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Abstract

Although paths of user interests shift in knowl-
edge graphs (KGs) can benefit conversational
recommender systems (CRS), explicit reason-
ing on KGs has not been well considered in
CRS, due to the complex of high-order and in-
complete paths. We propose CRFR, which ef-
fectively does explicit multi-hop reasoning on
KGs with a conversational context-based rein-
forcement learning model. Considering the in-
completeness of KGs, instead of learning sin-
gle complete reasoning path, CRFR flexibly
learns multiple reasoning fragments which are
likely contained in the complete paths of inter-
ests shift. A fragments-aware unified model is
then designed to fuse the fragments informa-
tion from item-oriented and concept-oriented
KGs to enhance the CRS response with enti-
ties and words from the fragments. Extensive
experiments demonstrate CRFR’s SOTA per-
formance on recommendation, conversation
and conversation interpretability.

1 Introduction

Different from traditional one-shot recommenda-
tion systems (Jannach et al., 2020), conversational
recommender systems (CRS) obtain users’ interests
through multi-turn conversation, and make recom-
mendations with responses. Typical CRS consists
of two parts: recommender and response genera-
tion. The recommender aims to understand users’
dynamic preference from contextual utterances to
find the items matching the preference best. Subse-
quently, the response generation aims to generate
appropriate sentences asking for more information
or exhibiting the recommended items and related
explanation. Recommender and response genera-
tion are expected to be mutually beneficial.

However, contextual utterances are usually insuf-
ficient to understand users’ preference (Zhou et al.,
2020a). External knowledge, especially knowledge
graphs (KGs), helps CRS to alleviate the problem

Context: I'm looking for a suspense movie like Shutter Island,

and The Prestige is also my favorite.

Response: I recommend Inception with Christopher Nolan and 

Leonardo DiCaprio, it has an unpredictable story.
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Figure 1: An example of conversational movie recom-
mendation. In item-oriented and concept-oriented KGs,
multiple high-order reasoning paths contain fragments,
from which items and concepts support the recommen-
dation and the interpretability of response.

(Chen et al., 2019; Zhou et al., 2020a). Existing
KG-based CRS still have some issues.

The first issue is the lack of explicit reasoning,
especially high-order explicit reasoning, in KG to
track the deep shift of user interest in conversations.
For example, in Figure 1, the user prefers "Shutter
Island" and "The Prestige" due to certain attributes,
i.e., actor "DiCaprio" and director "Nolan". In this
case, both "DiCaprio" and "Nolan" lead to a 2-
order explicit reasoning of the user’s interest shift
to "Inception" in the KG. Such multiple high-order
explicit reasoning paths are strong evidence to rec-
ommend "Inception". Besides item KG, explicit
high-order reasoning in concept KG can further
describe the shift of concept words of interest, e.g.,
from "suspense" to "unpredictable" in Figure 1, and
enhance the interpretability of response. However,
because KG nodes usually have many neighbors,
effective high-order explicit reasoning is challenge-
able. Therefore, instead of explicit reasoning, one
alternate in existing KG-based CRS (Chen et al.,



4325

2019; Zhou et al., 2020a) is to aggregate neigh-
borhood of interest entities in context, which can
implicitly gathering high-order relations by multi-
turn aggregation. Another alternate strategy (Ma
et al., 2020) is to explicitly grow a high-order tree
in KG starting from interest entities to cover the
potential preference, without aiming to the best
recommended items. Both strategies can improve
CRS, but have not full appreciation of the advan-
tage of tracking interest shift in KG.

The second issue is that KGs are usually incom-
plete to track the path of interest shift. For example,
in Figure 1, the user mentioned the two movies
probably because he/she likes "Nolan" and "Di-
Caprio". Multiple paths in KG help to locate the
subspace of the user’s interest and generate inter-
pretive utterances in line with people’s dialogue
behavior, e.g., "...Inception with Christopher Nolan
and Leonardo DiCaprio...". However, KGs can not
record all relations of interest entities involved in
real-world diverse dialogues (Ma et al., 2020; Hay-
ati et al., 2020; Sarkar et al., 2020). Therefore, it is
often difficult to achieve a complete reasoning path
of interest shift within limited number of hops.

