Although there still may be underlying latent structure
such that some classes may be semantically more similar than
others, e.g., afraid vs. anxious vs. joyful.

2https://github.com/facebookresearch/
EmpatheticDialogues

3https://github.com/google-research/
google-research/tree/master/goemotions

4https://www.unige.ch/cisa/research/
materials-and-online-research/
research-material/

5http://saifmohammad.com/WebPages/
EmotionIntensity-SharedTask.html

https://github.com/facebookresearch/EmpatheticDialogues
https://github.com/facebookresearch/EmpatheticDialogues
https://github.com/google-research/google-research/tree/master/goemotions
https://github.com/google-research/google-research/tree/master/goemotions
https://www.unige.ch/cisa/research/materials-and-online-research/research-material/
https://www.unige.ch/cisa/research/materials-and-online-research/research-material/
https://www.unige.ch/cisa/research/materials-and-online-research/research-material/
http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html
http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html
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4.2 Implementation Details

We initialised both the pre-trained encoder
and weighting network using ELECTRAbase

(electra-base-discriminator) from
HuggingFace’s Transformers library (Wolf et al.,
2020), which consists of 12 Transformer layers
with a hidden representation size of 768. As
is convention, we use the representation corre-
sponding to the [CLS] token of the last layer as
an input into the final classification layer (Clark
et al., 2019). The classifier present in the primary
encoder consists of a 2-layer dense network with
the first layer having hidden size of 768 with a
ReLU activation, followed by an output layer. The
dropout was set to 0.1.

Similar to previous research (Khosla et al., 2020;
Gunel et al., 2021), we use data augmentation to
generate positive samples. Here, we use synonym
replacement where we substitute 30% of the words
in the input text by replacing it with words with se-
mantic similarity using WordNet dictionary (Miller,
1995). The coverage of the WordNet dictionary was
∼69% for EmpatheticDialogues, ∼69% for SST-2
and SST-5, ∼66% for ISEAR, ∼62% for EmoInt
and ∼61% for GoEmotions. Previous research
(Wei and Zou, 2019) have shown that synonym
replacement works well as it could introduce new
vocabulary words and help the model generalise. In
addition, synonym replacement does not require an
external model unlike other augmentation methods
like back-translation.

For training, we used the Adam optimiser and
early stopping based on performance on the val-
idation set. We ran our models with 5 random
seed settings and report the mean performance.
More details regarding the hyper-parameter set-
tings and computing infrastructure can be found in
the Appendix. Source code is available at https:
//github.com/varsha33/LCL_loss.

4.3 Model comparisons and evaluation

For the emotion classification task we calculate
classification accuracy and F1 score, while for sen-
timent analysis we compare accuracy of sentence-
level sentiment classification. For both tasks, we
compare LCL against the following baselines:

• Fine-tuning objectives: We compare against
the standard Cross-entropy Loss, as well as
Supervised Contrastive Loss (SCL) (Gunel
et al., 2021). In both comparisons and in LCL,

we use ELECTRAbase as the pre-trained lan-
guage model.

• General pre-trained language models: For
emotion classification, we also compare with
BERTbase (Devlin et al., 2019) as our baseline.
We use the same fine-tuning architecture as
Devlin et al. (2019). For sentiment analysis,
we compare against BERTbase (SST-2 (Devlin
et al., 2019) and SST-5 (Munikar et al., 2019))
and RoBERTabase (Liu et al., 2019).

• Sentiment-specific language models: For
sentiment analysis, we compare against Sen-
tiBERT (Yin et al., 2020), SentiLARE (Ke
et al., 2020) and SKEP (Tian et al., 2020a),
which are language models designed specifi-
cally for sentiment analysis and related tasks.

5 Results and Discussion

5.1 Emotion Classification Performance
For emotion classification we compared our pro-
posed Label-aware Contrastive Loss (LCL) work
with the standard training objective, i.e., cross-
entropy loss. We also compared with Gunel et al.
(2021)’s formulation of Supervised Contrastive
Loss (SCL), who used a linear combination of SCL
and Cross-entropy loss for fine-tuning pre-trained
language models (in contrast to the original SCL
paper, Khosla et al., 2020, who used a two-stage
training regime). For all fine-tuning objectives, we
used ELECTRAbase as the pre-trained language
model. To evaluate the approaches we use top-1
Accuracy and weighted macro F1-score.

As shown in Table 1, our LCL objective func-
tion improved classification performance com-
pared to both SCL and cross-entropy loss, on
both fine-grained emotion classification (32-class,
LCL>SCL, t-test on accuracy, t = 4.20, p = .007,
LCL>CEL, t = 6.42, p < .001; and 27-class
classification; LCL>SCL, t = 5.70, p < .001,
LCL>CEL, t = 4.32, p = .002), as well as coarse-
grained emotion classification (7-class, LCL>SCL,
t = 7.39, p < .001, LCL>CEL, t = 7.70, p <
.001; and 4-class classification, LCL>SCL, t =
5.34, p < .001, LCL>CEL, t = 2.25, p = .078
not significant). The consistent improved perfor-
mance of LCL is in contrast to SCL, which did
not outperform standard cross-entropy loss, (all
p > .05, with SCL in fact performing worse than
CEL on ISEAR, t = 3.34, p = .02). These results
suggest that incorporating class relationships into

https://github.com/varsha33/LCL_loss
https://github.com/varsha33/LCL_loss


4387

Dataset: Empathetic Dialogues GoEmotions ISEAR EmoInt
Number of classes: 32 27 7 4

Acc / % F1 Acc / % F1 Acc / % F1 Acc / % F1
BERTbase 55.8 (0.8) 54.4 (1.2) 64.1 (0.5) 63.0 (0.9) 69.2 (0.3) 69.3 (0.1) 85.0 (0.6) 85.0 (0.6)
ELECTRAbase + Cross-Entropy Loss 58.3 (0.5) 56.8 (0.5) 64.8 (0.3) 63.9 (0.4) 71.4 (0.2) 71.4 (0.2) 85.5 (0.9) 85.5 (0.9)
ELECTRAbase + SCL (Gunel et al., 2021) 58.5 (0.7) 57.0 (0.9) 64.3 (0.4) 63.0 (0.4) 70.5 (0.5) 70.5 (0.6) 85.7 (0.2) 85.8 (0.2)
ELECTRAbase + LCL 60.1 (0.3) 59.1 (0.3) 65.5 (0.2) 64.8 (0.2) 72.4 (0.2) 72.4 (0.2) 86.6 (0.3) 86.6 (0.3)

Table 1: Summary of results for fine-grained emotion recognition. We divide the table into fine-grained (left)
and coarse-grained (right) emotion classification, based on the number of classes. We compare the results of
an ELECTRA encoder trained with: a standard cross-entropy loss, a Supervised Contrastive Loss (SCL), and
our proposed Label-aware Contrastive Loss (LCL). The results shown are averaged over 5 runs, with standard
deviations in parenthesis.

the fine-tuning objective of pre-trained language
models can improve classification accuracies.

5.2 Sentiment Analysis Performance

SST-5 SST-2
Acc / % Acc / %

BERTbase (Munikar et al., 2019) 53.2 (-)
BERTbase(Devlin et al., 2019) 93.5(-)
RoBERTabase (Liu et al., 2019) 56.2 (-) 94.8(-)
SentiBERT(Yin et al., 2020) 57.8 (-) 94.7 (-)
SentiLARE(Ke et al., 2020) 58.6 (-)
SKEP (Tian et al., 2020a) 96.7 (-)
ELECTRAbase(Clark et al., 2019) 93.4 (-)
ELECTRAbase (Our implementation) 57.1 (1.2) 94.4 (0.3)
ELECTRAbase+ SCL (Gunel et al., 2021) 57.4 (0.6) 94.3 (0.2)
ELECTRAbase + LCL (Ours) 58.5 (0.2) 94.5 (0.1)

Table 2: Summary of results for fine-grained (5-class)
and coarse-grained (2-class) sentiment analysis. The
results shown are averaged over 5 runs, with standard
deviations in parenthesis.

For sentiment analysis, we used the sentence in-
puts from SST-5 and SST-2. In addition to compar-
ing LCL with varying fine-tuning objectives (cross-
entropy and SCL), we also compare against re-
cent state-of-the-art works, focusing on pre-trained
language models and pre-trained language models
learnt specifically for sentiment classification such
as SentiBERT (Yin et al., 2020), SentiLARE (Ke
et al., 2020), and SKEP (Tian et al., 2020a). To en-
sure a fair comparison, we use the base version of
the pre-trained language models unless mentioned
otherwise. To evaluate, we use top-1 Accuracy.