To address these issues, we improve
Conversational Recommender Systems with
Flexible Fragments Reasoning on KGs (CRFR).
CRFR uses an explicit multi-hop reasoning method
to model the user’s interest shift in a conversation
with respect to an item-oriented KG (DBpedia
(Bizer et al., 2009)) and a concept-oriented KG
(ConceptNet (Speer et al., 2017)). We formalize
the interest shift as a Markov Decision Process
and propose an explicit policy-guided reasoning
model based on reinforcement learning. Due
to the possible absence of complete reasoning
path in limited hop, instead of finding single best
reasoning path, the learned policy flexibly obtains
a set of high-order optimal path fragments. The
obtained path fragments point to the destination
of the user’s interest shift and are likely to be
contained in complete interest shift paths.

To make recommendation with multiple reason-
ing path fragments, we further design a fragments-
aware recommendation module to fuse fragments
information to learn the final representation of user
preference. Subsequently, in a reasoning informa-
tion enhanced dialog module, the user preference
representation is integrated into the response at to-
ken level. In this way, both the entities and words in
reasoning path fragments can be flexibly involved

and thus enhance the informativeness and inter-
pretability of generated response.

Our contributions are summarized as follows:
(1) To explicitly model the multiple shift paths

of user’s interest in a conversation, we propose a
multi-hop policy reasoning model based on rein-
forcement learning with respect to item-oriented
and concept-oriented KGs.

(2) To avoid the difficulty of exact reasoning in
incomplete KG, CRFR flexibly obtains an optimal
set of path fragments from heterogeneous KGs.

(3) To effectively use obtained fragments, CRFR
dynamically encoders the fragments to facilitate
the recommendation and dialog response.

(4) Extensive experiments demonstrate that
CRFR exceeds the state-of-the-art baselines in rec-
ommendation accuracy and generates high quality
response with more interpretability.

2 Related Work

Conversational recommender systems (CRS) can
be divided into two types. One is agent-driven
CRS known as "system ask, user respond" (Gao
et al., 2021; Zhang et al., 2018; Zou et al., 2020).
This strategy obtains user preference by asking for
predefined attributes (Sun and Zhang, 2018; Lei
et al., 2020a) and makes response by the user’s
feedback (Luo et al., 2020; Xu et al., 2021; Li
et al., 2020). Graph reasoning (Lei et al., 2020b)
and comment information (Chen et al., 2020) can
make the recommendation process of agent-driven
CRS interpretable. Although agent-driven CRS is
popular in specific field, predefined template limits
its generalization ability.

The other is user-oriented CRS known as "user
talk, system understand" (Kang et al., 2019; Liao
et al., 2019; Liu et al., 2020; Zhou et al., 2020b).
Due to the insufficient context, user-oriented CRS
often need the help of external knowledge, e.g.,
knowledge graphs (KGs). Closely related to our
work, Chen et al. (2019) integrates KGs to connect
recommender and response generation. Zhou et al.
(2020a) further uses item-level and word-level KGs
to align two different semantic spaces. However,
these two approaches only implicitly aggregating
the neighbor information with GCN-based meth-
ods, instead of conducting explicit reasoning in
KGs to track the deep user preference shift.

An ideal explicit KG reasoning for CRS is sup-
posed to accurately describe the shift process of
user interests using a single complete path. How-
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ever, it is usually challengeable due to the incom-
pleteness of the KGs, the large search space and
the diversity of expressing user interests. Different
from the approaches looking for single path (Moon
et al., 2019), the reasoning tree (Ma et al., 2020)
executes relatively undirected reasoning and lacks
concept relations in the reasoning.