From the results in Table 2, in the case of
SST-5, our LCL objective showed improved clas-
sification performance compared to SCL (t =
3.61, p = .01), and standard cross-entropy loss
(SST-5: t = 2.40, p = .069, although this is not
significant due to high SD in CEL performance).
Our LCL-fine-tuned model also achieves a perfor-
mance comparable to the state-of-the-art perfor-
mance of SentiLARE, although not statistically

different (p = .77). On SST-2, our LCL perfor-
mance gains compared to cross-entropy and SCL
are far more modest (neither were statistically sig-
nificant; p = .78 and p = .32 respectively), and it
performs comparably to previous SOTA pre-trained
models, although it does not do as well as SKEP
(p < .001). We provide two possible reasons: one,
there is already very high performance (e.g. 94%
accuracies) on this binary classification task, which
makes it difficult to get clear consistent improve-
ments. Second and more importantly, we designed
LCL to increase inter-class contrast, and so our
method should work better for higher number of
classification, compared to binary classification. In-
deed, we see that LCL’s improvements are much
stronger and consistent on the fine-grained (5-class)
sentiment classification task.

5.3 Case Study: Varying number of classes

We designed LCL to increase inter-class contrast,
and we see marked improvements for all the tasks
studied except for the 2-class (SST-2) classification.
We hypothesized that LCL should do better with
an increasing number of classes, but unfortunately
it is difficult to draw that inference from Tables 1
and 2 as each dataset only provides one datapoint
about number of classes, and there are also differ-
ences across datasets which is difficult to control
for. Thus, in this experiment, we used the dataset
with the largest number of emotion classes, Empa-
thetic Dialogues (with 32-classes), and subsampled
some fraction of emotion classes from this dataset
to create “mini-datasets” of differing number of
emotion classes. This allows us to systematically
vary the number of classes that our LCL-tuned
model has to learn to classify, and examine the per-
formance of the model. We predict that LCL will
have a greater contribution to performance when (i)
the number of classes is larger, and (ii) the classes
are more confusable.
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Number of classes: 32 16 8 4-easy 4hard-a 4hard-b 4hard-c 4hard-d
Cross-Entropy Loss 58.1 (0.7) 68.8 (0.4) 78.0 (0.6) 89.2 (0.3) 56.1 (0.5) 63.2 (0.9) 54.3 (1.0) 67.4 (0.6)
Supervised Contrastive Loss 58.6 (0.5) 67.9 (0.6) 77.0 (0.8) 88.8 (0.5) 55.4 (0.5) 63.7 (1.1) 53.3 (0.8) 68.1 (0.7)
Label-aware Contrastive Loss 60.1 (0.2) 69.6 (0.5) 78.7 (0.4) 88.8 (0.6) 57.5 (0.7) 64.2 (0.7) 55.6 (0.6) 69.5 (0.5)

Table 3: Case study using class subsets of EmpatheticDialogues. For brevity, we only report accuracy scores.
Column headers give the number of class labels in that comparison. 4-easy denotes a coarse-grained set of four
emotions that are more easily distinguishable (on which we predicted that LCL would not add much), while the 4-
hard sets denote fine-grained sets of four emotions that are semantically more similar. Results shown are averaged
over 10 runs, with standard deviations in parentheses.

The full dataset has 32-classes. We randomly
sampled a partition of 16 emotions2, and 8 emo-
tions3. We also created several subsets of 4-
emotions. We designed a “4-easy” with 4 widely
separated emotion classes (4-easy: {Angry, Afraid,
Joyful, Sad}) which are the same classes as EmoInt
and comprise a subset of Ekman (1999)’s list of six
“basic" emotions. (We predicted that LCL would
not perform too well on this easy subset).

We adopted a data-driven approach to pick the
“hard" subsets by picking the most-confusable sets
of 4 emotions. First, we trained a standard cross-
entropy loss model (similar to our weighting net-
work in LCL in Fig.1), to obtain the 32-by-32
confusion matrix, which gives us an estimate of
how confusable each pair of classes is. We exhaus-
tively enumerated all 35,960 (32-choose-4) 4-class
combinations: For each combination we extracted
the corresponding 4x4 sub-matrix of the 32-by-
32 confusion matrix, and calculated the sum of
the off-diagonal elements of the 4x4 sub-matrix.
The highest confusable combination of emotions
was (4-hard-a: {Anxious, Apprehensive, Afraid,
Terrified}). After excluding these emotions, the
next-most confusable combinations were (4-hard-
b: {Devastated, Nostalgic, Sad, Sentimental}),
(4-hard-c: {Angry, Ashamed, Furious, Guilty}),
and (4-hard-d: {Anticipating, Excited, Hopeful,
Guilty}). We predicted that for all of these “hard"
sets that contain confusable emotions, LCL should
outperform the other methods.