3 Preliminaries

In general, a knowledge graph G with entity
set E and relation set R is defined as G =
{(e, r, e′) | e, e′ ∈ E , r ∈ R}, where each triplet
(e, r, e′) represents a relation r from entity e to
entity e′. In this paper, we denote the item-oriented
knowledge graph DBpedia (Bizer et al., 2009) as
GD and the concept-oriented knowledge graph Con-
ceptNet (Speer et al., 2017) as GC . Correspond-
ingly, their entity sets are ED and EC respectively.
A multi-hop complete reasoning path pe0,et , which
connects a starting entity e0 and a target entity et:
pe0,et =

{
e0

r1→ e1
r2→ . . .

rt→ et

}
. A subset of a

complete reasoning path is a path fragment p.
In this work, given an n-turn conversation his-

toryH, which contains the utterances of each turn,
CRFR takes conversation historyH with the user
u, graphs GD and GC as input, utilizes context in-
formation to perform flexible policy reasoning on
GD and GC to obtain high-order path fragments set
P that point to the destination of the user’s interest
shift, and further uses P as a guide to output the
response containing the recommended item and the
explanation of the recommendation.

4 Methodology

In this section, we introduce our proposed CRFR
model. The overall framework is shown in Fig-
ure 2. CRFR executes flexible multi-hop policy
reasoning on KGs GD and GC to obtain high-order
path fragments that point to the destination of the
user’s interest shift on the two KGs respectively.
Path fragments from GD help the fragments-aware
recommendation module to obtain a more accurate
user preference representation. Further, the reason-
ing information enhanced dialog module integrates
the user’s preference representation at the token
level to flexibly select two types of path fragment
information to guide response generation.

4.1 Flexible Policy Reasoning
Following Chen et al. (2019) and Zhou et al.
(2020a), we first use R-GCN (Schlichtkrull et al.,

2018) and GCN (Edwards and Xie, 2016; Kipf
and Welling, 2017) to encode knowledge graphs
GD and GC , respectively. A representation model
of entities is pre-trained by adjusting two KGs to
identical semantic space. We formalize the user
interest shift as Markov Decision Process (MDP),
and learn the shift policy by performing multi-hop
path reasoning in KGs. This section uses GD as a
MDP environment to learn path reasoning policy.
Similar method is applied to GC .

State. Initial representation pu0 of current user u
is the aggregate embedding of common entities in
GD and H. The aggregate embedding is obtained
by the pre-trained representation model. pu0 is
used as the starting state s0 ∈ S of path reasoning,
i.e., s0 = pu0 . st ∈ S is the state representation
of t-th step. st is obtained by concatenating pu0 ,
the embeddings of the reasoning history entities
ht = (e0, e1, . . . , et−1) and the entity et reached
at t-th step. Formally, st = [pu0 ;ht; et].

Action. For state st, its action space At
is all neighbors of et in KG, except for the
entities that already appeared in the path. At =
{e | (et, r, e) ∈ GD, e ∈ ED\ {e0, e1, . . . , et−1}}.
For the nodes with a large number of neighbors, we
design a pruning strategy function g(u, a) to select
important neighbors. g(u, a) = pTu0 · ea, where ea
is the embedding of entity a. The trimmed action
space is A′t = {a | topk(g(u, a)), a ∈ At}, where
the size of the action space is a hyperparameter
separately set for each KG. Specially, action space
A0 of the initial state s0 is the set of entities
mentioned inH.

Transition. Given current state st =
[pu0 ;ht; et], the agent chooses at ∈ A′t as the next
action. The next state st+1 is transited to by st+1 =
T (st, at) = [pu0 ;ht; et; et+1], T : S × T → S .

Reward. Intuitively, we reward the decision
made at each step by how well it matches the user’s
preference. Inspired by (Lv et al., 2020; Xu et al.,
2020), we adopt a soft reward, which calculates co-
sine similarity simeT ,at between eT and the action
entity at as the reward Rt at step t, where eT is the
embedding of target entity or target concepts, α, β,
ε1 and ε2 are hyperparameters.

Rt =


α, simeT ,at ≥ ε1
simeT ,at + β, ε1 > simeT ,at ≥ ε2
max (0, simeT ,at) , otherwise.

(1)
Policy Optimization. We employ the A2C

method (Sutton and Barto, 2018) for optimization.
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Figure 2: The Overview of CRFR. Policy reasoning flexibly obtains high-order path fragments in DBpedia (GD)
and ConceptNet (GC), which are beneficial to recommendation and dialogue. Here, pDi

and pCi
are reasoning

path fragments in GD and GC , respectively. pu is the final user preference representation.

The goal of the agent is to learn a path finding pol-
icy π (at, st,A′t), which calculates the probability
distribution of each action at based on current state
st and trimmed action space A′t. At the same time,
the agent learns a critic network, which calculates
the value of at according to st. We use two fully
connected layers as the policy network, and each
layer has an ELU activation function and a dropout
layer. The output of the network is further sent to a
softmax layer and a fully connected layer to obtain
the probability p (at | st,A′t) = π (at, st,A′t) and
value q (at) of each action. Specifically, the learn-
ing goal is to maximize the expected cumulative
reward for all users:

JθRL
= Eπ

[
T∑
t=0

γtRt

]
, (2)

where θRL are the parameters to be learned, γ is the
discount parameter. Following reinforce algorithm,
the gradient of the learning object becomes:

∇JθRL
= Eπ

[
∇θ log πθ

(
at, st,A′t

)
(Gt − q (at))

]
,

(3)
where Gt is the discounted cumulative reward start-
ing from state st to the final time step T .

Flexible Fragments Reasoning. Due to the in-
completeness of KG (Sarkar et al., 2020), as a key
idea of this work, instead of only modeling user’s
interest with the destinations of complete reasoning
paths, we prefer to model user’s interest shift with
partial reasoning path, i.e., reasoning fragments.

After training the two policy networks, guided by
the probability of each action made by the policy
network, we employ beam search to explore the
candidate path fragments Pcandidate on two KGs
GD and GC , respectively. We select the fragments
with top generating probabilities. Selected frag-
ments are supposed to be most consistent with the
user’s interest shift process, and will be used in the
following fragments-aware recommendation and
reasoning information enhanced dialog.

4.2 Fragments-aware recommendation
Given fragments obtained by reasoning in item-
oriented KG GD, we design a fragments-aware rec-
ommendation module to improve the representa-
tion of user preference.

First, we collect the beginning nodes of all path
fragments, that is, the more important entities se-
lected from the entities mentioned byH. The em-
beddings of these entities are obtained by a simple
lookup operation. We connect the embedding of
the beginning entities to the matrixB(H). Similarly,
we also combine the embeddings of the destination
of all path fragments to get the matrix D(H). Next,
we apply the self-attention mechanism to obtain a
single aggregate representation of the two matri-
ces. Specifically, we use self-attention to learn the
representation of b(H) for B(H):

b(H) = α ∗B(H),

α = softmax
(
W 1
α tanh

(
W 2
αB

(H)
))
,

(4)

where W 1
α and W 2

α are learnable parameters. The
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aggregated representation d(H) of D(H) is also ob-
tained in the same way. Then, we design an interac-
tive aggregation method to obtain path fragments’
fusion information pagg:

pagg =ReLU
(
W 1

agg

(
b(H) � d(H)

))
+

ReLU
(
W 2

agg

(
b(H) + d(H)

))
,

(5)

where W 1
agg and W 2

agg are learnable parameters and
� means element-wise product. Next, we use two
gate networks to fuse the information of entities
(pu0 in GD) and the information of concepts (pu0
in GC) inH, respectively, to strengthen the user’s
preference representation:

η = σ
(
Wg
(
pagg ‖pu0

))
,

pagg = η · pagg + (1− η) · pu0 ,
(6)

where σ(·) is the sigmoid function, and || is the con-
catenation operation. Wg is the parameter learned
separately by the two gate networks. The final fu-
sion representation pagg is the user’s preference
representation pu.

Finally, we conduct inner product of user and
item representations to predict their matching score:
ŷ(u, i) = softmax

(
pTu ei

)
, where ei is the embed-

ding for item entity i.