The results from this case study are given in
Table 3. For the 32, 16, and 8-class classifica-
tion, as we predicted, we see a robust and consis-
tent improvement of our proposed LCL over SCL
and cross-entropy loss (16 classes: LCL>SCL,
t = 6.28, p < .001; LCL>CEL, t = 3.82, p =

2{Afraid, Angry, Annoyed, Anxious, Confident, Disap-
pointed, Disgusted, Excited, Grateful, Hopeful, Impressed,
Lonely, Proud, Sad, Surprised, Terrified}

3{Angry, Afraid, Ashamed, Disgusted, Guilty, Proud, Sad,
Surprised}

.001; 8 classes: LCL>SCL, t = 6.27, p < .001;
LCL>CEL, t = 3.16, p = .007). For the easy
4-class classification where the classes are concep-
tually “far apart”, and hence, contrastive learning
should not add much, we see that all three methods
perform identically well (p > .15). But when we
consider the more difficult 4-class classifications
where the classes are much more conceptually sim-
ilar, then LCL outperforms the other two methods
by a statistically-significant margin (all p’s < .05
except for LCL and SCL in 4-hard-b because of
the high SD’s in that comparison). Thus, our re-
sults provide evidence that LCL is an effective fine-
tuning strategy, especially when there are a large
number of highly-similar classes.

5.4 Quantifying model confidence

Finally, we wanted to try to quantify the intuition
that LCL helps to reduce the confusion among
confusable classes. Beyond looking at the top-1
accuracy, we turned to the distribution of predic-
tion scores among the different emotion classes. If
LCL helps the model to better differentiate emotion
classes, then we should also see this in the distri-
bution of prediction scores for the different classes.
For example, consider an example where devas-
tated is the model’s predicted label, and sad is a
closely confusable class; if LCL helps to sharpen
the model’s ability to differentiate closely confus-
able classes, then the model’s prediction score for
devastated should also be much higher than that for
sad. In general, we predict that LCL would result
in more “peaky” distributions.

We propose to use information-theoretic entropy
to quantify this. We predict that LCL would result
in prediction score distributions with lower entropy,
which correponds to more “peaky” distributions.
For a data point xi, let us denote the prediction
score as S ∈ RC , where C is the total number
of class labels. We then take the top-k prediction
scores Sk as the sub-vector of S with the k-largest
values (i.e., for k = 2, Sk would consist of the two
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Figure 2: Averaged entropy of the prediction score dis-
tributions, for the top-k choices. Here, decreasing en-
tropy carries the intuition that the distribution is more
“peaky”, such that the model is less confused by close
alternatives.

largest values in S). We normalize Sk to sum to 1,
and then calculate the entropy:

Entropyk = −
∑
k

sk · log2(sk) (7)

In Figure 2, we present the averaged entropy of
our model’s prediction scores, plotted against k for
the fine-grained emotion classification (Empathetic
Dialogues and GoEmotion) and fine-grained senti-
ment analysis (SST-5). For Empathetic Dialogues,
we see that LCL produces distributions with far
lower entropies, compared to cross-entropy and
SCL, and this is true as we look across the top-k
classes. For GoEmotions, we see a slightly dif-
ferent pattern, where both SCL and LCL produce
markedly less-entropic distributions compared to
the vanilla cross-entropy loss, but there was not
much difference between SCL and our LCL. Fi-
nally, for SST-5, which was the most fine-grained
sentiment analysis task we looked at, we start to
see the same pattern that LCL produces the lowest
entropy distributions, but this inference is limited
by the small domain of k.

This post-hoc analysis suggests that LCL helps
the model to learn prediction distributions that are
more confident. Note that this analysis looks at the
confidence of the model’s choice compared to the
space of possible choices, and is independent of
whether or not the predictions are correct (i.e., an
inaccurate but confident model will also produce
peaky, lower-entropic distributions), and so this
result complements the other evaluation metrics
used (accuracy and F1-scores).

6 Conclusion

In this paper we introduced a Label-aware Con-
trastive Loss that weights (negative) classes based
on how closely confusable they are with the tar-
get class. Fine-tuning with LCL showed increased
classification performance, especially in situations
with (i) larger number of classes, and (ii) more con-
fusable classes. LCL also seems to encourage the
model to be more confident in its decisions.