4.3 Reasoning information enhanced dialog

To enhance dialog, we use the Transformer’s de-
coder (Vaswani et al., 2017) to merge the user’s
preference with the information of the path frag-
ments from GD and GC respectively at token level.
The decoder can flexibly select semantics in two
kinds of reasoning fragments to enhance the in-
formativeness and interpretability of the generated
response. Intuitively, human interest shift is a con-
tinuous process, and the reasoning paths provide
explanations of recommendations. Therefore, we
encode each path fragment pDi ∈ PD of GD in-
ference into a path vector m(H), and concatenate
m(H) to the matrixM (H)

D . Specifically, we concate-
nate the embeddings of all entities on the fragment,
and use MLP to obtain the representation of the
path fragment information:

m(H) = MLP ((e0||e1|| . . . ||eT )) , (7)

where || is the concatenation operation. For the con-
cept information inferred from GC , we merge the
embeddings of the concept words of each order on

the path fragments into the matrix N (H)
C . In the de-

coder’s i-th layer, we first fuse the output of the self-
attention sub-layer with the word bias of the user
preference representation: V i−1 = V i−1+Z (pu),
Where Z : Rdu → Rdw . Next, we add two multi-
head attention modules, so that the output V i−1

after fusing user preference can conduct attention
operation with path information M

(H)
D and con-

cept information N (H)
C in turn. Finally, the output

embedding matrix V i of the i-th layer is obtained
through a fully connected feed-forward network.

Merged path fragments information is supposed
to improve the possibility of reasoning entities
or words to appear in response. In this way, we
can significantly improve the coherence and inter-
pretability of response. We will demonstrate it in
experimental section.

4.4 Optimization
We train the parameters in four steps. First, we pre-
train the entity representation of KGs as Sec.4.1.
Then, use Eq.3 to optimize the policy parameters
θGDRL and θGCRL of the two agents. Next, to optimize
the recommendation, we adopt cross-entropy loss:

LRec = −
O∑
j=1

I∑
i=1

[
yij log ŷ

(j)(u, i)−

(1− yij) log
(
1− ŷ(j)(u, i)

)]
,

(8)

where i is the index of items, j is the conversation
index. After completing the optimization of rec-
ommendation, we get the parameter θRec. On this
basis, we use the loss function of the generative
model to learn the dialogue parameter θGen:

LGen = − 1

K

K∑
k=1

log (pθGen
(hk | h1, . . . , hk−1)) ,

(9)
where K is the count of turns in a conversationH.
We calculate LGen for each utterance hk from H
and perform gradient descent to update parameters.

5 Experiments

5.1 Experimental Setup
Dataset. Experiments are conducted on the Re-
Dial dataset (Li et al., 2018). ReDial has 10,006
multi-turn conversations and a total of 182,150 ut-
terances of movie recommendation seekers and
recommenders. Movies mentioned in utterances
are manually annotated. We identified unlabeled
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Model R@1 R@10 R@50
Popularity 0.012 0.061 0.179
TextCNN 0.013 0.068 0.191
REDIAL 0.024 0.140 0.320
KBRD 0.032 0.166 0.345
KGSF 0.037 0.183 0.371
CRFR 0.040 0.202 0.399
+RandomWalk 0.033 0.170 0.361

Table 1: Evaluation of recommendation. +Ran-
domWalk means using random walk to replace the pol-
icy reasoning part. (t-test with p-value < 0.05)

entities in utterances by NER and linked them to
DBpedia nodes. We divided the training, validation
and test set according to the ratio of 8:1:1.

Baselines. Used baselines are as follows. Pop-
ularity only sorts the items according to historical
recommendation frequency. TextCNN (Kim, 2014)
is a recommendation model learning user prefer-
ence representations by CNN-based encoding of
contextual utterances. Transformer (Vaswani et al.,
2017) is a dialog generation model of classical
Transformer framework. REDIA (Li et al., 2018)
is the benchmark CRS model on the ReDial corpus,
which is mainly based on HRED (Sordoni et al.,
2015; Serban et al., 2016), a recommendation sys-
tem based on autoencoder and a sentiment analysis
module. KBRD (Chen et al., 2019) is a Knowledge-
Based CRS model that only uses DBpedia to en-
hance the user’s representation. KGSF (Zhou et al.,
2020a) is a state-of-the-art CRS model that aligns
two KGs with mutual information maximization
for conversation recommendation.

Implementation Details. The default parame-
ter settings can be found in appendix.

5.2 Evaluation on Recommendation

To evaluate the recommendation performance of
our model, we adopt widely-used Recall met-
rics including Recall@1, Recall@10 and Re-
call@50. They evaluate whether the top-k auto-
recommended items contain the ground-truth item
recommended by human recommended.

Overall Evaluation. As shown in Table 1, RE-
DIAL exceeds the classical recommendation mod-
els, i.e., Popularity and TextCNN, by using items
in the dialogue contexts. KBRD and KGSF get fur-
ther improvement by fusing the entities and items
information in the knowledge graph. Our model
achieves the best results using explicit multi-hop

Model Dist-2 Dist-3 Dist-4 Ratio
Transformer 0.148 0.151 0.137 0.194
REDIAL 0.225 0.236 0.228 0.158
KBRD 0.281 0.379 0.439 0.298
KGSF 0.302 0.433 0.521 0.324
CRFR 0.345 0.516 0.639 0.383
- Concept 0.298 0.407 0.478 0.335
- DBpedia 0.355 0.503 0.594 0.267
- Preference 0.287 0.374 0.422 0.240

Table 2: Evaluation of diversity and informativeness.
Dist refers to Distinct. Ratio refers to Item Ratio. The
last three rows are ablation results. (t-test with p-value
< 0.05)

policy reasoning to obtain the optimal set of path
fragments learning user’s interest shift, which out-
performs the best baselines with a large margin.

The Effect of Policy Reasoning. Here, we spe-
cially examine the contribution of policy reasoning
in our model. To this end, we replace the multi-hop
policy reasoning by random walk (Spitzer, 2013)
in the knowledge graph to obtain multi-hop path
fragments. As shown in Table 1, the use of random
walk significantly reduce the recommendation per-
formance. This happens because random walk is
undirected, while a significant advantage of multi-
hop policy reasoning is being guided by real user
interest shift.

The Effect of Explicit Reasoning. We also spe-
cially examine the contribution of explicit reason-
ing in our model. As shown in Figure 3, compared
with the baselines, the advantage of our model be-
comes more significant with the increase of the
average number of neighbors of KG nodes. This
happens because more neighbors mean more noise
for reasoning. Implicit reasoning through aggre-
gating all direct neighborhood is very sensitive to
such noise. However, our explicit high-order rea-
soning is more effective to find correct reasoning
directions from noisy neighbors.

5.3 Evaluation on Conversation
Diversity and Informativeness. To evaluate the
conversation, we firstly calculate "Distinct-n" to
measure the diversity of responses and calculate
"Item Ratio" which is the proportion of responses
containing items to evaluate the informativeness of
responses.

As shown in Table 2, CRFR outperforms all
baselines on corpus-level language diversity and
greatly improves the item ratio. Transformer has
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Figure 3: The effect of explicit reasoning. As the average number of neighbors increases, the performance of our
model is always higher than the SOTA baseline, and the improvement is more and more significant.

significant advantages in modeling the relationship
between words and items using self-attention mech-
anism. On this basis, KBRD and KGSF utilize
external knowledge to increase the occurrence of
the item, but they only use low-order KG infor-
mation of entities and concepts mentioned in the
context. Our method further enhances the occur-
rence of valuable items and entities consistent with
user interest by integrating the high-order reason-
ing path fragments into response generation. In
this way, our model enhances the informativeness
of responses.

Interpretability. Secondly, we evaluate the in-
terpretability of response by examining whether
there are two logically linked entities in the re-
sponse or across the response and the context. "log-
ically linked" means being linked in DBpedia. The
idea is that containing two logically linked enti-
ties are often a necessary condition to have a in-
terpretative expression in a response. In Table 3,
"2ER" (2 Entities Ratio) indicates the proportion
of responses containing at least two entities in all
responses containing entities. "Inner-Con." counts
the logically linked entity pairs in responses. "Inter-
Con." counts the logically linked entity pairs across
the response and context. As shown in Table 3,
our model is better than baselines on interpretabil-
ity with a large margin. This happens because
the entities in our explicit reasoning path are ex-
actly logically linked, and this naturally increase
the occurrence of logically linked entities pairs in
response or across the response and the context.