We view our approach as just one way to instan-
tiate the general idea of adaptively weighting dif-
ferent classes, and future work could explore other
methods such as incorporating external knowledge
about the class labels, or incorporating different
distance metrics between different classes. We feel
that this class of approaches are promising, as they
exemplify the idea that not all negative classes are
or should be treated equally.
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A Appendix

A.1 Evaluation metrics
We use top-1 accuracy and weighted macro F1-
score. Weighted F1-score takes care of the imbal-
ance in the label distribution and the equation for
weighted macro F1-score is given by,

weighted F1 = 2
∑
c

nc
N

precisionc × recallc
precisionc + recallc

(8)
where, nc is number of samples in class c and N is
the total number of samples.

B Experiment settings

For fine-tuning pre-trained models using Label-
aware Contrastive Loss (LCL), we use Adam opti-
miser with β1 set to 0.9, β2 set to 0.999 and ε set to
1e-06 with weight decay set to 1e-02. We used man-
ual search for hyper-parameter search and the best
model was chosen based on the best top-1 accuracy
yielded in the validation data. Learning rate was
chosen from set {1e-05, 2e-05, 3e-05}, loss scaling
factor α was chosen from {0.1, 0.2, · · · , 0.5} and
temperature parameter τ was chosen from the set
{0.1, 0.3, 0.5}. The best parameter setting of LCL
are as follows, for EmpatheticDialogues, EmoInt,
SST-5, SST-2, GoEmotions learning rate was found
to be 2e-05 and for ISEAR it was found to be 3e-05.
The α setting was found to be 0.5 for Empathet-
icDialogues, EmoInt, SST-5, SST-2, ISEAR and
0.1 for GoEmotions. For all datasets except SST-5
the temperature parameter was found to be 0.3 and
for SST-5 it was found to be 0.1. Batch size was
set to 10 for all the datasets, as we have one aug-
mented sample for every input sample the effective
batch-size becomes 20.

For EmoInt the tweet data was cleaned using
by removing non-ascii characters, letter repetitions
and extra white-spaces. In addition, all the user-
mentions and links were replaced to unique iden-
tifiers. We ran all our experiments using machine
equipped with a NVIDIA Tesla T4 GPU.

B.1 Average runtime and parameters
During training time, the number of parameters
trainable parameters is the combined number of pa-
rameters of the primary encoder and the weighting
network, in our case we use the base of ELECTRA
for both which has 110M parameters. The average
run-time of the model for one epoch was found to
be 2.9 min for EmoInt , 5.2 min for ISEAR, 19.8

min for GoEmotions, 19.7 min for EmpatheticDia-
logues, 6.1 min for SST-2 and 8.2 min for SST-5.

C Validation performance

The corresponding validation performance for the
reported test results are provided for emotion clas-
sification task in Table 5 and sentiment analysis
task in Table 4.

SST-2 SST-5
Acc / % Acc / %

Cross-Entropy 94.2 (0.4) 53.3 (0.7)
SCL (Gunel et al., 2021) 94.4 (0.1) 54.5 (1.2)
LCL 94.8 (0.2) 55.4 (0.8)

Table 4: Summary of validation results for sentiment
analysis task. The results shown are averaged over 5
runs and the standard deviation is provided in the brack-
ets.
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Dataset : Empathetic Dialogues GoEmotions ISEAR EmoInt
Number of classes : 32 27 7 4

Acc / % F1 Acc / % F1 Acc / % F1 Acc / % F1
Cross-Entropy 59.0 (0.2) 58.1 (0.4) 66.2 (0.2) 65.3 (0.3) 71.7 (0.4) 71.7 (0.4) 87.1 (1.0) 87.1 (1.0)
SCL (Gunel et al., 2021) 58.9 (0.7) 57.8 (0.8) 64.9 (0.3) 63.7 (0.3) 72.2 (0.7) 72.2 (0.7) 87.9 (0.5) 87.9 (0.5)
LCL 60.3 (0.4) 59.7 (0.4) 66.0 (0.2) 65.3 (0.2) 72.6 (0.2) 72.6 (0.2) 88.8 (0.8) 88.9 (0.8)

Table 5: Summary of validation results for emotion classification task. The results shown are averaged over 5 runs
and the standard deviation is provided in the brackets.