Human Evaluation. In human evaluation, we
examine "Flu." (fluency), "Coher." (coherence),
"Info." (informativeness) and "Inter." (interpretabil-
ity). Fluency and coherence are used to evaluate
the language quality of generated responses. In-
formativeness evaluates whether the response has
incorporated rich entity knowledge. Interpretability
evaluates whether the response explain the reason
of recommended item. 100 multi-turn conversa-

Model 2ER Inner-Con. Inter-Con.
KBRD 0.141 0.066 0.038
KGSF 0.161 0.078 0.039
CRFR 0.331 0.130 0.076
-Concept 0.261 0.083 0.052
-DBpedia 0.247 0.078 0.045
-Preference 0.171 0.106 0.043

Table 3: Evaluation of interpretability. We abbrevi-
ate 2 Entities Ratio as 2ER. The last three rows are ab-
lation results. (t-test with p-value < 0.05)

Model Flu. Coher. Info. Inter.
Transformer 1.92 1.91 1.81 1.70
REDIAL 2.01 1.97 1.69 1.62
KBRD 2.18 2.09 1.95 1.88
KGSF 2.32 2.21 2.12 2.08
CRFR 2.53 2.39 2.36 2.27

Table 4: Human evaluation of conversation. (t-test
with p-value < 0.05)

tions are randomly sampled from the test set for
human evaluation. The responses are scored from
1 to 3 for each indicator by 5 workers. The average
score is finally calculated. Results are shown in Ta-
ble 4. Among all the baselines, KGSF has the best
performance on all indicators. However, KGSF is
more inclined to generate words that are repeated
in the context and have no practical meaning, and
the recommendation response is less explanatory.
Our model achieves the best performance on all hu-
man evaluation indicators. This further verifies the
advantages of our model in automatic evaluation.

Ablation Study. In ablation study, we examine
three variants of CRFR: (1) "-Concept", which re-
moves the reasoning path fragments information
from GC ; (2) "-DBpedia", which removes the rea-
soning path fragments information from GD; (3)
"-Preference", which removes token level user pref-
erence information. As shown in Table 2 and Ta-
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Context-1
Have you seen Eight Crazy Nights.
That seems like a fun movie Not seen it though.

KBRD I haven’t seen that one.
KGSF I haven’t seen that one of any of the first?
CRFR I also recommend watching Jack and Jill (2011 film), it was a few of the Adam Sandler movie.

Ground-truth It’s a funny movie I watch it every year.

Context-2
I ’m fantastic! thanks! What kind of movies do you enjoy?
I ’m looking for some scary movies like Annabelle (film) or The Conjuring, I also really liked Sinister (film).

KBRD I haven’t seen that one.
KGSF Have you seen The Omen?
CRFR I also like Sinister 2 if you like ghost movies.

Ground-truth Oh nice! Have you seen The Sixth Sense or The Ring (2002 film).

Context-3
Hello, what are you looking for? \\ Hey! How are you? \\ Not too bad.
I’m looking for a kid movie! Like The Incredibles (film score).

KBRD How about Toy Story?
KGSF I would recommend WALL-E.
CRFR I would recommend The Croods. It is a really cute movie with Nicholas Cage.

Ground-truth Oh, cool, Have you seen Isle Of Dogs (2018)? That ’s a great new one I have n’t seen The Incredibles (film score).

Context-4
I ’m open to any movie what would you recommend?
I like action comedy like Rush Hour (film series) have you seen it? \\ No, i have not seen it, is it interesting?

KBRD Have you seen Who Am I (2014 film)?
KGSF Have you seen 21 Jump Street (film)?
CRFR I also recommend Rush Hour 2 full of laughs.

Ground-truth Yes , very filled with action and Christ tucker and Jackie chan are great! Do you like action or something else?

Table 5: Cases generated by different models. Crossing context and response, Entities connectivity in DBpedia
and Concepts shift in ConceptNet are highlighted. \\ denotes to switch conversation roles.

ble 3, all these three features are indispensable. Es-
pecially, user preference information at the token
level is most essential, without which the informa-
tiveness and interpretability drop significantly. Its
function is to flexibly select the information of rea-
soning path fragments from GC and GD to improve
the quality of the generated response.

5.4 Case Study
Four cases from three CRS models and ground
truth are selected in Table 5. Compared with the
other two models, CRFR has four main advantages:
(1) CRFR is more likely to recommend a specific
film instead of chatting without recommendation,
being consistent to "Ratio" in Table 2; (2) The items
recommended by CRFR is more likely to have ex-
plicit relation with the items mentioned by the user,
being consistent to "Inter-Con." in Table 3, e.g., in
the 1st case, " Jack and Jill" in response and "Eight
Crazy Nights" in context share the actor "Adam
Sandler". This benefits from our explicit multi-hop
reasoning in item-oriented KG; (3) Especially, one
main advantage of CRFR is to naturally tell the
items’ relation as an explanation, being consistent
to "Inner-Con." in Table 3 and "Inter." in Table 4.
It is noted that this ability is even often absent in
human ground-truth in selected cases. This benefits
from using personalized embedding of reasoning
fragments in response decoder; (4) Another impor-
tant advantage of CRFR is to make more friendly

and persuasive explanation with descriptive words
related to the feature words of user intention in
the context, e.g., ghost vs. scary, cute vs. kid and
laughs vs. comedy. This benefits from our explicit
multi-hop reasoning in concept-oriented KG.

6 Conclusion

We propose CRFR, which significantly improves
the agent response in conversational recommenda-
tion by exhibiting items having more clear higher-
order relations with users’ contextual intention and
containing more persuasive explanation. As the es-
sential advantage of this approach, explicit reason-
ing of high-order fragments in two heterogeneous
knowledge graphs is performed by a reinforce-
ment learning model. High-order path fragments
obtained by explicit reasoning on item-oriented
KG help the model to better track the user pref-
erence shift in conversation. The same reasoning
on concept-oriented KG further improves the in-
terpretability of response with informative concept
words. Heterogeneous fragments are personalized
encoded to finally enhance the response generation.
Extensive experiments demonstrated that CRFR is
superior to the SOTA baselines on recommenda-
tion, explanation and language quality.

In future, we will explore to make better use
of path information to further improve the inter-
pretability of responses.
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A Appendix

Implementation Details. The default parameter
settings across all experiments are as follows. We
set the embedding dimension of entities in the
knowledge graph to 128. In the policy reasoning
module, we set the maximum reasoning path length
to T=3, so the state vector st is of size 512. We
prune the action space with the maximum size 50
and 128 for graph GD and GC , respectively. The
discount factor γ is 0.99. In graph GD, the rewards
α and β are 2.0 and 0.5. The thresholds ε1 and
ε2 are 0.8 and 0.5. In graph GC , the rewards α
and β are 2.0 and 1.0. The thresholds ε1 and ε2
are 0.9 and 0.8. For the policy network, The pa-
rameter matrix of the two fully connected layers
W1 ∈ R512×256 and W2 ∈ R256×128. The action
dropout rate is 0.5. Our policy reasoning model
is trained for 20 epochs using Adam optimization
with the learning rate of 1e-4 and the batch size of
32. When using beam search for path reasoning,
we set the sampling sizes at each step to [5,4,1] for
graph GD and [25,5,1] for graph GC . In the recom-
mendation module, we set hidden representation
dimensions to 128. In the dialog module, all em-
bedding dimensions are set to 300, and word2vec
is used to initialize word embedding. In particular,
du and dw are 128 and 300 respectively. In the
training phase, we use Adam optimizer with the
default parameter setting. We set the batch size of
both modules to 32. The learning rate is 4e-4 for
the recommendation and 1e-3 for the conversation.
Gradient clipping restricts the norm of the gradi-
ents within [0, 0.1]. We implement the models in
PyTorch and train on an NVIDIA P100. The total
training time takes approximately 24 hours.
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